
Lecture 12: Type inference

David Bremner

February 19, 2025



Examples from plait
Types are inferred

infer (define f
(lambda (x y)

(if x
(+ y 1) (+ y 2))))

Lack of consistency is inferred

noinfer (lambda (x)
(if x

(+ x 1) (+ x 2)))

lectures/lecture12/infer-good.rkt
lectures/lecture12/infer-bad.rkt


A plan for inference

I recursively visit each sub-expression, generating “constraints”
I “solve” those constraints



Type from use

I Consider
(lambda (x : ?) (+ x 1))

I x is only used in +
I We have the following rule

` e1 : Num ` e2 : Num
` (+ e1 e2) : Num

I So x must have type Num



Unique name
I It will be convenient to assume that each variable has a unique

name
I So convert

(let ([x 3])
(+ (let ([x 4])

x)
x))stacker

I into
(let ([x 3])

(+ (let ([y 4])
y)

x))stacker

.

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bx+3%5D%29%0A++%28%2B+%28let+%28%5Bx+4%5D%29%0A+++++++x%29%0A+++++x%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bx+3%5D%29%0A++%28%2B+%28let+%28%5By+4%5D%29%0A+++++++y%29%0A+++++x%29%29%0A


Unique name
I It will be convenient to assume that each variable has a unique

name
I So convert

(let ([x 3])
(+ (let ([x 4])

x)
x))stacker

I into
(let ([x 3])

(+ (let ([y 4])
y)

x))stacker

.

20
25

-0
2-

19 Lecture 12: Type inference
Type inference

Unique name

1. As the book notes this kind of renaming is called α-conversion
2. This is mainly for the discussion; an actual inference algorithm would

typically used some kind of scoped environment just like an evaluator or a
type calculator, so there is no ambiguity which variable a particular
identifier refers to

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bx+3%5D%29%0A++%28%2B+%28let+%28%5Bx+4%5D%29%0A+++++++x%29%0A+++++x%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bx+3%5D%29%0A++%28%2B+%28let+%28%5By+4%5D%29%0A+++++++y%29%0A+++++x%29%29%0A


Type from use II

(lambda (x y)
(if x

(+ y 1)
(+ y 2)))

I From the (unique) rule for if, we learn ` x : Bool
I From the (unique) rule for +, we learn ` y : Num



(lack of) Type from use

(lambda (x)
(if x

(+ x 1)
(+ x 2)))

I From the (unique) rule for if, we learn ` x : Bool
I From the (unique) rule for +, we learn ` x : Num

I at this point we detect a contradiction



Many possible types

(lambda (x y)
(if x y y))

I as before we learn ` x : Bool
I The use of y doesn’t narrow down the type, so we report

something like (Bool T → T )



Inference via unification

ti (define (typecheck [exp : Exp] [env : TypeEnv]) : Type
(type-case Exp exp

...
[(plusE l r)

(begin
(unify! (typecheck l env) (numT) l)
(unify! (typecheck r env) (numT) r)
(numT))]

...))

lectures/lecture12/ti-interp.rkt


Unification example

(U → (Num → Num))(U → (Num → Num))

U

Num

(Num → Num)

Num

(Bool → V )

VBool



Unification algorithm I/II

p. 147
ti

Unify a type τ1 to type τ2:
I If τ1 (τ2) is a type variable T , then unify T and τ1 (τ2).
I If τ1 and τ2 are both num or bool, succeed
I If τ1 is (τ3 → τ4) and τ2 is (τ5 → τ6), then

I unify τ3 with τ5
I unify τ4 with τ6

I Otherwise, fail

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=147
lectures/lecture12/ti-interp.rkt


Unification example

(U → (Num → Num))(U → (Num → Num))

U

Num

(Num → Num)

Num

(Bool → V )

VBool



Unification algorithm II/II

ti

Unify a type variable T with a type τ2:
I If T is set to τ1, unify τ1 and τ2
I If τ2 is already equivalent to T , succeed
I If τ2 contains T , then fail
I Otherwise, set T to τ2 and succeed

lectures/lecture12/ti-interp.rkt


Unification example

(U → (Num → Num))(U → (Num → Num))

U

Num

(Num → Num)

Num

(Bool → V )

VBool



Implementing type variables

tvar (define-type Type
[numT]
[boolT]
[arrowT (arg : Type) (result : Type)]
[varT (id : Number) (val : (Boxof (Optionof Type)))])

(define the-box (box (none)))
(define tau1 (arrowT (varT (gen-tvar-id!) the-box)

(numT)))
(define tau2 (arrowT (varT (gen-tvar-id!) the-box)

(numT)))
tau1 tau2
(set-box! the-box (some (boolT))) tau1

lectures/lecture12/tvar.rkt


Type inferring function application

ti [(appE fn arg)
(let ([r-type (varT (gen-tvar-id!) (box (none)))]

[a-type (typecheck arg env)]
[fn-type (typecheck fn env)])

(begin
(unify! (arrowT a-type r-type) fn-type fn)
r-type))]

lectures/lecture12/ti-interp.rkt

	Type inference
	Unification

