Lecture 15: Generators and Continuations

David Bremner

October 30, 2025

Python generators

p. 187

S Jef nats () :
n =20
while True:
yield n
n += 1

g = nats()

print (next(g) + next(g) + next(g))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=187
lectures/lecture15/counter1.py

An infinite loop with side effects

B (1et ([n 01)
(define (loop)
(displayln n)
(set! n (addl n))
(loop))
(loop))

» nothing surprising, but things clearly happen before the loop
finishes

lectures/lecture15/loop.rkt

Wrap the loop in (generator

M (define nats

(generator ()
(let ([n 0])
(define (loop)
(yield n)
(set! n (addl n))
(loop))
(loop))))

» replace displayln with yield
» nats can be suspended and restarted
» trace the control flow in the debugger

lectures/lecture15/counter2.rkt

(sortof) Translating to SMolL

(deffun (yield n) n)

(deffun (gen)
(defvar n 0)
(deffun (loop)
(yield n)
(set! n (+ n 1))
(loop))

(loop))

(+ (gen) (gen) (gen))

» Starting Loop stacker
» Calling Yield stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=2&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=4&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A

Stack of contexts

Waiting for a value

In context (+ ? (gen) (gen))
In environment @top- level

» We can think about the
bottom (generator) stack as

p \ independent
Calling (@385 0) » in this case especially since it
in context ? never returns
(set! n (+ n 1))
(Loop)
in environment @7867

What is yield

p. 190
Unlike our fake yield in smol, yield should

» store the generator’s stack,
» return a value to the other stack

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=190

Generators have their own stack |

» break tail call optimization, so we can see the stack

(let ([n 0])
(define (loop)
(displayln n)
(set! n (addl n))
(cons (loop) empty))
(loop))

lectures/lecture15/loop2.rkt

Generators have their own stack Il

» every time we re-enter nats, we can see the previous stack
levels

(define nats

(generator ()
(let ([n 0])
(define (nat-loop)
(yield n)
(set! n (addl n))
(cons (nat-loop) empty))
(nat-1loop))))

lectures/lecture15/counter3.rkt

Generator pipelines

p. 192
» An interesting use of generators is to represent infinite
sequences.

B (define odds
(generator ()

(define (odds-loop)
(let ([n (nats)])

(when (odd? n)

(yield n))

(odds-1o0p)))

(odds-1o0p)))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=192
lectures/lecture15/odds.rkt

Generator pipelines

Lecture 15: Generators and Continuations
L Generators

2025-10-30

L_Generator pipelines

1. This is translated into racket from the book's python example, mainly
because it lets us see the independent stacks of the two generators

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=192
lectures/lecture15/odds.rkt

Generator pipelines ||

» Disable TCO, trace the stack in the DrRacket Debugger

(define odds
(generator ()

(define (odd-loop)

(let ([n (nats)])

(when (odd? n)

(yield mn))
(cons (odd-loop) empty)))
(odd-loop)))

lectures/lecture15/odds2.rkt

Continuations

» Consider the context (+ ? (nat) (nat))

» The ? is something like a formal-parameter, and the whole
context is something like a function.

» in racket these contexts are called continuations, and let/cc
is one primitive to work with them.

» (let/cc id body) binds the current continuation to id, and
it can be called like a function in body.

2025-10-30

Continuations

Lecture 15: Generators and Continuations
L_Contexts as first class values: continuations

L_Continuations

1. In fact closures can be used simulate continuations, but it requires a
particular style of writing code called continuation passing style

2. Continuations are a common implementation technique for interpreters, but
less common as a language feature

let/cc examples

» Continuations add generalized

;3 (test 7 3)

(test (let/cc k 3) 3)

;; (test 7 3)

(test (let/cc k (k 3)) 3)

;3 (test (+ 1 7) 4)

(test (+ 1 (let/cc k (k 3)))
;3 (test ? 3)

(test (let/cc k (+ 2 (k 3)))
;3 (test (+ 1 7) 4)

(test (+ 1 (let/cc k (+ 2 (k

short circuit evaluation

3)))) 4)

p. 210

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=210
lectures/lecture15/let-cc.rkt

Early return
Sequencing expressions (or statements) leads to early return

Em (define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context
(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

lectures/lecture15/with-return.rkt

2025-10-30

Lecture 15: Generators and Continuations
L_Contexts as first class values: continuations

LEarly return

1. From the point of view of the type system,
parameter functions

Early return
Sequencing ex

continutations are single

lectures/lecture15/with-return.rkt

Exception handling

» Close related to early return is exception handling

UM (define exception (make-parameter identity))

(define (throw msg) ((parameter-ref exception) msg))

(define-syntax-rule
(try expr ... (catch (id) recovers ...))
(let ([recovery (lambda (id) recovers ...)])
(let/cc esc
(parameterize
([exception
(lambda (x) (esc (recovery x)))1)
(begin expr ...)))))

lectures/lecture15/throw1.rkt

Using the exception handler

] (try
(throw "abort!")
(/ 1 0)
(display "done'")
(catch (x)

(display (string-append "caught " x))))

lectures/lecture15/throw1.rkt

Nested try-catch blocks

(try

(try

(throw "abort 1\n") (display "unreached 1")
(catch (x) (display (string-append "1:" x))))
(throw "abort 2\n") (display "unreached 2")
(catch (x) (display (string-append "2:" x))))

lectures/lecture15/throw2.rkt

Generators

» Recall the generator form provided by racket/generator
» It looks a bit like the earlier try form.

B (define g
(generator ()
(define (loop 1lst)
(if (empty? 1lst) #f
(begin
(yield (first 1st))
(loop (rest 1st)))))
(loop '(a b ¢))))

lectures/lecture15/list-gen.rkt

Generators

o Lecture 15: Generators and Continuations

> It looks a bit like the earler try form.

L Generators with let/cc

2025-10-3

L_Generators

1. The generators here are based on those discussed in Chapter 14 of PLAI2
http://cs.brown.edu/courses/cs173/2012/book/Control _
Operations.html

2. The approach here relies on parameters (dynamic scope), rather than on
macros (as the version in PLAI).

3. This example is originally from the Racket generators reference, translated
to plait-like racket

lectures/lecture15/list-gen.rkt
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html

Building Generators

Roughly speaking, generators require two control flow features:
» early return, which we just did, and
» resuming execution, which is more exotic as a language feature

Checkpoints

(define printer
(with-checkpoint
(display "first\n")
(checkpoint!)
(display "second\n")))

We want that execution restarts

at the last (checkpoint!) reached.

(printer)
(printer)
(printer)

first

second
second
second

Functions with state

last-call that remembers the previous value of its parameter,
and returns that.

E= (define last-call
(let ([state (none)])
(lambda (n)
(let ([old state])

(begin
(set! state (some n))
0ld)))))

(test (last-call 1) (none))

(test (last-call 2) (some 1))
(test (last-call 3) (some 2))
(test (last-call 3) (some 3))

lectures/lecture15/last-call.rkt

2025-10-30

Functions with state
last e

Lecture 15: Generators and Continuations -t bt o ko
L Generators with let/cc

L_Functions with state

1. We could combine boxes with closures for this, but since we don't need the
pass-by-reference features of boxes, we will use the usually-forbidden set!
instead

2. The "tricky"” bit is the use of 1let to define a variable to preserve the state
in. This variable is visible only inside the define. This "let-over-lambda”
pattern should be fairly familiar by now.

3. Note also the use of the plait Option type. This could be avoided in plain
racket or typed/racket

lectures/lecture15/last-call.rkt

Building checkpoint

Use let/cc inside checkpoint to capture the call site.

EiE (define (checkpoint!) ((parameter-ref cpthunk)))
(define-syntax-rule (with-checkpoint body ...)
(let* ([last-checkpoint (none)])
(lambda ()
(parameterize
([cpthunk
(lambda ()
(let/cc k
(set! last-checkpoint (some k))))]1)
(type-case (Optionof (Void -> 'a))

last-checkpoint
[(none) (begin body ...)]
[(some k) (k (void))]1)))))

lectures/lecture15/printer.rkt

2025-10-30

Lecture 15: Generators and Continuations
L Generators with let/cc

L Building checkpoint

1. Now that we know how to store store things for future invocations of a
function, we can use a combination let and set! to store a continuation.
2. We might loosely call the place where checkpoint! is invoked the call site

lectures/lecture15/printer.rkt

Generators

» two uses of let/cc

EEEE (1ot /cc dyn-k ;; generator call site
(parameterize ([yield-param
(lambda (v)
(let/cc gen-k ;; yield call site
(begin
(set! last-checkpoint
(some gen-k))
(dyn-k v))))1)
(type-case (Optionof ('a -> 'b)) last-checkpoint
[(none) (let ([arg v]) (begin exprs ...))]
[(some k) (k v)])))

lectures/lecture15/generator.rkt

Using the generator 1/2

(define gl

(generator (v)
(letrec ([loop (lambda (n)
(begin
(yield n)
(loop (+ n 1))))1)
(loop Vv))))

(g1 10) (g1 10) (g1 10)

lectures/lecture15/generator.rkt

Using the generator 2/2

(define g2

(generator (v)
(letrec ([loop (lambda (n)
(loop (+ (yield n) n)))1)
(loop v))))

(g2 10) (g2 10) (g2 10)

lectures/lecture15/generator.rkt

Using the generator 2/2

Lecture 15: Generators and Continuations
L Generators with let/cc —

2025-10-30

LUsing the generator 2/2

1. The identifier names are different, but my generator solution is based on
the macro based solution from an older version of PLAI http://cs.
brown.edu/courses/cs173/2012/book/Control Operations.html

2. The version here makes more extensive use of dynamic scope. There are
better ways to define bindings like yield but they need more advanced
macro tools.

lectures/lecture15/generator.rkt
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html

	Generators
	Contexts as first class values: continuations
	Generators with let/cc

