
Lecture 15: Generators and Continuations

David Bremner

October 30, 2025



Python generators

p. 187

counter2 def nats():
n = 0
while True:

yield n
n += 1

g = nats()

print(next(g) + next(g) + next(g))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=187
lectures/lecture15/counter1.py


An infinite loop with side effects

loop (let ([n 0])
(define (loop)

(displayln n)
(set! n (add1 n))
(loop))

(loop))

I nothing surprising, but things clearly happen before the loop
finishes

lectures/lecture15/loop.rkt


Wrap the loop in (generator ...)

counter2 (define nats
(generator ()

(let ([n 0])
(define (loop)

(yield n)
(set! n (add1 n))
(loop))

(loop))))

I replace displayln with yield
I nats can be suspended and restarted
I trace the control flow in the debugger

lectures/lecture15/counter2.rkt


(sortof) Translating to SMoL
(deffun (yield n) n)

(deffun (gen)
(defvar n 0)
(deffun (loop)

(yield n)
(set! n (+ n 1))
(loop))

(loop))

(+ (gen) (gen) (gen))stacker

I Starting Loop stacker
I Calling Yield stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=2&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=4&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A


Stack of contexts

I We can think about the
bottom (generator) stack as
independent

I in this case especially since it
never returns



What is yield

p. 190
Unlike our fake yield in smol, yield should
I store the generator’s stack,
I return a value to the other stack

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=190


Generators have their own stack I

I break tail call optimization, so we can see the stack

loop2 (let ([n 0])
(define (loop)

(displayln n)
(set! n (add1 n))
(cons (loop) empty))

(loop))

lectures/lecture15/loop2.rkt


Generators have their own stack II

I every time we re-enter nats, we can see the previous stack
levels

counter3 (define nats
(generator ()

(let ([n 0])
(define (nat-loop)

(yield n)
(set! n (add1 n))
(cons (nat-loop) empty))

(nat-loop))))

lectures/lecture15/counter3.rkt


Generator pipelines
p. 192

I An interesting use of generators is to represent infinite
sequences.

odds (define odds
(generator ()

(define (odds-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(odds-loop)))
(odds-loop)))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=192
lectures/lecture15/odds.rkt


Generator pipelines
p. 192

I An interesting use of generators is to represent infinite
sequences.

odds (define odds
(generator ()

(define (odds-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(odds-loop)))
(odds-loop)))20

25
-1

0-
30 Lecture 15: Generators and Continuations

Generators

Generator pipelines

1. This is translated into racket from the book’s python example, mainly
because it lets us see the independent stacks of the two generators

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=192
lectures/lecture15/odds.rkt


Generator pipelines II

I Disable TCO, trace the stack in the DrRacket Debugger

odds2 (define odds
(generator ()

(define (odd-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(cons (odd-loop) empty)))
(odd-loop)))

lectures/lecture15/odds2.rkt


Continuations

I Consider the context (+ ? (nat) (nat))
I The ? is something like a formal-parameter, and the whole

context is something like a function.
I in racket these contexts are called continuations, and let/cc

is one primitive to work with them.
I (let/cc id body) binds the current continuation to id, and

it can be called like a function in body.



Continuations

I Consider the context (+ ? (nat) (nat))
I The ? is something like a formal-parameter, and the whole

context is something like a function.
I in racket these contexts are called continuations, and let/cc

is one primitive to work with them.
I (let/cc id body) binds the current continuation to id, and

it can be called like a function in body.

20
25

-1
0-

30 Lecture 15: Generators and Continuations
Contexts as first class values: continuations

Continuations

1. In fact closures can be used simulate continuations, but it requires a
particular style of writing code called continuation passing style

2. Continuations are a common implementation technique for interpreters, but
less common as a language feature



let/cc examples
p. 210

I Continuations add generalized short circuit evaluation

let/cc ;; (test ? 3)
(test (let/cc k 3) 3)
;; (test ? 3)
(test (let/cc k (k 3)) 3)
;; (test (+ 1 ?) 4 )
(test (+ 1 (let/cc k (k 3))) 4)
;; (test ? 3)
(test (let/cc k (+ 2 (k 3))) 3)
;; (test (+ 1 ?) 4)
(test (+ 1 (let/cc k (+ 2 (k 3)))) 4)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-v325.pdf#page=210
lectures/lecture15/let-cc.rkt


Early return
Sequencing expressions (or statements) leads to early return

return (define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

(define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

lectures/lecture15/with-return.rkt


Early return
Sequencing expressions (or statements) leads to early return

return (define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

(define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

20
25

-1
0-

30 Lecture 15: Generators and Continuations
Contexts as first class values: continuations

Early return

1. From the point of view of the type system, continutations are single
parameter functions

lectures/lecture15/with-return.rkt


Exception handling
I Close related to early return is exception handling

throw1 (define exception (make-parameter identity))

(define (throw msg) ((parameter-ref exception) msg))

(define-syntax-rule
(try expr ... (catch (id) recovers ...))
(let ([recovery (lambda (id) recovers ...)])

(let/cc esc
(parameterize

([exception
(lambda (x) (esc (recovery x)))])

(begin expr ...)))))

lectures/lecture15/throw1.rkt


Using the exception handler

throw1 (try
(throw "abort!")
(/ 1 0)
(display "done")
(catch (x)

(display (string-append "caught " x))))

lectures/lecture15/throw1.rkt


Nested try-catch blocks

throw2 (try
(try
(throw "abort 1\n") (display "unreached 1")
(catch (x) (display (string-append "1:" x))))

(throw "abort 2\n") (display "unreached 2")
(catch (x) (display (string-append "2:" x))))

lectures/lecture15/throw2.rkt


Generators
I Recall the generator form provided by racket/generator
I It looks a bit like the earlier try form.

lgen (define g
(generator ()

(define (loop lst)
(if (empty? lst) #f

(begin
(yield (first lst))
(loop (rest lst)))))

(loop '(a b c))))

lectures/lecture15/list-gen.rkt


Generators
I Recall the generator form provided by racket/generator
I It looks a bit like the earlier try form.

lgen (define g
(generator ()

(define (loop lst)
(if (empty? lst) #f

(begin
(yield (first lst))
(loop (rest lst)))))

(loop '(a b c))))20
25

-1
0-

30 Lecture 15: Generators and Continuations
Generators with let/cc

Generators

1. The generators here are based on those discussed in Chapter 14 of PLAI2
http://cs.brown.edu/courses/cs173/2012/book/Control_
Operations.html

2. The approach here relies on parameters (dynamic scope), rather than on
macros (as the version in PLAI).

3. This example is originally from the Racket generators reference, translated
to plait-like racket

lectures/lecture15/list-gen.rkt
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html


Building Generators

Roughly speaking, generators require two control flow features:
I early return, which we just did, and
I resuming execution, which is more exotic as a language feature



Checkpoints

(define printer
(with-checkpoint

(display "first\n")
(checkpoint!)
(display "second\n")))

We want that execution restarts
at the last (checkpoint!) reached.

(printer)
(printer)
(printer)

first
second
second
second



Functions with state
last-call that remembers the previous value of its parameter,
and returns that.

last-call (define last-call
(let ([state (none)])

(lambda (n)
(let ([old state])

(begin
(set! state (some n))
old)))))

(test (last-call 1) (none))
(test (last-call 2) (some 1))
(test (last-call 3) (some 2))
(test (last-call 3) (some 3))

lectures/lecture15/last-call.rkt


Functions with state
last-call that remembers the previous value of its parameter,
and returns that.

last-call (define last-call
(let ([state (none)])

(lambda (n)
(let ([old state])

(begin
(set! state (some n))
old)))))

(test (last-call 1) (none))
(test (last-call 2) (some 1))
(test (last-call 3) (some 2))
(test (last-call 3) (some 3))

20
25

-1
0-

30 Lecture 15: Generators and Continuations
Generators with let/cc

Functions with state

1. We could combine boxes with closures for this, but since we don’t need the
pass-by-reference features of boxes, we will use the usually-forbidden set!
instead

2. The ”tricky” bit is the use of let to define a variable to preserve the state
in. This variable is visible only inside the define. This ”let-over-lambda”
pattern should be fairly familiar by now.

3. Note also the use of the plait Option type. This could be avoided in plain
racket or typed/racket

lectures/lecture15/last-call.rkt


Building checkpoint
Use let/cc inside checkpoint to capture the call site.

printer (define (checkpoint!) ((parameter-ref cpthunk)))
(define-syntax-rule (with-checkpoint body ...)

(let* ([last-checkpoint (none)])
(lambda ()

(parameterize
([cpthunk

(lambda ()
(let/cc k

(set! last-checkpoint (some k))))])
(type-case (Optionof (Void -> 'a))

last-checkpoint
[(none) (begin body ...)]
[(some k) (k (void))])))))

lectures/lecture15/printer.rkt


Building checkpoint
Use let/cc inside checkpoint to capture the call site.

printer (define (checkpoint!) ((parameter-ref cpthunk)))
(define-syntax-rule (with-checkpoint body ...)

(let* ([last-checkpoint (none)])
(lambda ()

(parameterize
([cpthunk

(lambda ()
(let/cc k

(set! last-checkpoint (some k))))])
(type-case (Optionof (Void -> 'a))

last-checkpoint
[(none) (begin body ...)]
[(some k) (k (void))])))))

20
25

-1
0-

30 Lecture 15: Generators and Continuations
Generators with let/cc

Building checkpoint

1. Now that we know how to store store things for future invocations of a
function, we can use a combination let and set! to store a continuation.

2. We might loosely call the place where checkpoint! is invoked the call site

lectures/lecture15/printer.rkt


Generators
I two uses of let/cc

generator (let/cc dyn-k ;; generator call site
(parameterize ([yield-param

(lambda (v)
(let/cc gen-k ;; yield call site

(begin
(set! last-checkpoint

(some gen-k))
(dyn-k v))))])

(type-case (Optionof ('a -> 'b)) last-checkpoint
[(none) (let ([arg v]) (begin exprs ...))]
[(some k) (k v)])))

lectures/lecture15/generator.rkt


Using the generator 1/2

generator (define g1
(generator (v)

(letrec ([loop (lambda (n)
(begin

(yield n)
(loop (+ n 1))))])

(loop v))))

(g1 10) (g1 10) (g1 10)

lectures/lecture15/generator.rkt


Using the generator 2/2

generator (define g2
(generator (v)

(letrec ([loop (lambda (n)
(loop (+ (yield n) n)))])

(loop v))))

(g2 10) (g2 10) (g2 10)

lectures/lecture15/generator.rkt


Using the generator 2/2

generator (define g2
(generator (v)

(letrec ([loop (lambda (n)
(loop (+ (yield n) n)))])

(loop v))))

(g2 10) (g2 10) (g2 10)

20
25

-1
0-

30 Lecture 15: Generators and Continuations
Generators with let/cc

Using the generator 2/2

1. The identifier names are different, but my generator solution is based on
the macro based solution from an older version of PLAI http://cs.
brown.edu/courses/cs173/2012/book/Control_Operations.html

2. The version here makes more extensive use of dynamic scope. There are
better ways to define bindings like yield but they need more advanced
macro tools.

lectures/lecture15/generator.rkt
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html

	Generators
	Contexts as first class values: continuations
	Generators with let/cc

