
Towards Reliable Memory Management for Python Native
Extensions

Joannah Nanjekye
jnanjeky@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

David Bremner
bremner@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

Aleksandar Micic
Aleksandar_Micic@ca.ibm.com

IBM Canada
Ottawa, Ontario, Canada

ABSTRACT
Many programming languages provide a C interface as a foreign
function interface (FFI) for C developers to access the language, the
Python language being one of these languages. Over the years, the
Python C API has grown to be a challenge for the evolution of the
Python ecosystem. In this paper, we implement a new Python FFI,
we call CyStck, by combining a stack and light-weight handles, to
support efficient garbage collection (GC) in Python native exten-
sions. CyStck introduces execution time overhead while copying
the fewest bytes for all benchmarks across the CPython bound-
ary compared to the CPython API and HPy respectively. We also
implemented a tool to automate the migration of extensions from
the CPython C API to CyStck using advanced pattern matching
and static analysis, with a success rate as high as 90% in some
workloads.

CCS CONCEPTS
• Software and its engineering → Extensible languages; Very
high level languages.

KEYWORDS
Python, memory management, garbage collection, native exten-
sions, C API

ACM Reference Format:
Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2023. Towards
Reliable Memory Management for Python Native Extensions. In Proceedings
of the 18th ACM International Workshop on Implementation, Compilation,
Optimization of OO Languages, Programs and Systems (ICOOOLPS ’23), July
17, 2023, Seattle, WA, USA. ACM, Washington, United States, 12 pages. https:
//doi.org/10.1145/3605158.3605849

1 INTRODUCTION
The Python C API provides an interface for C extensions to inter-
act with and access the Python interpreter. The interface has C
header files with functionality that gives access to Python objects,
invokes functions, performs garbage collection, and many other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0248-8/23/07. . . $15.00
https://doi.org/10.1145/3605158.3605849

features [39]. This allows application developers to write C exten-
sions for programs where performance is a primary goal of the
application.

The API was designed to be as simple as making header files
public and maintaining a way to dynamically load native extension
modules. It remains one of the most powerful and largest C APIs,
having supported and served popular native extensions like NumPy
for over 20 years, with superior performance for the reference
Python implementation, CPython. However, over the years, this
same Python C API has grown to be a challenge for the evolution of
the Python ecosystem as a whole. In fact C API authors for newer
languages like Lua reference its design as an example of how not
to implement a C API [25].

The main shortcomings in the current design of the CPython C
API include: 1) enforcing a fixed-address object mechanism where
objects can not be moved which inhibits GCs that require reor-
ganization, 2) exposing too many implementation details of the
language, 3) enforcing a specific garbage collection policy in the
API and 4) supporting the concept of borrowed references, as im-
plemented in Python, which has led to detrimental and unresolved
bugs on object ownership. Section 2 discusses these challenges in
detail.

In terms of garbage collection, which is the focus of this work, as
earlier noted, the current API, dictates a fixed address object model
where objects cannot be moved and a reference counting algorithm
by design, hindering any evolution to a modern GC for CPython,
like a purely tracing or hybrid GC.

In the Python ecosystem as a whole, alternative Python imple-
mentations like PyPy, Jython, IronPython etc., cannot efficiently
support the Python C API due to its unfortunate design choices like
exposing internal details of the interpreter and having an object
model that these alternative implementations do not necessarily
support. Several solutions have been implemented by these alter-
native implementations but emulating the C API has always led to
performance degradation [10, 11, 30].

To open up opportunities for new optimizations on garbage
collection, like new GC policies and allow for an easier path for
support by alternate implementations, a better solution would be
to implement an improved C API and document a migration plan
for existing extension libraries. An alternative Python C API, HPy
exists as an experimental attempt to address the challenges of the
current API [9]. At the core of HPy lies handles that point to the
Python union type PyObject. This level of indirection allows for a
flexible C API but, as discovered by research on handles by Kalibera
and Jones, handles can make GC implementation harder, and done
naively, management of handles can cause overhead and lead to
fragmentation [20].

https://doi.org/10.1145/3605158.3605849
https://doi.org/10.1145/3605158.3605849
https://doi.org/10.1145/3605158.3605849

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

This paper considers combining a stack and light-weight handles
to redesign the Python CAPI to efficiently handle garbage collection
and thereby simplify work for alternative implementations. Light-
weight handles are handles that do not include the object header in
the handle but because objects can move around in memory, the
object has a pointer back to the handle [20]. We further use object
introspection for managing memory for FFIs like the Python C API
with less programmer intervention. We finally attempt to automate
the migration of Python extensions to a new FFI.

To achieve the above, we prototyped an experimental Python
C API we call CyStck that uses a stack for communication from C
to Python, and light-weight handles to an internal array for each
Python object to aid root access and tracking of referenced objects
between the native and Python code. We used liballocs to attach
additional GC metadata to objects to cater to corner cases of object
lifetime enforcement where reachability alone is not enough to
determine precise reclamation. To facilitate thorough investigation,
we ported five popular Python extensions to CyStck, performing
comparisons to both the current Python C API and HPy. We also
analyzed the impact of migrating such large extensions to a new
FFI by prototyping a tool that automatically ports Python C API
extensions to CyStck.

We are the first, to the best of our knowledge, to redesign and
robustly evaluate a new experimental C API for Python and provide
automation for migration of existing extensions. Our experience
highlights two key outcomes towards any such efforts aimed at
redesigning the Python C API. First, we can completely automate
garbage collection to not require manual intervention, and if we are
to still use the PyObject union type with an indirection through
handles, albeit light-weight, then the API can incur costs related
to conversion of data when creating the extension module. Sec-
ondly, automation of migration of code bases is possible for most
syntactical and semantic features, by even simple text-to-text trans-
formations, and does not seem as complex as the Python 2 to 3
transition.

As the Python core team ponders a new direction for evolving
the Python C API [32], we believe our experience of redesigning
the Python C API and porting large extensions manually and au-
tomatically, will be beneficial for the Python community on the
design impact for both performance and backward compatibility.
Our contributions can be summarized as below:

(1) We combine a stack and light-weight handles to prototype an
experimental Python C API, we call CyStck. This design de-
couples GC implementation details from the API for cleaner
evolution, aids in the automation of memory management
and improves the object model to allow movement of objects
to support moving garbage collectors.

(2) We port five large, real-world Python extensions to this
C API, thoroughly evaluating CyStck against the current
CPython C API and HPy, profiling for both Python and na-
tive time.

(3) We also use advanced pattern matching and static analysis
to prototype a tool to automatically migrate extensions from
the Python C API to CyStck. The technique behind this tool
can apply to general migration of Python native extensions
to any new C API, as well as between C API releases.

2 THE PYTHON C API
Python exposes python.h for developers to access different aspects
and details of the interpreter in C. Python objects are represented as
a C struct called PyObject. When a block of memory is allocated
on the heap, it is initialized and cast to a PyObject. Listing 1 is
an example of a function from the Python C API. The function
takes two arguments, an object o of type PyObject and an attribute
name name. The goal of this function is to retrieve the attribute name
from object o.
1 PyObject * PyObject_GetAttr(PyObject *o, PyObject *name)

2 {

3 PyTypeObject *tp = Py_TYPE(o);

4

5 PyObject* result = NULL;

6 if (tp−>tp_getattro != NULL) {

7 result = (*tp−>tp_getattr)(o, name);

8 }

9 else if (tp−>tp_getattr != NULL) {

10 const char *name_str = PyUnicode_AsUTF8(name);

11 if (name_str == NULL) {....}

12 result = (*tp−>tp_getattr)(o, (char *)name_str);

13 }

14 else {.......}

15 if (result == NULL) {...}

16 return result;

17 }

Listing 1: A Python C API function for getting an attribute
of a PyObject.

The address of this object does not change throughout the ob-
ject’s lifetime. PyObject points to an internal base struct. The ad-
dress of a PyObject can be freely passed to C code in different
operations like storage in containers and so forth [11]. A new ob-
ject is created using: PyObject_New(). Due to reference counting,
when an object reference is created or discarded, one has to in-
crement and decrement the reference count with the following
respectively:

𝑃𝑦_𝐼𝑛𝑐𝑟𝑒 𝑓 (𝑜𝑏 𝑗𝑒𝑐𝑡); (1)
𝑃𝑦_𝐷𝑒𝑐𝑟𝑒 𝑓 (𝑜𝑏 𝑗𝑒𝑐𝑡); (2)

These reference counting increment and decrement statements are
used all over Python’s C API and any code which uses the API.
The Python C API was intended to have a simple design, but over
time it became complex to evolve. This thin layer on top of the
CPython internals and its compatibility constraints has blocked
the implementation of several optimizations in CPython including
tracing garbage collection (GC) due to several shortcomings. We
discuss some of them that are relevant to garbage collection be-
low, namely; non-opaque PyObject structs, a fixed-address object
model i.e., PyObject, tight coupling of a GC algorithm to the API
and support for borrowed references.

Fixed-Address Object Model: As pointed out earlier, the C API
relies on the idea that objects i.e., PyObject, have a fixed address
and therefore do not move. To gain most of the benefits associated
with tracing garbage collection, GCs such as the ones supported
by PyPy assume that objects move in memory. Though debatable,
moving garbage collection algorithms are preferred in some use
cases to non-moving ones due to the ability to allow compaction
and maintain heap partitions that require copying objects between
the portions. Moving GCs can be more efficient in both memory
utilization and execution speed [19, 28].

Towards Reliable Memory Management for Python Native Extensions ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA

Non-Opaque PyObject Structs: The PyObject object model
is not completely opaque and exposes user-specific and many low-
level concrete C struct details, some of which do not make sense
to be exposed. Python implementations like PyPy hide these con-
crete struct details and end up having an incompatible object model
to the one used by Python C extensions. The public C API func-
tion PyObject_GetBuffer() in Listing 2, as an example accesses
and exposes PyObject fields from its structure using the macro
Py_TYPE as shown in Listing 2. The tp_as_buffer details from
the PyTypeObject definition are exposed to the users of the API.
PyPy for example has a different and opaque layout of its objects,
which has made supporting this C API design difficult [11, 27].
The ideal way is to make PyTypeObject completely opaque and
provide any details through methods if required.
1 int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)

2 {

3 PyBufferProcs *pb = Py_TYPE(obj)−>tp_as_buffer;

4 if (pb == NULL || pb−>bf_getbuffer == NULL) {......}

5 return (*pb−>bf_getbuffer)(obj, view, flags);

6 }

Listing 2: A Python C API function exposing details of the
PyObject struct.

Exposing GC Implementation Details: As noted earlier, other
than exposing concrete PyObject struct details, the Python C API
was also designed with implementation details specific to the refer-
ence implementation. One of the major ones is that the reference
counting GC algorithm is assumed and enforced for garbage collec-
tion of the API dictated by the use of Py_INCREF and Py_DECREF.
This is also a challenge to alternate implementations that use a
different GC policy, which is forced to emulate reference counting
for the C API.

Borrowed References: API functions like PyList_GetItem()
do not modify the object reference count since the returned item is
temporary and instead as an optimization use borrowed references to
avoid calling Py_INCREF and Py_DECREF. When a function passes
no ownership to its callee, the callee is said to borrow a reference.
Therefore, a borrowed reference is a pointer which has a temporary
reference. A borrowed reference becomes a dangling pointer when
its associated object is destroyed since the freed memory may be
used by a new object [39]. Borrowed references have led to many
unresolved bugs and crashes but this behaviour has also proved
difficult to emulate efficiently by alternate implementations like
PyPy [11].

3 CYSTCK
Following the success of using a stack to aid garbage collection
in previous work [17, 33] and the need to still provide compati-
bility of the Python C API by keeping the PyObject union type,
we combine the stack [16] and handles [9, 20], a light-weight set
of handles, to prototype a memory management amiable API for
Python, which we call CyStck. The stack and light-weight handles
not only serve the purpose of garbage collection but also act as a
means of communication from C to Python and Python back to C.

3.1 Design
The current Python API uses an abstract type, PyObject, that
represents Python values in C. Any data passed to a C function is

Figure 1: The design of the CyStck prototype. We show the
two spaces that correspond to the native and the VM envi-
ronments, including the stack and array data structures used
to communicate between C and Python, described in Sec-
tion 3.1.

accessible using corresponding API functions. By design, PyObject
is a struct, exposing details like the reference count, type etc.

Figure 1 shows the simplified design of CyStck. The first change
CyStck introduces to the current Python native extension API is
the representation of Python objects by C programs. For backward
compatibility, we avoid major changes to the CPython internals.
Rather than completely eliminating the PyObject structure, we
change its semantics by creating a handle, Cystck_Object, that
points to the actual PyObject that lives in an internal array. These
handles are light-weight which means that they point to the object,
and any access to the object’s header and fields is indirect. This is
a trade off we make to allow us to reuse handle slots for several
types of objects.

The internal array is used to store all values that are passed
to C functions from the VM. This representation allows us to use
this indirection to track Python objects accessed by C, because
the handles act as GC roots and permit the movement of objects
without worrying about breaking C references. There is therefore,
an internal array for every C function invocation, so that when
the function returns, the array is emptied. At this point the Python
values used by the C function can be collected by the garbage collec-
tor. The array contains arguments when Python calls C and return
values when C calls Python. In practice when Python code imports
and invokes a method of a C extension module, the parameters to
the function are passed to C through the internal array. Section 4
has more details about this array and how it relates to garbage
collection.

Other than creating an indirection to a PyObject, we also in-
troduce a stack for communication from C to Python. A stack in
CyStck is a data structure that is used to move values from C to
Python. Therefore, every Python type like String, Integer, and Float,
etc., has functions to push and retrieve values from the stack. The
stack is also independent for a given C function invocation, which
means that if a C function returns, all values are returned to Python
as results of the function. The stack works in the opposite direction
of the internal array. It contains arguments when C calls Python
and return values when Python calls C. Similar to the array, as an

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

example, when Python code imports and invokes a method of the
C extension module, the C function and the return value is passed
to the Python VM through the stack. The use of the stack then
necessitates that we check for stack overflows. For this, developers
should ensure that the stack does not overflow, an API function
exists to check the status of the stack.

3.2 Implementation
CyStck is developed as an alternate and experimental implemen-
tation of the Python C API. The implementation can easily be up-
streamed to the main CPython project. To appreciate the details of
CyStck, Listing 3 shows a fictional example of a Python C extension
that uses the new C API to extend Python while Listing 4 shows
the equivalent extension using the Python C API. In both Listings,
the module c_module implements the square of a number num.
1 Cystck_Object square(Py_State *s, Cystck_Object *args)

2 {

3 double num;

4 CystckArg_ParseTuple(args,"i", &num);

5 double result = num * num;

6 Cystck_pushnumber(result);

7 return 1;

8 }

9 Cystck_METH_DEF(square_method, "square",Cystck_Squared,

10 Cystck_METH_VARARGS, "square a number");

11 CyStckMethodDef *module_methods[]=

12 {

13 &square_method,

14 NULL

15 };

16 struct CyStckModuleDef cystck_module =

17 {

18 CyStckModuleDef_HEAD_INIT,

19 "cystck_module",

20 "Module description",

21 −1,

22 module_methods

23 };

24 CyMODINIT_FUNC (cystck_module)

25 CyStckInit_module(Py_State *s)

26 {

27 return Mod_Create(s, &Cystck_module);

28 }

Listing 3: Example extension written with CyStck.

Not shown for precision but CyStck code imports the Cystck.h
header file exposed to access the features of the CyStck API instead
of Python.h. As shown in Listing 3, Lines 1—8 implement the
extension module. Instead of returning and expecting PyObject
arguments, the extension returns a result and takes arguments of
type Cystck_Object. As mentioned earlier, we do not eliminate
the concept of PyObject, instead Cystck_Object is an indirection
to the location of a PyObject at an integer index. Cystck_Object
is therefore implemented as a pointer to the location in an internal
data structure (array), and the location points to the PyObject:

𝑡𝑦𝑝𝑒𝑑𝑒 𝑓 𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡 𝐶𝑦𝑠𝑡𝑐𝑘_𝑂𝑏 𝑗𝑒𝑐𝑡 ; (3)

On Line 4, we modify CPython’s PyArg_ParseTuple to pass argu-
ments to the C function using the internal array. The argument args
is passed from Python to C in this array. It is then processed on Line
5 to get the square. The result result is passed back to Python by
a push to the stack on Line 6 because communication from C to
Python is through the stack. Line 7 then simply returns the item
on top of the stack, which is the value that this function returns.

1 PyObject square(PyObject *args)

2 {

3 double num;

4 PyArg_ParseTuple(args,"i", &num);

5 double result = num * num;

6 return result;

7 }

8 Py_METH_DEF(square_method, "square", Py_Squared,

9 Py_METH_VARARGS, "square a number");

10 PyMethodDef *module_methods[]=

11 {

12 &square_method,

13 NULL

14 };

15 struct PyStckModuleDef py_module =

16 {

17 PyModuleDef_HEAD_INIT,

18 "py_module",

19 "Module description",

20 −1,

21 module_methods

22 };

23 PyMODINIT_FUNC (py_module)

24 PyInit_module(Py_State *s)

25 {

26 return Mod_Create(s, &Py_module);

27 }

Listing 4: Example extension written with the Python C API.

Lines 9—10 then register and initialize the extension implemented
in Lines 1—8. On line 10 we introduce a macro with a caveat that it
is an equivalent of a function and does some evaluation, and adds
an extra slot to the extension we are registering on Line 22. This
macro does data conversion, processing the function signatures.
Then lines 24—28 initialize and create the actual extension.

Most of the new C extension workflow is similar to the cur-
rent Python extensions workflow except that we introduce new
wrapper methods to manage the differences in semantics of re-
turning and expecting the Cystck_Object type. The methods that
change are PyArg_ParseTuple, and PyModule_create but also
the properties of module methods have additional fields to manage
the changes in the type of the result returned after invoking the C
extension. The PyState argument, s, implements the supported
Python state. Almost all API functions require an explicit Python
state to be passed as first argument. CPython has gone through
some cleanups to avoid global state, therefore to emulate Python
state, API functions require passing explicit state as a first argument.
The API also allows switching between Python states. This state
is canonically a struct, and we capture state for the stack, array,
exceptions, constants and types. Memory management for CyStck
involves mainly emptying the internal array and stack when the C
function returns, thereby removing any references to the objects,
and proper handling of the reference technique. These processes
are discussed next.

4 GARBAGE COLLECTION
Automatic memory management, when native extensions are in-
volved, poses unique constraints, most of which boil down to two
main questions; 1) what is a root? and 2) how do we identify refer-
ences among objects at the C and VM boundary? The most common
design of language APIs like Python forces the programmer to con-
sider the disparate memory management models between C and
the VM when native code has any references to objects in the VM
environment. Done naively, the native program may free objects

Towards Reliable Memory Management for Python Native Extensions ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA

referenced by the code in the VM or the VM may cause collection
of objects prematurely.

In a typical garbage collection process for native extensions, it
should be automatic but comes with much complexity, the biggest
being the garbage collector does not manage or have knowledge
of references from native programs or code. Yet correct collection
dictates that a referenced object should never be freed. Native code
has to therefore keep any referenced objects by signaling to the
VM to avoid collection when moving objects across the boundary
but also how to to de-allocate the objects.

4.1 Memory Reclamation
CPython uses a reference counting policy for managing memory,
so CyStck provides this garbage collection automation and func-
tionality through the stack and an internal array without requiring
the VM or native code to explicitly assist it in any way to find refer-
ences between objects. We are able to achieve this because CyStck
seldom returns explicit pointers to Python objects from native ex-
tensions. Instead Python objects are manipulated by processing an
indirection, which is an index to the array, thereby allowing the
Python VM to have complete knowledge of all objects referenced
by C at any point in time.

The API typically tracks all PyObjects passed to native ex-
tensions, handling the reference counting semantics accordingly
to avoid manually calling reference-counting functionality from
the API. In a reference-counted garbage collector, a referenced
PyObject should have a reference count that is greater than zero
to avoid its collection. This can be achieved by the reference-count
functions in the CyStck C API for corner cases discussed later. Since
CyStck_Object is an index to an array, when a Python object is in
that array, its reference counts are incremented to avoid collection
by the Python VM.

CyStck also provides for a finalization mechanism by providing
an option for objects to be deallocated, by additionally invoking
functions that relate to C code whose purpose is to perform final-
ization. This is useful for example in Python file I/O operations to
code file descriptors. We are also able to configure an allocation
routine to be executed by the Python VM for objects passed to C.
The reference counting semantics in the Python VM, and handling
of cyclic objects have to some extent limited the degree to which
we could fully automate garbage collection but we believe that with
a tracing GC, there can be an easier path.

4.2 Overflowing the Array
When an array overflows due to a C function using many values
that were put onto the array, instead of running out of memory, the
array functionality dictates a limit to the size of the array that tracks
the PyObject objects. To work around this limitation, we provide
functions in the C API that act as scope gates, to signal beginning
and end of scope. This way objects in a given scope are erased
from the array when they get out of scope creating room for more
objects that are still in scope. These scope gates are introduced and
managed by the programmer by calling the API functions and the
programmer has to also make sure the stack does not overflow. In
our experience, this scope management is only necessary for a few
programs and is a corner case for C functions that generate many

objects that correspond to many values in the internal array. For
many cases, these scenarios are extremely rare and most programs
will workwithout this much programmer intervention. For example,
we did not need to apply any scope gates in the large extensions
we ported in Section 5.

4.3 Object Lifetime
Every C function invocation has a corresponding array and the
array is emptied, decrementing the reference counts of the objects
in it, when the function returns. In the case of tracing and moving
garbage collectors, objects can be made to move in memory without
worrying about losing track of said objects. The PyObject lifetime
is therefore tied to the existence of the C function that created
or uses it and is guaranteed not to be collected as long as the C
function is alive. This also makes it impossible to access pointers
or references from the Python VM for C structs and variables, or
global variables.

This definition and processing of lifetimes is mostly correct and
works for most cases but sometimes a PyObject can out-live the
C function invocation that created it. In this case the API provides
functions that return a reference to the object (CyStck_ref) and de-
stroys a reference (CyStck_unref). These functions also implicitly
update the reference counts accordingly. This reference technique
is also used to process weak references. The Python VM or code has
no access and can not modify these references or the values in the
corresponding locations, only native code can erase these objects.
This reference is therefore a light-weight handle that associates
and disassociates the object making its location available or free
for use.

We also explored the use of third-party object lifetime mediation
using a tool called liballocs. Through its process inspection and
knowledge of allocators, we are able to attach lifetime policies to
objects. To complement the manual reference mechanism described
earlier, we use the policy meta-data feature to determine when
to reclaim memory. The algorithm for determining when to free
object memory is detailed in Algorithm 2, while Algorithm 1 shows
how object lifetime policies are attached. In Algorithm 1, we use
the liballocs API to determine when an object is allocated us-
ing malloc() on Line 4. Liballocs only supports metadata policy
mediation for malloc()-allocated objects [7]. Any object regardless
of type (Python or native) is assigned a policy depending on where
it was created. If it was created in Python, then only the reference
counting policy applies to it (Lines 6–8). In contrast an object not
created in Python is attached an explicit-free policy (Lines 9–12).

During reclamation of an object as shown in Algorithm 2, Ob-
jects created in the Python environment will be freed when their
reference count is zero, i.e., only reachability determines when it
can be freed and it is freed automatically (Lines 3–8). However, for
the later the object is created from native code, it can not be freed
implicitly, instead we have to check for a call to free() before
releasing the memory (Lines 9–19). By attaching meta-data to ob-
jects, liballocs is able to avoid attempts to free an object unless any
attached policies are consistent, including which allocator and refer-
ence count, delaying the deallocation until a convenient time. Any
object allocated and passed to Python has reference counting and
reclamation information. If reclamation is triggered before liballocs

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

Algorithm 1: Allocation: ObjectLifeTimeAnalysis(obj)
Data: Input: Let obj be the object
Result: An accurate deallocation of obj

1 use liballocs.h;
2 initialization;
3 obj_allocator = alloc_get_allocator(obj);
4 if obj_allocator == malloc() then
5 /*Attach meta-data*/;
6 if PassedToC(obj) and CreatedFromPython(obj) then
7 attachRefCountPolicy();
8 end
9 if PassedToC(obj) and !CreatedFromPython(obj) then
10 attachRefCountPolicy();
11 attachExplicitFreePolicy();
12 end
13 end

has removed any reference-counts, memory is not freed until this
is true. This policy mediation model described from liballocs works
on the theory that native programs, or a VM, can not accurately
know how or when the object memory is ready to be freed.

Algorithm 2: Deallocation: ObjectLifeTimeAnalysis(obj)
Data: Input: Let obj be the object
Result: An accurate deallocation of obj

1 use liballocs.h;
2 /*deallocate an object*/;
3 if CreatedFromPython(obj) then
4 if refcount == 0 then
5 dettachRefCountPolicy();
6 free(obj)();
7 end
8 end
9 if !CreatedFromPython(obj) then
10 if refcount == 0 then
11 detachRefCountPolicy(obj);
12 end
13 if isExplicitFreeCalled() then
14 detachExplicitFreePolicy(obj);
15 end
16 if !has_policy(obj) then
17 free(obj);
18 end
19 end

5 EVALUATION
The goal of our evaluation is to gain insight into how our newly
prototyped Python C API compares first to the current Python C
API, but also to another alternate Python C API implementation
called HPy.

5.1 Methodology
We have ported five real-world and relatively large Python native
extensions to use CyStck; these extensions are described in Table 1.
The five extension modules, NumPy, Matplotlib, KiwiSolver, Pi-
coNumPy and UltraJson are huge extension module libraries that
required intensive porting from the Python C API to CyStck. Table 1
has the total PyPI number of downloads and lines of code (LOC)
of these projects to appreciate the potential complexity of porting
them to any new API.

In addition, we have implemented benchmarks for these exten-
sions to aid with the experiments. The benchmarks are numerical
computing tasks exercising solvers and array manipulation. We
chose these extensions because they are popular enough in the
Python community, demonstrated by their high number of down-
loads from the Python Package Index repository; but also because
they have been ported to HPy [9], which helps with our compar-
isons.

All benchmarks are run on an Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz machine, running 64-bit Debian 11.0.0 with GCC 10.2.1,
using 10 cores. We use the Scalene [6] Python profiler to measure
the time spent by the benchmarks in Python and native code but
also the system time. We also measure the rate of objects copied
across the C and Python boundary but also in both the Python
and native space respectively. Scalene is a sampling profiler that
uses signal delivery to estimate the execution time. We run the
benchmark programs 15 times, ignoring the first 5 runs, this is not
aimed at determining accurate steady-state because it is impractical,
but rather a large number of iterations increases the likelihood of
getting close to steady-state, and averaging the last 10 runs to come
up with the evaluation insight presented in this section with a 95%
confidence interval level.

Figure 2 shows the memory used in terms of rate of objects
copied for the five extensions. The results in Table 2 correspond
to actual Python, native and system times extrapolated from the
percentage results the Scalene profiler generates, in respect to the
total execution time. We therefore discuss the results shown in
Table 2 for each of these metrics next, starting with time spent in
the Python VM.

5.2 Discussion of Results
Python Time. To appreciate what Python time is, it is worth not-
ing that the extensions themselves are written in C but they are
built, generating a Python module that is importable in any Python
script. We therefore implement a Python benchmark that uses the
extension module for each of the extensions as described in Table 1.
The Python time shown in Table 2 is the amount of time spent in the
Python layer during the operations that cross between Python and
C. As shown in Table 2 CyStck is faster by 13% and 2% compared
to the C API and HPy respectively for KiwiSolver while CyStck
introduces an over head of 0.9X and 0.5X compared to the C API
and HPy respectively for the UltraJson benchmark.

The same is true for NumPy with CyStck being 10% and 14%
slower compared to HPy and the Python C API in actual running
times. For Matplotlib, on average CyStck is 1.2X slower than all the
APIs we compared against for these benchmarks. Likewise CyStck
is slower for the PicoNumPy benchmark, registering an overhead of

Towards Reliable Memory Management for Python Native Extensions ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA

Table 1: Description of Python native extensions ported to CyStck, their size of source lines lines of code (LOC), total number
of PyPI downloads. An associated benchmark used for the evaluation is also indicated.

Extension Description LOC PyPI Downloads Benchmark
UltraJSON An ultra fast JSON encoder and decoder for Python [38] 341412 461,436,682 Load operation for 1000 iterations
PicoNumpy This is a limited implementation of NumPy [2] 1125 Not on PyPI Solver
NumPy A package for scientific computing with Python [3] 861693 3,902,582,787 Laplace
Matplotlib A plotting library with Python [37] 244459 990,938,563 animate_decay
Kiwi The Cassowary constraint solving algorithm for Python [36] 13171 750,403 Solver

Table 2: Unnormalized results for the native, system Python and total time relative to execution time.

Native Time (seconds) System Time (seconds) Python Time (seconds) Total Time (seconds)

C API HPy CyStck C API HPy CyStck C API HPy CyStck C API HPy CyStck

UltraJson 0.35 0.32 0.52 0.35 1.28 3.91 10.90 14.4 21.67 11.6 16 26.1
PicoNumPy 0.03 0.02 0.12 0.03 0.06 0.76 0.22 0.21 1.12 0.28 0.29 2.0
NumPy 0.26 0.24 0.48 0.03 0.03 0.27 0.22 0.17 0.50 0.51 0.44 1.25
MatPlotLib 8.42 9.18 9.47 0.34 4.45 6.82 8.42 14.19 21.6 17.18 27.82 37.89
Kiwisolver 0.95 1.29 0.72 22.27 23.21 27.80 8.59 7.74 7.58 31.81 32.24 36.1

Figure 2: This represents the unnormalized rate of bytes
copied generally in Python code, native code but also across
the Python/C boundary.
about 4X compared to both the C API and HPy in the real running
time. The major difference here is how we communicate between
Python and C, CyStck uses an internal array, while HPy and the C
API use a tuple. The tuple for the C API and HPy is for only passing
data, while the array in CyStck serves other purposes like memory
management as well as passing data. We do the same validation
checks on the data but we can attribute better or worse results to
other implementation details of CyStck. The overhead we see in
this category for most of the benchmarks can also be related to
several things, not necessarily the CyStck implementation details
but more so the application code. Python code depending on how
it is written, can run faster or slower, and optimization on this part
is not out of control to the developer. The best results are from the
longest running benchmarks and even where we had overhead, it
was less for longer running benchmarks.

Native Time. As pointed out earlier, Python time is the time spent
in the Python VM; native time on the other hand, is time spent in
the C code. The unnormalized native time results from running the
benchmarks are shown in Table 2. In actual unnormalized times,
CyStck is faster for KiwiSolver by 12% and 2% while it is slower
for UltraJson by 50% and 70% compared to the C API and HPy.
PicoNumPy is equally consistent in overhead, with a slow down of
about 3X and 2X respectively. CyStck has an overhead of 50% for
NumPy compared to both the C API and HPy while for Matplotlib,
it is a slow down of 12.5% compared to the C API and 3.1% compared
to HPy.

Native speed is significant in our experiments because this is the
part of code that is immutable and out of control of the programmer,
and hence cannot be optimized as it consists of interpreter code,
external libraries and extension modules. What can cause poor
performance is poor garbage collection in the C code but since
CyStck is less hands-on, any manual steps to manage memory are
not complex for programmers.

We noticed that manually calling reference counting improved
performance for some extensions which means, that garbage col-
lection for CyStck needs some help and improvement to an extent.
Also the memory management automation through liballocs intro-
duces some overhead and it is worsened with compromises required
for reference counting to work. An optimized implementation with
tracing GC is likely to have better performance.

System Time. Other than Python and native time, the rest of the
time is spent in system time, also shown in Table 2. This is the part
that contributes to the most CyStck overhead consistently for all
the benchmarks we ran. CyStck costs more than 12% compared to
HPy and the Python C API for UltraJson while for PicoNumPy, it
costs more than 26% overhead. Also, for NumPy, CyStck is slow by
about 50% compared to HPy and the Python C API.

Similarly for Matplotlib and KiwiSolver, CyStck runs more than
16% slower for the former, and more than 7% slower compared to
HPy and CyStck respectively. Overhead in the system can also be

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

attributed to several aspects, like I/O bottlenecks, so we cannot
attribute all the overhead to just implementation details. Extension
module code contributes to system code, that is our observation
from the evaluation, hence why it is different across the different C
APIs were evaluated.

Total Time. This metric is a measurement of the wall-clock time
measured 10 times and averaged. Because of the overhead seen
through the Python, native and system time, CyStck introduces a
slow down as shown in Table 2. On average the overhead is 10%
compared toHPy and 12% compared to the PythonCAPI.Matplotlib
is an outlier with about 30% overhead. A little overhead is acceptable
when working with handles, with light-weight handles, it is less
overhead. We also automate memory management tasks which can
contribute to the overhead being our first prototype of CyStck, there
is therefore room for improvement in optimizing the handles. As a
bigger picture, the ability to move objects unlocks better GC policies
with improved throughput, which is likely to improve performance.

Bytes Copied. Shown in Figure 2, this metric indicates the rate of
bytes copied generally in either the Python or native environment
but also across the Python and C boundary. This is important to
know when copying arrays as either Python or NumPy arrays for
example. The metric helps us determine how much space is being
consumed but also since allocation and deallocation of objects
happens after the copying of bytes, large volumes can affect the
performance of the application negatively.

CyStck dorminates with the fewest bytes copied per second over
the boundary for all benchmarks. KiwiSolver has the least margins
for CyStck, the difference being just about 1% and 2% compared to
HPy and the Python C API. NumPy has the highest margins still
in favour of CyStck, specifically about 40% compared to the other
C APIs in question for our experiments. UltraJson, PicoNumPy
and Matplotlib have the most average margins. For UltraJson, the
difference is about 20%, about 12% for Matplotlib and about 4% for
PicoNumPy.

6 MIGRATION OF EXTENSIONS
Releasing a completely new Python C API to the Python ecosystem
breaks backward compatibility and affects many projects, that re-
quire huge efforts in terms of person hours to rewrite the large code
bases to match the new API. Python has gone through a similar
transition from Python 2 to Python 3 [26]. However as we discuss,
migration automation of existing Python C extensions is less com-
plex than the automation required for the Python 2 to 3 transition.
Migration of code between releases of a language involves mapping
patterns of any syntax and semantics of the previous version to the
target version.

Building on the pythoncapi-compat [34], we implemented a tool
that converts the implementation of a Python C extension to an ex-
tension iimplemented with CyStck. The rules can easily be updated
and generalized for any other C API. There are recent advance-
ments towards large language models like CoPilot to do similar
transformations but our method is cheaper and has better precision
due to the specific rules that address the context required for the
transformations from one C API to another.

Figure 3: The system flow for the migration tool.

6.1 Methodology
The tool makes use of advanced pattern matching techniques of
mapping strings [4, 22, 29] and regular expressions, with non-trivial
static analysis. In other words, the source code is viewed as a se-
quence of strings, and regular expressions are used to map certain
patterns in the programs, and making transformations in the sys-
tem to match the syntax and semantics of the new C API. Since
our problem is not as complex as transforming a program from
one programming language to another, we did not find the need
to extensively use higher abstractions for representing the source
code in the form of abstract syntax trees or parse trees, instead as
shown in Figure 3, the code is viewed as a stream of strings.

Patterns are matched from this stream of strings, invoking trans-
formation routines to convert the code to use the CyStck API. The
methodology for the source transformation can be summarized as
follows:

(1) We perform some preprocessing steps, removing any fea-
tures in the program that need not to be matched and trans-
formed, like comments, extra space, etc.

(2) We identify certain patterns that cover the features we want
to transform.

(3) After identifying the patterns that need transformation, we
invoke a routine to replace the matched patterns with the
required CyStck-equivalent syntax and semantics.

(4) We perform static analysis to check and infer the types for
custom types, but also warn for other errors in the generated
code.

(5) We record and summarize the transformation operations
performed. We generate diff information of the modified file
and the file before modification.

Source Pattern Matching. When searching for syntax and se-
mantic matches in the source code, there are three major kinds of
statements that correspond and relate to the major changes CyStck
introduces; PyObject type, API function calls and definitions, and re-
turn statements. To identify the pattern matches for the PyObject
type, we can naively just search for the phrase "PyObject". Depend-
ing on semantics, this is too naive and not sufficient to inform

Towards Reliable Memory Management for Python Native Extensions ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA

transformation precision. We therefore identify the following pat-
terns related to the PyObject type:

𝑉𝑎𝑟 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑦𝑂𝑏 𝑗𝑒𝑐𝑡 #; (4)
𝑉𝑎𝑟 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑃𝑦𝑂𝑏 𝑗𝑒𝑐𝑡 # = @; (5)
𝐹𝑢𝑛𝑐 𝐷𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑃𝑦𝑂𝑏 𝑗𝑒𝑐𝑡 #(@,@,){@∗} (6)
𝐹𝑢𝑛𝑐 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑃𝑦𝑂𝑏 𝑗𝑒𝑐𝑡 #, 𝑃𝑦𝑂𝑏𝑒𝑐𝑡 #) (7)

These rules are variations in the formation of patterns where the
PyObject substring can be found. Rules 4 and 5 relate to variable
declaration and assignment while rules 6 and 7 describe function
definition and signatures respectively. During transformation, rule 3
is transformed first in terms of precedence, before the rest. To avoid
name collision and function pollution, C API functions for most
languages follow a naming convention, @*, where @ is the language
abbreviation. Python C API functions follow the convention Py*.
CyStck re-implements these functions to take care of state , type
and stack design but also keeps the naming convention to CyStck*.
The following rule matches the API functions:

𝐶 𝐴𝑃𝐼 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑃𝑦@ ∗ (...); (8)

This pattern applies to transformations that handle function invo-
cations like PyArg_ParseTupleAndKeywords but also functions
like PyInit_c_module, structs like PyModuleDef and macros like
PyMODINIT_FUNC that are defined as part of the extension module.
Lastly, since CyStck changes how values are returned, the return
statement is also matched using the following two rules:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑦𝑆𝑡𝑐𝑘𝑂𝑏 𝑗𝑒𝑐𝑡 #(@,@, .., ..){@∗} (9)
𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 @; (10)

The first rule (9), checks to verify that the function returns the right
type, CyStck_Object, before changing the return semantics. This
is because if it is a normal C function returning an int for example,
we do not have to query the stack for the value that has to be
returned by the function denoted by rule 10. In terms of precedence,
all transformations that modify the PyObject type should have
been applied for this rule to be accurate.

Source Transformation. For large code bases, the main aim of
this tool is to make migration of extension modules to a new API a
feasible alternative, with strong syntactical guarantees. Semantic
guarantees are harder and thorough testing is required to verify the
correctness of the generated code. For example, the tool is not yet
equipped to automate this, only a human can make some of these
judgements but with some advanced rules in our algorithms, we
think future iterations can achieve this accuracy with ref/unref an-
notation. We achieve code transformations through a specification
using rules, in the following format:

[𝑝𝑎𝑡𝑡𝑒𝑟𝑛 : 𝑎𝑐𝑡𝑖𝑜𝑛] (11)

The first part of a rule specification is a pattern in the code. The
second corresponds to the steps or procedures that must be taken
when the first part matches. For example, when performing the
transformation for a block of code, the operation that manages
the conversion of a Statement is invoked. A matching procedure
isolates the Statement kind to be transformed and the relevant
conversion function is invoked. As an example, the following hy-
pothetical Python C API implementation of a C extension method:

Table 3: Patterns and transformations for the hypothetical
example in Section 6.1.

Match Replacement
PyObject *square(Cystck_Object *square(Py_State *s
PyArg_ParseTuple CystckArg_parseTuple
Py_Object result Cystck_Object result
PyFloat_FromDouble(CystckFloat_FromDouble(s
return @ Cystck_pushobject(s, @); return 1;

1 PyObject *square(PyObject *args)

2 {

3 double num;

4 PyArg_ParseTuple(args,"O", &num);

5 double fact = num * num;

6 PyObject * result = PyFloat_FromDouble(fact);

7 return result;

8 }

Changes to:
1 Cystck_Object *square(Py_State *s, Cystck_Object args)

2 {

3 double num;

4 CystckArg_parseTuple(s, args,"O", &num);

5 double fact = num * num;

6 Cystck_Object result = CystckFloat_FromDouble(s, fact);

7 Cystck_pushobject(s, result);

8 return 1;

9 }

The source transformation for this code involves about five rules.
First, is the change of any PyObject patterns to Cystck_Object,
but before we apply any transformations, we identify what kind of
PyObject pattern it is. It can be part of a variable declaration/as-
signment or part of a function definition. The invoked action is
different in each case. The former is a normal replacement while
the later involves additional changes to cater to the state as the first
argument of a function. The PyArg_ParseTuple transformation
is also a direct search and replace, while the return statement has
to be modified, replacing it with two statements. One pushes a
value to the stack and the other returns an index to the top of the
stack. Note that we choose to number indices from 1 not 0, this
has no unique semantics. CyStck follows the naming convention
for most API functions starting with Cystck instead of Py, except
the CyStck functions expect the first argument to be the state.
Table 3 has a summary of patterns and their transformations for
this example code. In general keeping this non-polluting naming
convention is beneficial for cleaner code but also simplifies auto-
matic migration and avoids conflicting function names. We have
implemented other non-trivial rules, like the module registration
that even involves unique macros but do not discuss every rule
here due to space limitations.

Static Analysis. Other than normal pattern matching and trans-
formation, we also do static analysis. In contrast to generic static
analysis of C programs that we also do with CPPChecker [23], the
goal for static analysis in this tool is to primarily check for errors
related to the following specific implementation flaws that can
appear in the transformed source code of an extension module:

(1) Custom types: for function signatures or places in the source
code where we find especially custom types other than
PyObject or known API types, we check and infer the types
for correctness.

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

(2) Stack and Array Overflow: As discussed earlier, since we have
set a limit to the sizes of the stack and array, we also statically
scan the program to look out for parts of the code that can
overflow these data structures. We generate warning reports
to guide any manual intervention.

(3) Integer Overflows: Integer operations are a well known cause
for erratic behaviour in the Python C API. Program analysis
for this is aimed at uncovering integer operations that over-
flow, use illegitimate bit functionality and conversions that
hide the integer value.

(4) Exceptions: Exception flaws for the Python C API can mani-
fest as either wrong handling between Python and C environ-
ments or not raising exceptions correctly. We have complete
support for the later and cover trivial scenarios to check
for exception mismatches between Python/C that can cause
unwanted control flow in the API code.

To identify integer overflows, we search for places in the code
where arguments are passed and values are generated, checking
for any sources of integer overflow. Similarly, for memory leaks,
we use lexical pattern matching to scan the code for the known
Python allocators, isolating any memory flaws. Exceptions in the
Python C API should always be returned, therefore, through a static
scan of the code, we isolate any thrown exceptions by searching
for CyStck_Err, and checking if it is returned. code that uses
return values to carry internal errors is checked before any further
execution. All APIs in CyStck that need to be checked for return
values are inspected.

6.2 Case Study
This section discusses our experience in using this migration tool
for the five large extensions described in Table 1.

Methodology: We compared the changes made through our
manual port and the changes made by the transformation tool in
Tables 4, 5, 6, 7 and 8. Another view to this evaluation would con-
sider that results are based on several people doing the manual port,
and hence multiple manual ports to compare with, but we do not
go this route for this initial experimentation. We use the Git diff
feature to compare the source files against the original unported
extensions. For each extension, we measure the additions and dele-
tions and number of files modified using git diff –stats. We
also measure, the number of transformations, which are the num-
ber of routines invoked to make changes to the source code by
the migration tool. We draw conclusions based on the number of
files modified for the quantitative insight, addition/deletions using
mostly Git diff and manual inspection for any qualitative insight.

Discussion of Results: For UltraJson as shown in Table 4, the
tool is able to port about 60% of the code in terms of both addi-
tions and number of files modified. It makes 52 transformations to
the original source code. The discrepancy in additions, deletions,
and number of files is because in the manual port, we cautiously
introduce some helper code during the port. PicoNumPy shows
a difference of 33% additions by the tool compared to the manual
port and modifies the file completely for all matches , shown in
Table 5; the discrepancy is due to extra manual garbage collection
code we add using ref/unref to correctly register and unregister
reference counts. As pointed out earlier, the tool can not make a

Table 4: Migration metrics for UltraJson. The automatic port
covers approximately 60% of the manual ports changes.

UltraJson Manual Port Metrics Automated Port Metrics

Additions (+) 815 329

Deletions (-) 690 390

Files modified (#) 6 4

Number of transformations - 52

Table 5: Migration metrics for PicoNumPy. The automatic
port covers approximately 33% of the manual ports changes.

PicoNumPy Manual Port Metrics Automated Port Metrics

Additions (+) 128 85

Deletions (-) 184 99

Files modified (#) 1 1

Number of transformations - 33

Table 6: Migration metrics for NumPy. The automatic port
covers approximately 75% of the manual ports changes.

NumPy Manual Port Metrics Automated Port Metrics

Additions (+) 10162 3463

Deletions (-) 1247 3124

Files modified (#) 102 77

Number of transformations - 57

judgement on manual ref/unref. Table 6 shows that for NumPy,
the tool is able to make modifications to more than 75% of the
number of files in the project compared to the manual port. The
manual port makes more modifications and the discrepancy is due
to helper functions but also some modifications from stack to heap
allocations in the manual port. Table 8 shows that the tool also
makes modifications to about 90% of the number of files for the
KiwiSolver project; compared to the manual port. There is also a
discrepancy in additions and deletions due to helper functions in
the manual port. About 90% of the files for the Matplotlib project
as shown in Table 7 were modified and even the semantic accuracy
was equally close to the manual port from physical inspection. We
do not track modifications in setup for the automated port, which
contributes to fewer modifications for this extension, because we
do not rename the extension in the setup file.

7 RELATEDWORK
Existing work suggests using the Boehm GC [8] for C/C++ ap-
plications but the problem we address is not about automating

Towards Reliable Memory Management for Python Native Extensions ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA

Table 7: Migration metrics for MatplotLib. The automatic
port covers approximately 90% of the manual ports changes.

MatplotLib Manual Port Metrics Automated Port Metrics

Additions (+) 1115 1667

Deletions (-) 1504 3552

Files modified (#) 23 19

Number of transformations - 49

Table 8: Migration metrics for KiwiSolver. The automatic
port covers approximately 90% of the manual ports changes.

KiwiSolver Manual Port Metrics Automated Port Metrics

Additions (+) 620 1188

Deletions (-) 671 1301

Files modified (#) 11 10

Number of transformations - 37

garbage collection for C/C++ applications. It is more about recon-
ciling garbage collection between Python or any other VM and
C, regardless of what GC is used in either the VM or native Code.
We address high level challenges of identifying roots and tracking
references which are the main challenges for supporting garbage
collection for extension modules. Further still, the Boehm GC is a
non-moving GC and only helps with the marking phase of a typical
mark and sweep policy but not with the sweep phase. Therefore,
even if we used the Boehm GC for the C code, the GC still needs
information on reachability to accurately de-allocate objects.

Techniques for interoperability between languages and native
extensions have been a subject of research for several years. Most of
these have generally explored different alternatives to cooperation
among languages, for example Grimmer et al. [12, 13] proposes
combining interpreters on a single VM and sharing the abstract
syntax trees. Barret et al. [5], discuss syntactic composition of PHP
and Python with references between the languages. We chose not
to invent a new interaction between Python and C because there
is good traction of the current API, designed as an FFI. Rather we
explore ways of improving it to address its current challenges.

Several papers have analyzed the inefficiencies [14, 15, 18, 24,
35] of the Python C API, in areas like performance and memory
management among others. The results of these studies have led
to the development of Python profilers that provide metrics on
native code [6] but none of the projects has directly addressed or
attempted to fix the problems by redesigning the API, which is the
most feasible future.

Several languages have employed different designs for their C
APIs in ways different from the Python C API. Ruby uses conser-
vative stack scanning to manage memory for the C API [31], V8
uses handles [20] to also manage garbage collection, Perl still uses

the union type like Python [25] while Lua uses an abstract stack to
handle the same problem [16, 17]. We build on some of these tech-
niques and report on combining a stack and light-weight handles
to reliably support garbage collection.

HPy is work pioneered by the PyPy team [11] on an experimental
Python C API and uses handles but due to overhead analyzed by
Kalibera and Jones [20], we did not fully commit to only handles in
this work, instead we combine light-weight handles and a stack. Kell
et al. [7, 21] proposes a Pythonic way of writing native extensions
and proposes liballocs to manage memory. We do not use this
Pythonic approach for CyStck but explore how to handle object
lifetimes using liballocs for an FFI like CyStck.

8 INSIGHTS AND RECOMMENDATIONS
The lessons from our empirical study in this paper can be cate-
gorized in two areas; garbage collection and migration of existing
extensions.

Garbage Collection: By promoting manual memory manage-
ment, C APIs do not decouple GC details from the API, which
complicates evolution and makes the API error prone. From our
study we report that it is possible to mostly automate memory
management for native extensions, including hiding GC details.
However, there may be need for manual configuration of, for exam-
ple, GC tasks like configuring allocators and reclamation routines
that should be exposed to the program. This automation is still
possible while ensuring a clean design of the API.

Due to a conflict in the policies for when objects should be de-
allocated, we had to manually support a reference mechanism to
allow control or extend the life of certain objects that could still be
required even when a C program returned and explored liballocs
to accurately process object life times. The key point here being
reachability alone is insufficient to determine object life times, and
a single party i.e., VM or native code does not have enough infor-
mation to allow for collection precision of an object. Techniques
to handle cyclic objects that reference counting algorithms can
not reclaim become onerous to design for but also handling weak
references can force commitment to using object proxies, which
introduce overhead. The use of an indirection to the VM object
is usually the cause of overhead when managing memory for na-
tive extensions. For CPython most API methods have to convert
data but also internally, generation of the extension module itself
involves processing these in-directions to the actual VM objects.

Migration: Automatically migrating Python native extensions is
also not as hard as the Python 2 to 3 transition from our experience.
We demonstrate that through traditional pattern matching using
text transformation and regex search, it is not complex to perform
transformations on large code bases of native code. It is even easier
if the new API enforces the convention of naming methods in the
form of Py_*.

Complemented by thorough automated testing, any tool for
migration automation should also support non-trivial static analysis
to check and validate the semantics of the ported code. With our
current accuracy level for this automation, we find that most of the
code can be automatically ported, leaving a few corner cases that
can be handled manually, which is a relief to many developers for
especially large systems.

ICOOOLPS ’23, July 17, 2023, Seattle, WA, USA Joannah Nanjekye, David Bremner, and Aleksandar Micic

9 CONCLUSION AND FUTUREWORK
The Python C API is one of the largest APIs supporting the most
features to access the Python interpreter [25], and any undertaking
to redesign it as research is complex but generates useful insight
for the CPython core team as they plan to evolve the C API [32].

A possible future direction would be to optimize the handles
more, light-weight handles incur less overhead but their overhead is
still noticeable, an experiment with ultra-flat handles as pioneered
by Kalibera and Jones [20] is a good direction. For the migration
tool, a good experiment would be to first gain insight on the impact
of Python C API changes between especially CPython version 3.10
and a version before 3.9. Designing for these corner cases can
immensely inform decisions in tool design when a new C API is
released in the future.

10 DATA AVAILABILITY STATEMENT
Software that supports the findings of this research is available
with ACM DOI 10.1145/3554356 [1].

ACKNOWLEDGMENTS
This research was conducted within the IBM Centre for Advanced
Studies–Atlantic, Faculty of Computer Science, University of New
Brunswick. The authors are grateful for the CAS–Atlantic and
the Atlantic Canada Opportunities Agency (ACOA) through the
Atlantic Innovation Fund (AIF) program in supporting our research.

REFERENCES
[1] Joannah Nanjekye , David Bremner and Aleksandar Micic. 2023. Towards Reliable

Memory Management for Python Native Extensions. https://doi.org/10.1145/
3554356

[2] Pierre Augier. 2018. An experiment about Numpy and pyhandle/hpy. https:
//github.com/paugier/piconumpy

[3] Pierre Augier. 2018. The fundamental package for scientific computing with
Python. https://github.com/numpy/numpy

[4] Brenda S. Baker. 1995. Parameterized Pattern Matching by Boyer-Moore-Type
Algorithms. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (San Francisco, California, USA) (SODA ’95). Society for Industrial
and Applied Mathematics, USA, 541–550.

[5] Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2016.
Fine-grained Language Composition: A Case Study (Artifact). In DARTS-Dagstuhl
Artifacts Series, Vol. 2. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[6] Emery D Berger. 2020. Scalene: Scripting-language aware profiling for python.
arXiv preprint arXiv:2006.03879 (2020).

[7] Guillaume Bertholon and Stephen Kell. 2019. Towards seamless interfacing
between dynamic languages and native code. In Proceedings of the 11th ACM
SIGPLAN International Workshop on Virtual Machines and Intermediate Languages.
38–47.

[8] Hans-J Boehm, Alan J Demers, and Scott Shenker. 1991. Mostly Parallel Garbage
Collection. ACM SIGPLAN Notices 26, 6 (1991), 157–164.

[9] PyPy Contributors. 2019. HPY: A Better API for Python. https://hpy.readthedocs.
io/en/latest/overview.html. (2019). Accessed: 2020-12-18.

[10] John D. Cook. 2009. Ironclad. https://code.google.com/archive/p/ironclad/. Ac-
cessed: 2021-07-23.

[11] Antonio Cuni. 2018. cpyext: Why emulating CPython C API is so
Hard. https://morepypy.blogspot.com/2018/09/inside-cpyext-why-emulating-
cpython-c.html.

[12] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, Mikel
Luján, and Hanspeter Mössenböck. 2018. Cross-language interoperability in
a multi-language runtime. ACM Transactions on Programming Languages and
Systems (TOPLAS) 40, 2 (2018), 1–43.

[13] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössen-
böck. 2015. Dynamically composing languages in a modular way: Supporting
C extensions for dynamic languages. In Proceedings of the 14th International
Conference on Modularity. 1–13.

[14] Mingzhe Hu and Yu Zhang. 2020. The Python/C API: evolution, usage statistics,
and bug patterns. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 532–536.

[15] Mingzhe Hu, Yu Zhang, Wenchao Huang, and Yan Xiong. 2021. Static type infer-
ence for foreign functions of python. In 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 423–433.

[16] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes. 2001.
The evolution of an extension language: A history of Lua. In Proceedings of V
Brazilian Symposium on Programming Languages, pages B–14–B–28.

[17] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. 2007.
The Evolution of Lua. In Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages (San Diego, California) (HOPL III). Association
for Computing Machinery, New York, NY, USA, 2–1–2–26. https://doi.org/10.
1145/1238844.1238846

[18] Chengman Jiang, Baojian Hua, Wanrong Ouyang, Qiliang Fan, and Zhizhong Pan.
2021. PyGuard: Finding and Understanding Vulnerabilities in Python Virtual
Machines. In 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 468–475.

[19] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The Garbage Collection
Handbook: The Art of Automatic Memory Management. CRC Press.

[20] Tomas Kalibera and Richard Jones. 2011. Handles Revisited: Optimising Per-
formance and Memory Costs in a Real-Time Collector. In Proceedings of the
International Symposium on Memory Management (San Jose, California, USA)
(ISMM ’11). Association for Computing Machinery, New York, NY, USA, 89–98.
https://doi.org/10.1145/1993478.1993492

[21] Stephen Kell. 2018. The inevitable death of VMs: a progress report. In Companion
Proceedings of the 2nd International Conference on the Art, Science, and Engineering
of Programming. 61–62.

[22] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Müller, and J. Mylopoulos.
2010. Code Migration through Transformations: An Experience Report. In CAS-
CON First Decade High Impact Papers (Toronto, Ontario, Canada) (CASCON ’10).
IBM Corp., USA, 201–213. https://doi.org/10.1145/1925805.1925817

[23] Daniel Marjamaki. 2008. A tool for static C/C++ code analysis. Retrieved March
1, 2023 from https://cppcheck.sourceforge.io/

[24] Raphaël Monat. 2021. Static type and value analysis by abstract interpretation of
Python programs with native C libraries. Ph. D. Dissertation. Sorbonne université.

[25] Hisham Muhammad and Roberto Ierusalimschy. 2007. C APIs in Extension and
Extensible Languages. J. Univers. Comput. Sci. 13, 6 (2007), 839–853.

[26] Joannah Nanjekye. 2017. Python 2 and 3 Compatibility: With Six and Python-Future
Libraries. Apress.

[27] Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2021. Eclipse OMR
Garbage Collection for Tracing JIT-Based Virtual Machines. In Proceedings of the
31st Annual International Conference on Computer Science and Software Engineer-
ing (Toronto, Canada) (CASCON ’21). IBM Corp., USA, 244–249.

[28] Joannah Nanjekye, David Bremner, and Aleksandar Micic. 2022. The Garbage
Collection Cost For Meta-Tracing JIT-Based Dynamic Languages. In Proceedings
of the 32nd Annual International Conference on Computer Science and Software
Engineering (Toronto, Canada) (CASCON ’22). IBM Corp., USA, 140–149.

[29] S. Paul and A. Prakash. 1994. A Framework for Source Code Search Using
Program Patterns. IEEE Trans. Softw. Eng. 20, 6 (jun 1994), 463–475. https:
//doi.org/10.1109/32.295894

[30] Stefan Richthofer. 2014. JyNI-using native CPython-extensions in Jython. arXiv
preprint arXiv:1404.6390 (2014).

[31] Chris Seaton. 2015. Specialising dynamic techniques for implementing the Ruby
Programming Language. The University of Manchester (United Kingdom).

[32] Mark Shannon. 2022. New C-API for Python. https://github.com/markshannon/
New-C-API-for-Python

[33] Mallku Soldevila, Beta Ziliani, and Daniel Fridlender. 2020. Understanding Lua’s
Garbage Collection: Towards a Formalized Static Analyzer. In Proceedings of the
22nd International Symposium on Principles and Practice of Declarative Program-
ming (Bologna, Italy) (PPDP ’20). Association for Computing Machinery, New
York, NY, USA, Article 13, 14 pages. https://doi.org/10.1145/3414080.3414093

[34] Victor Stinner. 2023. The pythoncapi-compat project. https://github.com/
python/pythoncapi-compat

[35] Jialiang Tan, Yu Chen, Zhenming Liu, Bin Ren, Shuaiwen Leon Song, Xipeng
Shen, and Xu Liu. 2021. Toward efficient interactions between Python and native
libraries. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1117–1128.

[36] Kiwi team. 2018. Efficient C++ implementation of the Cassowary constraint
solving algorithm. https://github.com/nucleic/kiwi

[37] MatplotLib team. 2018. Matplotlib: plotting with Python. https://github.com/
matplotlib/matplotlib

[38] Ultrajson team. 2018. Ultra fast JSON decoder and encoder written in C with
Python bindings. https://github.com/ultrajson/ultrajson

[39] Guido Van Rossum and othersy. 2007. Python Programming Language.. InUSENIX
annual technical conference, Vol. 41. 36.

Received 2023-04-30; accepted 2023-05-31

https://doi.org/10.1145/3554356
https://doi.org/10.1145/3554356
https://github.com/paugier/piconumpy
https://github.com/paugier/piconumpy
https://github.com/numpy/numpy
https://hpy.readthedocs.io/en/latest/overview.html
https://hpy.readthedocs.io/en/latest/overview.html
https://code.google.com/archive/p/ironclad/
https://morepypy.blogspot.com/2018/09/inside-cpyext-why-emulating-cpython-c.html
https://morepypy.blogspot.com/2018/09/inside-cpyext-why-emulating-cpython-c.html
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1145/1993478.1993492
https://doi.org/10.1145/1925805.1925817
https://cppcheck.sourceforge.io/
https://doi.org/10.1109/32.295894
https://doi.org/10.1109/32.295894
https://github.com/markshannon/New-C-API-for-Python
https://github.com/markshannon/New-C-API-for-Python
https://doi.org/10.1145/3414080.3414093
https://github.com/python/pythoncapi-compat
https://github.com/python/pythoncapi-compat
https://github.com/nucleic/kiwi
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/ultrajson/ultrajson

	Abstract
	1 Introduction
	2 The Python C API
	3 CyStck
	3.1 Design
	3.2 Implementation

	4 Garbage Collection
	4.1 Memory Reclamation
	4.2 Overflowing the Array
	4.3 Object Lifetime

	5 Evaluation
	5.1 Methodology
	5.2 Discussion of Results

	6 Migration of Extensions
	6.1 Methodology
	6.2 Case Study

	7 Related Work
	8 Insights and Recommendations
	9 Conclusion and Future Work
	10 Data Availability Statement
	Acknowledgments
	References

