Lecture 12: Type inference

David Bremner

February 19, 2025

```
Examples from plait

Types are inferred

(define f

(lambda (x y)

(if x

(+ y 1) (+ y 2))))
```

Lack of consistency is inferred

A plan for inference

recursively visit each sub-expression, generating "constraints"
 "solve" those constraints

Type from use

Consider

(lambda (x : ?) (+ x 1))

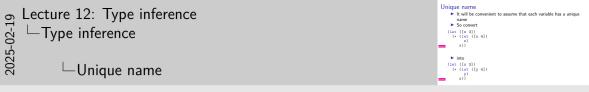
- x is only used in +
- We have the following rule

 $\frac{\vdash e1: Num \quad \vdash e2: Num}{\vdash (+ e1 e2): Num}$

So x must have type Num

Unique name

- It will be convenient to assume that each variable has a unique name
- So convert



- 1. As the book notes this kind of renaming is called α -conversion
- 2. This is mainly for the discussion; an actual inference algorithm would typically used some kind of scoped environment just like an evaluator or a type calculator, so there is no ambiguity which variable a particular identifier refers to

Type from use II

- - From the (unique) rule for if, we learn ⊢ x : Bool
 From the (unique) rule for +, we learn ⊢ y : Num

(lack of) Type from use

- - From the (unique) rule for if, we learn ⊢ x : Bool
 From the (unique) rule for +, we learn ⊢ x : Num
 at this point we detect a contradiction

Many possible types

- (lambda (x y)
 (if x y y))
 - ▶ as before we learn $\vdash x$: Bool
 - ► The use of y doesn't narrow down the type, so we report something like (Bool T → T)

Inference via unification


```
(define (typecheck [exp : Exp] [env : TypeEnv]) : Type
  (type-case Exp exp
    ...
    [(plusE l r)
        (begin
            (unify! (typecheck l env) (numT) l)
            (unify! (typecheck r env) (numT) r)
            (numT))]
    ...))
```

Unification example

 $(U \to (\text{Num} \to \text{Num}))$ $(\text{Bool} \to V)$ Bool U $(\text{Num} \rightarrow \text{Num})$ Num Num

Unification algorithm I/II

Unify a type τ_1 to type τ_2 :

- If τ_1 (τ_2) is a type variable T, then unify T and τ_1 (τ_2).
 - If τ_1 and τ_2 are both num or bool, succeed
 - If τ_1 is $(\tau_3 \rightarrow \tau_4)$ and τ_2 is $(\tau_5 \rightarrow \tau_6)$, then
 - unify τ_3 with τ_5
 - unify τ_4 with τ_6
 - Otherwise, fail

ti

Unification example

 $(U \to (\text{Num} \to \text{Num}))$ $(\text{Bool} \to V)$ Bool U $(\text{Num} \rightarrow \text{Num})$ Num Num

Unification algorithm II/II

Unify a type variable T with a type τ_2 :

- \blacktriangleright If T is set to au_1 , unify au_1 and au_2
 - If τ_2 is already equivalent to T, succeed
 - ▶ If τ_2 contains *T*, then fail

ti

• Otherwise, set T to τ_2 and succeed

Unification example

 $(U \to (\text{Num} \to \text{Num}))$ $(\text{Bool} \to V)$ Bool U $(\text{Num} \rightarrow \text{Num})$ Num Num

Implementing type variables

```
(define-type Type
    [numT]
    [boolT]
    [arrowT (arg : Type) (result : Type)]
    [varT (id : Number) (val : (Boxof (Optionof Type)))])
```

```
(define the-box (box (none)))
(define tau1 (arrowT (varT (gen-tvar-id!) the-box)
      (numT)))
(define tau2 (arrowT (varT (gen-tvar-id!) the-box)
      (numT)))
tau1 tau2
(set-box! the-box (some (boolT))) tau1
```

Type inferring function application

```
[(appE fn arg)
  (let ([r-type (varT (gen-tvar-id!) (box (none)))]
       [a-type (typecheck arg env)]
       [fn-type (typecheck fn env)])
      (begin
       (unify! (arrowT a-type r-type) fn-type fn)
       r-type))]
```