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Abstract

~ In this paper we show the functional and structural equivalence of B-trees and
deterministic skip lists by defining two new B-tree structures, the Bd-tree and Bd'-tree,
which we use to provide an explicit mapping between deterministic skip lists (DSLs) and
B-trees. This mapping is invertible and formalizes the correspondence that exists between
the structures, allowing us to prove the equivalence of B-tree and deterministic skip list
data structures. This result is important for a number of reasons. It validates the use of
deterministic skip lists as index structures while allowing one to determine the relationship
of deterministic skip lists to other balanced search tree structures. This equivalence
provides further insight into a comparison of the 1-3 deterministic skip list to the red-black
tree and to the 1-d range tree. We now know that we can interchange between the red-
black tree and the 1-3 DSL and that the dynamic 1-d range tree and 1-3 DSL are
equivalent structures. '

- Keywords: B-trees, deterministic skip lists, equivalent data structures, balanced search
tree structures, Bd-trees, Bd™-trees
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1. Introduction

As noted in [12], there is a correspondence between B-trees and deterministic skip
lists. For any B-tree of order m (m = 3), we are able to define a deterministic skip list
(DSL) with a gap size between [m/2 - 1 and m-1 (to provide us with a 1-2, 1-3, 2-4, 2-5,
.. DSL) which achieves equivalent worst case cost functions with respect to searching,
insertion, and deletion. It was also noted in [10] that there does exist a correspondence
between the 1-2 DSL and 2-3 trees and between the 1-3 DSL and 2-3-4 trees. However,
this correspondence has never been formalized.

In this paper we introduce the Bd-tree and a natural extension called the Bd'-tree,
which is both functionally and structurally equivalent to the deterministic skip list. We use
these structures to define an invertible mapping between B-trees and deterministic skip
lists which we use to show the functional and structural equivalence of the two structures.

This result is important for a number of reasons. It validates the use of
deterministic skip lists as index structures and lends support to the use of skip lists as
database indexes ([5]). It allows one to determine the explicit relationship of deterministic
skip lists to other tree structures and, since B-trees are equivalent to red-black trees [4], it
is straightforward to determine the relationship between deterministic skip lists and
balanced binary search tree structures. For example, we can show that the 1-3 DSL and
the dynamic 1-d range tree (as found in [14]) of Bentley [2] are equivalent data structures.

Definition 1:

We define structural equivalence to mean that any structure or sub-structure of
one data structure exists in a similar or equivalent form in the other data structure. By
equivalent form we imply that any operation that can be performed on one structure can
be performed on the other structure in an analogous fashion. We note that one implication
of this definition is that if datum A logically exists next to datum B in structure Gy then
datum A logically exists next to datum B in structure Gy.

Definition 2:

We define functional equivalence to mean that the worst-case cost functions are of
the same Big-Oh order of complexity. The following are the six basic cost functions
defined on a data structure G of n keys which must be of equal complexity in both data
structures if we are to have functional equivalence (based on [11]):

P(n) - preprocessing time required to build G,

S(n) - storage space required by G,

Qu(n) - time required to search for a single key in G,

Qg(n) - time required to perform a range search on G,

I(n) - time required to insert a new key into G, and

D(n) - time required to delete an existing key from G.




Requiring the above functions to have the same worst case time cost in both data
structures provides not only a necessary condition for functional equivalence but a
‘sufficient one as well. The purpose of a data structure is to index data for storage,
processing, and retrieval. S(n) takes care of any necessary storage costs. Processing is
handled by the application program, so we need only concern ourselves with the time it
takes to search for (and retrieve) the key(s) of interest (which is accounted for by Qu(n)
and Qgr(n)) and the time needed to make any necessary updates to the structure (and these
costs are covered by P(n), I(n), and D(n)).

We will briefly review deterministic skip lists and B-trees to set the definitions and
establish some important terminology before proving the equivalences.

2. Deterministic Skip Lists

Probabilistic skip lists [13], which were introduced as an alternative to balanced
tree structures, support range search and have an expected worst case cost for Qu(n),
1(n), and D(n) of O(lg n). However, the worst case is O(n) for all of these cost functions.

Based on the probabilistic skip list of [13], [10] have introduced the deterministic
skip list (DSL) which is similar to the probabilistic version but it uses no notions of
probability at all. This structure has a worst case search time, Qu(n), of O(mlgy;1.m)
(where m is the largest gap size) with an equivalent cost for insertion (I(n)) and deletion
(D(n)) (and therefore P(n) is O(mn lgrme1.1n). Note that this gives us a worst case range
search cost, Qr(n), of O(mlgrma11n + t). Their analysis shows that the DSL space
requirements, S(n), are O(n) and that the cost functions are optimal in the 1-d case.

Although skip lists are often represented in the standard form of [13], as in Figure
1, and implemented using efements, we often see the linked list representation (which uses
nodes) introduced in [10] and found in [11], {71, and [8], as shown in Figure 2. Another
implementation is the horizontal array implementation [15], a variation of which is shown
~ in Figure 3. In all the Figures that follow, shaded cells contain pointers (which may be nil
links) and the pointers always point down or to the right. This convention holds
throughout the rest of the paper.

Figure 1. A skip list in standard form.



Figure 3. A horizontal array representation of the skip list of Figure 1.

Note that our linked list representation does not use the bottom and tail sentinel
nodes found in [10]. They are not necessary in the definition of the structure, although
“they do simplify coding. Instead of nil links in the down pointers of the nodes on the leaf
level we would connect them to the bottom node and instead of nil links in the right
pointers of the last node on each level we would connect them to the tail node to simplify
coding and implementation.

An element (used in the standard implementation represented by Figure 1) is a
record that contains a key value and an array of pointers. A node (found in the linked list
implementation) is a record that contains a key value, a down pointer, and a right pointer.

" In the standard implementation, the level of an element is the number of (right) pointers it
possesses and the level of a node in the linked list implementation is determined with
respect to the leaf level which is defined to be level 0. The node structure in the horizontal
array implementation is a record structure which contains an array of key values, an array
of down pointers, and one right pointer; the level of a node is defined with respect to the
leaf level which is defined to be level 0.

The down subtree of a node consists of all nodes that can be reached by traversing
the down pointer of the current node such that those nodes are not reachable by traversing
the down pointer of the node pointed to by the right pointer (if one exists). In Figure 2,
the nodes (0,14, and 27) at level 0 are in the down subtree of node (27) at level 1 and the



node (34) at level 0 is not in the down subfree of node (27) at level 1 as it is in the down
subtree of node (55) at level 1.

The immediate down subtree of a node is all nodes at level (i-1) reachable by
traversing the down pointer of the current node at level i. Thus, the nodes (27, 55, and )
at level 1 are in the immediate down subtree of the node (o) at level 2 and the nodes (67,
77, 85, o) are 1 the immediate down subtree of the node (co) at level 1. Gap size is
defined as one less than the number of nodes in the immediate down subtree.

The direct descendent in the immediate down subtree is that node which is the first
node in a node's immediate down subtree. Hence, the gap size can be defined as the
number of nodes in the immediaie down subtree when we exclude the direct descendent.

Before concluding this section, we would like to note that our variation of the
horizontal array implementation of a deterministic skip list is equivalent to a linked list
implementation. To see this, we simply replace each node with a linked list of nodes that
contain a key value, a down pointer, and a right pointer. The only advantage offered by
the horizontal array implementation is direct access to a key value (and associated down
pointer) in the immediate down subtree.

3. B-trees

An excellent overview of B-trees can be found in [3]. In summary, a B-Tree of
order m has Qu(n), I(n), and D(n) of O{mlgr:1.1n) (and therefore P(n) of O(mn lgrm11m)),
Qgr(n) of O(mlgrys1in + ) (for t the number of keys in range), and S(n} of O(n). We
briefly review the basic B-tree structure before we show the equivalence of B-trees and
deterministic skip lists. The B-tree can be viewed as a generalization of the height -
balanced binary search tree (which is the AVL tree of [1]) to a multi-way tree structure in
which more than two paths may leave a given node.

A B-tree, T, of order m is defined as an m-way rooted tree which has the following
. properties (see [3]):
1. Every node, t, has the following fields:
count: the number of keys (c) currently stored in node t
keys: an array which holds the key values of node t
children: an array which holds the pointers to the children of node t
2. Every node t has at least [ /2 ] but no more than m children except for the root node
which has at least two children if the tree does not consist of the root node alone.
3. All leaves appear at the same level. The depth of a leat node is the height of the tree.
4. A non-leaf node with ¢ children containg c-1 keys which partition the children in the
fashion of a search tree.



The simplest B-tree is a B-tree of order 3. Every internal node than has either 2 or -
3 children and we have a 2-3 tree which we will soon see is equivalent to a 1-2 DSL.
Thus, a B-tree of order 4 gives us a 2-3-4 {ree which we find to be equivalent to the more
common 1-3 DSL. In practice, much larger values of m are typically used. Figure 4
illustrates a B-tree of order 4. Note that we follow the convention of using vertical bars to
the left and right of key values to represent down pointers (which may be nil links).
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Figure 4. A B-tree of order 4.

4. Bd-trees and Bd -trees

Before we show the equivalence of B-trees and deterministic skip lists, we must
introduce the structures we used to define and accomplish the invertible mapping. The
first of these is the Bd-tree. The Bd-iree is essentially a simple B-tree where each node in
the structure is connected by a simple (right) pointer to its right sibling, if one exists.

Formally we define the Bd-tree of order m as a modified B-tree of order m where
the node structure is modified to contain a "right" pointer which points to the right sibling
of the node, if one exists. A Bd-tree corresponding to the B-tree of Figure 4 is shown in
Figure 5. The double bar at the right of a node implies the existence of two pointers, one
down and one to the right.
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Figure 5. A Bd-tree of order 4 corresponding to the B-tree of order 4 in Figure 4.




We are now able to define the Bd'-tree (of order m) as a modified Bd-tree (of
order m) as follows:

1. Each node contains room for m keys and m children.

2. If a node contains ¢ children then it contains ¢ keys.

3. The preceding key from the parent node in the Bd-tree (on the downward path

to each node) is added as the rightmost key of the current node of the Bd'-tree.

4, The node consisting of c is attached to the structure and is made the new root.
' 5. We change property 2 of the B-tree to state: "... the root node has only one

child and the only child of the root node (if it exists) has to have at least two

children if it has any children at all."

The Bd*-tree is shown in Figure 6. We can see that this structure is both
structurally and functionally equivalent to the horizontal array implementation of the
deterministic skip list (as seen in Figure 3). The shaded boxes in the horizontal array are
~ collapsed into the vertical bars of the Bd'-tree.
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Figure 6. A Bd'-tree of order 4.

One should note the close similarity between the Bd'-tree and the B-link tree of [6]
which is a B™-tree (see [3]) where each node is connected to it's right sibling, if one exists.
The only difference between the Bd'-tree and the B-link tree is the existence of the "extra”
root node which contains only the key value o and the extra key value in each non-leaf
node. If we remove the "extra” root node and the extra key value in each non-leaf node
then we have the B-link tree of [6]. Figure 7 shows the B-link tree corresponding to the
Bd*-tree of Figure 6.
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Figure 7. The B-link tree of order 4 corresponding to the Bd*-iree of Figure 6.




5. B-trees and Deterministic Skip Lists

In this section we show that B-trees and deterministic skip lists are equivalent structures.

Theorem 1: A B-tree of order m is structurally equivalent to the linked list implementation
of a deterministic skip list of order m.

Proof:

We accomplish the proof by showing that B-trees are equivalent to Bd-trees, that
Bd-trees are equivalent to Bd'-trees, and that Bd'-trees are equivalent to a horizontal
array implementation of a deterministic skip list (which is equivalent to the linked list
implementation).

1t is straightforward to see that B-trees and Bd-trees are equivalent. The only
difference between a B-tree and a Bd-tree is the existence of a right pointer which is used
to connect a node to it's right sibling, if one exists. As this right pointer is unnecessary
(we can use a recursive traversal procedure to go from a node to its right sibling), the two
structures are equivalent.

It is just as straightforward to see that the Bd-tree and Bd'-tree are equivalent
structures. The only difference is the existence of the extra key value in each node which
is pulled down from the parent node (and the extra root node). As this value can be
remembered in a recursive implementation of a given traversal procedure (in which the
parent is visited before the child node), we see that the two structures are equivalent.

The Bd*-tree is equivalent to a horizontal array implementation of a skip list as the
two are structurally identical. Since the horizontal array implementation of a skip list is
equivalent to the linked list implementation (see [15]) of a skip list, we have shown that
the B-tree and the linked list implementation of the deterministic skip list are structurally
equivalent. [ |

Theorem 2: A B-tree of order m is functionally equivalent to the linked list implementation
of a deterministic skip list of order m.

We accomplish the proof by showing that B-trees are equivalent to Bd-trees, that
Bd-trees are equivalent to Bd™-trees, and that Bd'-trees are equivalent to the horizontal
array implementation of a deterministic skip list (which is equivalent to the linked list
implementation). This is done to be consistent with the proof for Theorem 1.

It is straightforward to see that the B-trees and Bd-trees are equivalent. The only
difference is the existence of an additional right pointer at each node of the Bd-tree with a
right sibling. This is only a constant increase in storage so S(n) stays the same. Ignoring
this pointer allows us to use algorithms designed for the standard B-Tree so I{n) and D(n)



(and therefore P(n}) stay the same as do Qm(n) and Qr(n). As all cost functions are
equivalent, the two structures are functionally equivalent.

It is just as straightforward to see that the Bd-tree and Bd'-tree are equivalent. In
the Bd'-tree we can ignore the extra key value in each node and skip over the root node
and use Bd-tree algorithms. This implies that I{n), D(n) (and therefore P(n)), Qm(n) and
Qr(n) stay the same. The extra key value and extra root node only increase storage by a
constant amount so S(n) stays the same as well. As all cost functions are equivalent, the
two structures are functionally equivalent.

Since the Bd'-tree is structurally equivalent to a horizontal array implementation
we can use either set of algorithms on either structure. This implies that if the standard
algorithms for working with B-trees (which we use on Bd'-trees), are of the same order of
complexity as the standard algorithms for working with deterministic skip lists then our
proof is complete. Since this is true (from comparing the cost functions given in sections
2 and 3), we have shown that the B-tree and the linked list implementation of the
deterministic skip list are functionally equivalent. ||

This result allows one to determine the exact relationship between deterministic
skip lists and balanced binary search tree structures by using previous results that relate
the B-tree to well known balanced binary search tree structures. We can replace the 1-3
DSL with a red-black tree and we can show that the 1-3 DSL is equivalent to the dynamic
range tree of [2] (as dynamized by [16] and [9]).

We would like to note that these results are extendible to higher dimensions. For
example, we can show that the k-d range tree of [2] as dynamized by [16] and [9] is
‘equivalent to the k-d Range DSL of {7]. This result is illuminated in [7] where the two
structures are shown to have the same cost functions.

6. Conclusions

_ In this paper we have formalized the relationship between deterministic skip lists

and B-trees. We have shown that the linked list implementation of a deterministic skip list
is structurally and functionally equivalent to the well known B-iree data structure. This
result is important as it validates the use of deterministic skip list structures as index
structures (on databases) and allows one to determine the exact relationship between
deterministic skip lists and balanced binary search tree structures.

Along the way we have defined two more alternative B-tree structures which
could prove faster in implementation as the existence of right pointers eliminates the need
for backtracking and heavy recursion (by allowing for more iterative procedures). Also,

" the existence of the extra key value in each node (pulled down from the parent) in the Bd"-
tree eliminates the need to remember the previous key.
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This work is extendible to higher dimensions and thus one could not only choose
between using a multidimensional B-tree or k-d deterministic skip list as an index structure
for a multidimensional database, but define a corresponding k-d deterministic skip list
(multidimensional B-tree) structure given a multidimensional B-tree (k-d deterministic skip
list) structure to start with. This equivalence gives one a high degree of flexibility when
choosing a data structure according to well-defined functional requiremenits.
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