
Outer approximations of core points for integer
programming

Naghmeh Shahverdi∗ David Bremner†

July 14, 2023

Abstract

For several decades the dominant techniques for integer linear pro-
gramming have been branching and cutting planes. Recently, several au-
thors have developed core point methods for solving symmetric integer
linear programs (ILPs). An integer point is called a core point if its or-
bit polytope is lattice-free. It has been shown that for symmetric ILPs,
optimizing over the set of core points gives the same answer as consider-
ing the entire space. Existing core point techniques rely on the number
of core points (or equivalence classes) being finite, which requires special
symmetry groups. In this paper we develop some new methods for solving
symmetric ILPs — based on outer approximations of core points — that
do not depend on finiteness but are more efficient if the group has large
disjoint cycles in its set of generators.

1 Introduction
Formulation symmetries occur in practice when relabellings yield equivalent
problem structure; this causes repeated work for branching solvers, and state of
the art commercial and research solvers make efforts to break symmetries [14].
Let G ď Sn be a permutation group acting on Rn by permuting coordinates.
For any integer point z P Zn, the orbit polytope of z is the convex hull of the
G-orbit of z. If the vertices of an orbit polytope are the only integer points
in the polytope we call it lattice-free and call z a core point. Instead of seeing
symmetry as a problem, core point techniques seek to exploit it to solve integer
linear programs (ILPs) faster. In the most direct approach, when the number
of core points is finite (which only holds for certain special groups), core points
are enumerated and tested individually [2]. It should be noted that core point
techniques are not useful for binary problems since every t0, 1u-point is a core
point; [9] considers an alternative approach based on lexicographical order.

∗naghmehshahverdi2@gmail.com
†bremner@unb.ca

1

Computation of symmetries in the MIPLIB 2010 and 2017 instances has
been done in [13] and this study shows that many instances are affected by
symmetry. Symmetric Integer Linear Programming appears in many problems
such as scheduling on identical machines and code construction. For solving
these problems, Artificial Intelligence approaches have been investigated in [10,
12].

A (not necessarily polyhedral) outer approximation is a set of constraints
that is feasible for all of the points in the set one wishes to approximate. A
well known example of an outer approximation is an ILP, where the (initial)
linear constraints define an outer approximation of the feasible integer points.
Outer approximations lead naturally to a hybrid approach where synthesized
constraints are added to an existing formulation and then solved with a tradi-
tional solver. Outer approximations are implicit in previous results bounding
the distance of core points to certain linear subspaces (see e.g. Theorem 3.24 in
[15]). The distance bounds do not themselves seem to be tight enough to provide
a practical improvement for solving ILPs. In this paper we develop some new
constraints for problems with formulation symmetries. While these constraints
are nonlinear and non-convex, initial experiments with nonlinear solvers seem
promising.

In Section 2 we give some basic definitions. In Section 3 we consider integer
linear programs with cyclic symmetry groups and provide some new constraints
to determine outer approximations of their core points. We also provide an
algorithm that uses these constraints to solve an ILP. In Section 4 we generalize
this algorithm for ILPs where only some of their variables have cyclic symmetry.
In Section 5 we generalize the algorithm for direct products of cyclic groups. In
Section 6 we classify permutation groups based on their generators and explain
how the algorithms of the previous sections can be applied to ILPs having
arbitrary permutation groups as symmetry groups. Finally in Section 7 we use
our algorithms to solve some hard symmetric integer linear feasibility problems.

2 Basic Definitions
Symmetries of geometric objects (e.g. polyhedra and integer lattices) in integer
linear programming can be viewed as the action of some underlying group.

Definition 2.1. If G is a group and X is a set, then a (left) group action φ of
G on X is a function

φ : GˆX Ñ X,

pg, xq Ñ gx,

that satisfies the following two axioms.

1. ex = x for all x P X, where e P G is the identity element.

2. (gh)x = g(hx) for all g, h P G and all x P X.

2

In this paper we assume that all groups considered are permutation groups,
and that they act on a family Xn of n-tuples (e.g. Cn, Rn, or Zn in the usual
coordinates) as follows.
Remark 2.2. The permutation group G ď Sn acts on Xn by permuting coordi-
nates t 0, . . . n´ 1 u: for g P G and x “ px0, . . . , xn´1q P Xn

φgpxq “ pxg´1p0q, xg´1p1q, . . . , xg´1pn´1qq.

There are certainly more general notions of symmetry possible, but permut-
ing coordinates is the most widely studied class of symmetries in integer linear
programming [14].

The techniques in this paper rely on restricting the search for feasible integral
points to certain special integral points called core points. Core points are
defined relative to a given group as follows.
Definition 2.3 (Core Points).

1. Let P Ă Rn be a convex polytope with integral vertices. We call P lattice-
free if P X Zn “ vertpP q where vertpP q is the set of vertices of P .

2. Let G ď GLnpRq be a finite group and let Gz be the G-orbit of some point
z P Rn. We call the convex hull of this orbit an orbit polytope and denote
it by convpGzq.

3. Let G ď GLnpZq be a finite group of unimodular matrices. A point z P Zn

is called a core point for G if and only if the orbit polytope convpGzq is
lattice-free.

Let Cn “ xσy denote the cyclic group generated by σ, a cyclic permutation
of coordinates. In other words, σ : Rn Ñ Rn is given by

σpc0, c1, . . . , cn´1q “ pcn´1, c0, . . . , cn´2q

We represent points in Rn by column vectors but for convenience, we write such
vectors here in a transpose way. The map σ is easily iterated:

σkpc0, c1, . . . , cn´1q “ pcn´k, cn´k`1, . . . , cn´1, c0, . . . , cn´k´1q

Consider a cyclic group C4 “ xp1, 2, 3, 4qy. The orbit of x “ p2, 0, 4, 1q

consists of the four vectors x1 “ p2, 0, 4, 1q, x2 “ p1, 2, 0, 4q, x3 “ p4, 1, 2, 0q,
x4 “ p0, 4, 1, 2q. The orbit polytope of x is not lattice-free because

p1, 2, 1, 3q “
1

5
x1 `

3

5
x2 ` 0x3 `

1

5
x4,

so that x is not a core point.
Definition 2.4. Let G act on Cn. The subset of Cn preserved by all elements
of G is called the fixed space:

FixpGq :“ tx P Cn | gx “ x,@g P Gu.

We denote by FixZpGq (resp. FixRpGq), the intersection FixpGq X Zn (resp.
FixpGq X Rn).

3

We use 1k to denote the k-dimensional vector of all ones (or just 1 where
the dimension is clear from context). It is easy to see that 1n is contained in
FixZpGq for any group G acting on Rn by permuting coordinates. If G is further
transitive, then FixRpGq “ Spanp1q.

Definition 2.5. We define the k-th layer to be the set

Zn
pkq :“ tz P Zn | xz,1y “ ku.

Note that the set Zn
pkq

is G-invariant because G acts by permuting coordi-
nates. Consider the cyclic group C4 “ xp1, 2, 3, 4qy. Let X “ Z4

p2q
X t0, 1u4 be

the set of t0, 1u-points in R4 in layer two, i.e., each point has two 1s and two
0s, and suppose the action is the same as in Remark 2.2. This action has two
orbits:

OGpp1, 1, 0, 0qq “ t p1, 1, 0, 0q, p0, 1, 1, 0q, p0, 0, 1, 1q, p1, 0, 0, 1q u ,

OGpp1, 0, 1, 0qq “ t p1, 0, 1, 0q, p0, 1, 0, 1q u .

The fixed space FixZpC4q contains only two 0, 1 points, namely p1, 1, 1, 1q and
p0, 0, 0, 0q, and neither is in X.

In the remainder of the paper we will need several different notions of equiv-
alence for integral points. Potentially larger equivalence classes (based on nor-
malizers) of core points are studied in [11].

Definition 2.6 (Equivalence relations).

1. Two points x, y P Zn are called equivalent if there exists g P G such that
x “ gy. It follows from the group axioms that this is an equivalence
relation.

2. Two points x, y P Zn are called isomorphic if there exists g P G such that
x ´ gy P FixZpGq. This is an equivalence relation because FixZpGq is a
lattice.

3. Two integer points z1 and z2 in Zn are called co-projective if there exists
an integer k P Z such that z1 “ z2 ` k1. Equivalently, if the group is
transitive, z2 is a translation of z1 through the fixed space.

Each of the equivalence relations in Definition 2.6 has equivalence classes
that are either entirely core-points or entirely non-core integer points. Along
with the observation that t0, 1u-vectors are core points for any permutation
group [15, Lemma 3.7], we can define a family of universal core points.

Definition 2.7. A point u P Zn is called a universal core point if it is isomorphic
to a t0, 1u-vector.

As a heuristic for identifying more points contained in the orbit polytopes of
many (non-core) points, we consider integer points near universal core points.

4

Definition 2.8. An integer point z is called an atom if there is a universal core
point u in the layer containing z such that the distance between z and u is

?
2.

For example if G “ xp1, 2, 3, 4, 5qy then the fixed space is spanned by 1 and
p2, 2, 2, 2, 1q “ p1, 1, 1, 1, 0q ` p1, 1, 1, 1, 1q is a universal core point. The point
p3, 2, 2, 1, 1q is an atom since p3, 2, 2, 1, 1q ´ p2, 2, 2, 2, 1q “ p1, 0, 0,´1, 0q hence
its distance to the universal core point p2, 2, 2, 2, 1q is

?
2.

Definition 2.9. Suppose the cyclic group G “ xpg1, . . . , gkqy ď Sn, gi P

t0, . . . , n´ 1u acts on Rn by permuting coordinates. Then coordinate i is called
active if there is j P t1, . . . , ku such that gj “ i.

For example if G “ xp0, 1, 3, 4qy acts on R5 then x0, x1, x3, x4 are active but
x2 is non-active.

3 Circulant Matrices
Circulant matrices play an important role in finding our constraints because any
point x in the orbit polytope of the integer point c P Zn under the cyclic group
Cn can be written as x “ Cλ, where x P Rn, λ P r0, 1sn and C is the circulant
matrix of c.

Definition 3.1. A circulant matrix is a matrix where each column vector is
rotated one element down relative to the preceding column vector. An n ˆ n
circulant matrix Cirpcq takes the form

C “

»

—

—

—

—

—

—

–

c0 cn´1 . . . c2 c1
c1 c0 cn´1 . . . c2
... c1 c0

. . .
...

cn´2
. cn´1

cn´1 cn´2 ¨ ¨ ¨ c1 c0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

One amazing property of circulant matrices is that the eigenvectors are al-
ways the same for all n ˆ n circulant matrices. The eigenvalues are different
for each matrix, but since we know the eigenvectors a circulant matrix can be
diagonalized easily. For more detailed background on circulant matrices see [7].

The m-th eigenvector ym for any nˆ n circulant matrix Cirpcq is given by:

ym “
1

?
n

p1, w´m
n , . . . , w´pn´1qm

n qT , (1)

where wm
n “ expp2πmi{nq. Suppose c “ pc0, . . . , cn´1q P Rn (usually for us c will

be an integer point in Zn). By Euler’s formula we have
?
nym “ Vm´iUm, m “

0, . . . , n´ 1, where

Vm “

ˆ

1, cos

ˆ

2πm

n

˙

, . . . , cos

ˆ

2πpn´ 1qm

n

˙˙

, (2)

5

Um “

ˆ

0, sin

ˆ

2πm

n

˙

, . . . , sin

ˆ

2πpn´ 1qm

n

˙˙

. (3)

The eigenvalue of the m-th eigenvector of the circulant matrix Cirpcq is

ψm “

n´1
ÿ

k“0

ckw
km
n “ xVm, cy ` ixUm, cy.

So we have
CirpcqY “ YΨ ùñ Cirpcq “ YΨY ˚,

where
Y “ ry0 | . . . | yn´1s,

is the unitary matrix composed of the eigenvectors as columns, and Ψ is the
diagonal matrix with diagonal elements ψ0, . . . , ψn´1.

The inverse of a circulant matrix is circulant [4] and its inverse is given by

Cirpcq´1 “ YΨ´1Y ˚. (4)

Since Ψ is a diagonal matrix its inverse is also a diagonal matrix with diagonal
elements ψ´1

m , m “ 0, . . . , n´ 1 where

1

ψm
“

1
řn´1

k“0 ckw
km
n

“
1

xVm, cy ` ixUm, cy
“

xVm, cy ´ ixUm, cy

xVm, cy2 ` xUm, cy2
. (5)

Remark 3.2. Note that the length of the projection of a vector c P Rn onto a
complex vector v “ a` ib P Cn is defined as

}Projcv}2 “
}xc, ay ´ ixc, by}2

}v}2
“

xc, ay2 ` xc, by2

}v}2
. (6)

Furthermore, the term xVm, cy
2 ` xUm, cy

2 in (5) is the length of the projection
of c onto invariant subspace ym.

Lemma 3.3. Let c P Rn and suppose Cirpcq is invertible. Then its inverse is
Cirp pT pcqq, where pT pcq is defined as follows:

pT pcq “
1

n

»

—

—

—

—

—

—

—

—

–

1

xc,1y
`T0pcq

1

xc,1y
`T1pcq

...
1

xc,1y
`Tn´1pcq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
1

n

»

—

—

—

—

—

—

—

—

–

1

xc,1y
`ψ´1

1 `. . .`ψ´1
n´1

1

xc,1y
`w´1

n ψ´1
1 `. . .`w

´pn´1q
n ψ´1

n´1

...
1

xc,1y
`w

´pn´1q
n ψ´1

1 `..`w
´pn´1q

2

n ψ´1
n´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that actually 1

xc,1y
“ ψ´1

0 .

6

Proof. By (4) we have Cirpcq´1 “ YΨ´1Y ˚. Now suppose khj is the ph, jq-th
component of YΨ´1. We have

khj “ YhjΨ
´1
jj “

1
?
n
w´ph´1qpj´1q

n Ψ´1
pj´1qpj´1q

.

So, kl, the l-th row of YΨ´1, is equal

kl “
1

?
n

”

Ψ´1
00 , w

´pl´1q
n Ψ´1

11 , w
´2pl´1q
n Ψ´1

22 , . . . , w
´pn´1qpl´1q
n Ψ´1

pn´1qpn´1q

ı

.

Now since Cirpcq´1 is a circulant matrix [4] it is enough to find the first column
of Cirpcq´1 (the other columns can be found by permutation of the first column).
Notice that the first row and column of Y and Y ˚ is 1?

n
1 “ 1?

n
p1, 1, . . . , 1q so

multiplying each row of YΨ´1 with vector 1?
n
1 gives us the first column of

YΨ´1Y ˚, which is

xkl,
1

?
n
1y “

1

n
pΨ´1

00 `w´pl´1q
n Ψ´1

11 `w´2pl´1q
n Ψ´1

22 `. . .`w´pn´1qpl´1q
n Ψ´1

pn´1qpn´1q
q,

where Ψ´1
00 “ 1{xc,1y.

The following theorem plays an important role in this paper, and is a useful
formula for computing the inverse of an invertible circulant matrix.

Theorem 3.4. For c P Rn, the entry Tkpcq in the column vector pT pcq in
Lemma 3.3 can be written as

Tkpcq “ 2

pn´1q{2
ÿ

m“1

1

xVm, cy2 ` xUm, cy2
xσ´kpVmq, cy if n is odd,

Tkpcq “ 2

pn´2q{2
ÿ

m“1

1

xVm, cy2 ` xUm, cy2
xσ´kpVmq, cy `

p´1qk

xVn
2
, cy

if n is even.

In particular each Tkpcq is a real number.

Proof. As shown in Lemma 3.3 we have

Tkpcq “ w´k
n ψ´1

1 ` . . .` w´pn´1qk
n ψ´1

n´1.

Since ψl and ψn´l are complex conjugates of each other we have

w´lk
n ψ´1

l ` w´pn´lqk
n ψ´1

n´l “

pcosp
2lkπ

n
q ´ i sinp

2lkπ

n
qq

xc, Vly ´ ixc, Uly

xc, Vly2 ` xc, Uly
2

` pcosp
2lkπ

n
q ` i sinp

2lkπ

n
qq

xc, Vly ` ixc, Uly

xc, Vly2 ` xc, Uly
2

“

7

2 cosp 2lkπ
n qxc, Vly ´ 2 sinp 2lkπ

n qxc, Uly

xc, Vly2 ` xc, Uly
2

“ 2
xc, σ´kpVlqy

xc, Vly2 ` xc, Uly
2
.

Recall that wm
n “ cos

`

2πm
n

˘

` i sin
`

2πm
n

˘

so the last equality holds because
cosA cosB ´ sinA sinB “ cos pA`Bq and Vm is in terms of cos and Um is in
terms of sin (see (2) and (3)).

If n is even then for l “ n
2 we have ψn

2
“ ψn´l and y

n
2 “ yn´l so w´ n

2 k
n ψ´1

n
2

does not give a complex conjugate pair. But since the imaginary part of it is
zero, we have

w
´ n

2 k
n ψ´1

n
2

“ cos p´kπq
xc, Vn

2
y

xc, Vn
2

y2
“

cos pkπq

xc, Vn
2

y
“

p´1qk

xc, Vn
2

y
.

Lemma 3.5. Suppose for c P Rn that Cirpcq is invertible. Then
řn´1

k“0 Tkpcq “ 0.

Proof. From Lemma 3.3 we have

n´1
ÿ

k“0

Tkpcq “

n´1
ÿ

k“0

n´1
ÿ

m“1

w´km
n ψ´1

m “

n´1
ÿ

m“1

ψ´1
m

n´1
ÿ

k“0

w´km
n .

Since the inner sum is geometric, for m ă n
n´1
ÿ

k“0

w´km
n “ 0 .

Remark 3.6. Note that if z, c P Zn
pkq
, k ‰ 0, and z “ Cirpcqλ then

k “ x1, zy “ x1,Cirpcqλy “ x1, cyx1, λy “ kx1, λy.

This implies that x1, λy “ 1. Now suppose Cirpcq is invertible, so λ “ Cirpcq´1z.
To check if z P convpGcq or not, we only need to check if λ “ Cirpcq´1z ě 0.
The constraint

řn´1
i“0 λi “ 1 is redundant.

Let us denote by T pcq the first row of Cirp pT pcqq which is

T pcq “
1

n

„

1

xc,1y
` T0pcq,

1

xc,1y
` Tn´1pcq, . . . ,

1

xc,1y
` T1pcq

.

This will simplify the notation in following sections.

3.1 New Constraints for Singular Circulant Matrices
The circulant matrix Cirpcq corresponding to an integer point c P Zn is not
invertible if and only if the determinant of Cirpcq is zero. Since the determinant
of a square matrix is equal to the product of its n eigenvalues we have

detpCirpcqq “

n´1
ź

j“0

pxVj , cy ` ixUj , cyq .

8

Furthermore, since for k “ 1, . . . , n´ 1, Vn´k ` iUn´k is the complex conjugate
of Vk ` iUk we have

detpCirpcqq “

$

&

%

xV0, cy
śpn´1q{2

j“1 pxVj , cy
2 ` xUj , cy

2q n odd,

xV0, cyxVn
2
, cy

śpn´2q{2
j“1 pxVj , cy

2 ` xUj , cy
2q n even.

So in order to check if an ILP has an integer solution whose circulant matrix is
singular, we could add the following constraints to the problem

xV0, cy

pn´1q{2
ź

j“1

pxVj , cy
2 ` xUj , cy

2q “ 0 if n is odd, (7)

xV0, cyxVn
2
, cy

pn´2q{2
ź

j“1

pxVj , cy
2 ` xUj , cy

2q “ 0 if n is even. (8)

Equations (7) and (8) involve polynomials in c of degree n. We can reformulate
them in a way that make them easier to solve in practice by introducing a large
positive constant M and 0, 1-valued variables rm. Let Pj be a term in the
products (7) and (8), namely, Pj “ xVj , cy when j “ 0 or (for n even) when
j “ n

2 . Otherwise, Pj “ xVj , cy
2 ` xUj , cy

2 ě 0. For j “ 0, . . . , rpn´ 1q{2s, add
constraints

Pj ď rjPj j R t0,
n

2
u X Z, (9)

´rjM ď Pj ď rjM otherwise.

Finally add the following constraint to force at least one rj to 0:
rpn´1q{2s

ÿ

j“0

rj ď

R

n´ 1

2

V

´ 1. (10)

Note that constraints (9) and (10) forces at least one of the Pj to be zero and
so the determinant will be zero. For maximization problems the constant M
can be chosen as the absolute value of the objective value of the LP relaxation
(assuming the objective function fpxq “ x1, xy).

Remark 3.7. We can formulate (7) and (8) in different ways. For example we
can make

P

n´1
2

T

subproblems by adding each Pm separately. The corresponding
constraints in each subproblem are linear. For example in the h-th subproblem,
h P t1, . . . ,

P

n´1
2

T

u, we have

Ph “ xVh, cy
2 ` xUh, cy

2 “ 0,

which can be simplified as

xVh, cy “ 0 and xwh, cy “ 0.

The weakness of this formulation is that adding these constraints does not sim-
plify the problem enough because in each step we are searching in n´2 dimensions
which for large n is not a sufficient dimension reduction.

9

3.2 New Constraints for Non-Singular Circulant Matrices
In this section we develop some new constraints to find an outer approximation
of core points. These new constraints depend only on the symmetry group and
not the ILP.

Suppose c is an arbitrary integer point in Zn
pkq
, k ‰ 0, and G is the cyclic

group with order n which acts on coordinates as usual. By Remark 3.6 a point
z P Zn

pkq
is in convpGcq if and only if there exist λ “ pλ0, . . . , λn´1q such that

z “ Cirpcqλ, λi ě 0.

If Cirpcq is invertible we have
λ “ Cirpcq´1z, (11)

and by Lemma 3.3
λj “ xpσjpT pcqq, zy.

The orbit polytope of a core point is lattice-free. Still assuming that Cirpcq
is invertible, we conclude that c P Zn

pkq
is a core point if and only if for each

z P Zn
pkq

which is not in the G-orbit of c, there exists a j such that

λj “ xT pcq, σ´jpzqy ă 0, (12)

where λ is defined in (11). Since c and z lie in the same layer xc,1y “ k, the
last inequality is equivalent to (interpreting indices modulo n)

zn`j´0T0pcq ` zn`j´1T1pcq ` . . .` zn`j´pn´1qTn´1pcq ` 1 ă 0.

Informally, we may say that for at least one permutation of subscripts, we have

z0T0pcq ` z1T1pcq ` . . .` zn´1Tn´1pcq ` 1 ă 0. (13)

It should be mentioned that, for almost all z P Zn the constraint xz, T pcqy ă 0
is nonlinear and non-convex with respect to c.

Define

Hpzq “ z0T0pcq ` z1T1pcq ` . . .` zn´1Tn´1pcq ` 1,

so that Hpzq “ 0 is the equation of a hyperplane in Rn with non-zero nor-
mal vector pT0pcq, T1pcq, . . . , Tn´1pcqq which is perpendicular to the fixed space
(Lemma 3.5). (If all Tjpcq “ 0, then pT pcq in Lemma 3.3 is a multiple of 1. But
this makes Cirpcq´1 non-invertible). More precisely, c P Zn

pkq
is a core point if

for all integer points z P Zn
pkq

there is an index j P rns such that Hpσjpzqq ă 0.
Suppose Q is the orbit polytope of a non-core point and R is the orbit

polytope of a universal core point in the same layer. Intuitively, we expect that
many integer points whose orbit polytope contains Q, also have orbit polytope
containing R. The idea for making new constraints is to remove from the feasible
region all integer points whose orbit polytopes contain atoms or universal core
points. This process can be done by searching layer by layer in the feasible
region.

10

x∗

layer llayer l′ = knlayer l − n

barycenter = k1

FixR(G) = span(1)

Figure 1: Illustrating the proof of Lemma 3.9.

Lemma 3.8. For two co-projective integer points c,c1 P Zn we have

Tjpcq “ Tjpc1q for all j “ 0, . . . , n´ 1.

Moreover, the constraints (13) are invariant under translation in the fixed space.
That is, if z and z1 are two co-projective integer points in the same non-zero
layers as c and c1 respectively, we have

xz, T pcqy “ xz1, T pc1qy.

Proof. Recall from Definition 2.6 that c1 “ c ` k1 for some k P Z. Since 1 is
orthogonal to the other eigenvectors ym, m “ 1, . . . , n´ 1, we have

ψm “
?
nxc, ymy “

?
nxc` k1, ymy “

?
nxc1, ymy

“ ψ1
m @m “ 1, . . . , n´ 1

ψ0 “ xc,1y, ψ1
0 “ xc1,1y “ xc,1y ` xk1,1y .

Furthermore Cirpcq and Cirpc1q have different inverses. But by Lemma 3.3
Tjpcq “

řn´1
m“1 w

´jm
n ψ´1

m . Since ψm “ ψ1
m we get Tjpcq “ Tjpc1q, j “ 0, . . . , n´

1. Now let z P Zn and z1 “ z` k1 be in the same layers as c and c1 respectively.
With the help of Lemma 3.5 we have

nxz, T pcqy “ z0T0pcq ` z1Tn´1pcq ` ¨ ¨ ¨ ` zn´1T1pcq ` 1

“ z0T0pcq ` ¨ ¨ ¨ ` zn´1T1pcq ` kpT0pcq ` ¨ ¨ ¨ ` Tn´1pcqq ` 1

“ pz0 ` kqT0pcq ` pz1 ` kqTn´1pcq ` ¨ ¨ ¨ ` pzn´1 ` kqT1pcq ` 1

“ z1
0T0pcq ` z1

1Tn´1pcq ` ¨ ¨ ¨ ` z1
n´1T1pcq ` 1 “ nxz1, T pc1qy .

The main idea of our algorithm for the transitive case (all variables active)
is as follows.

11

Lemma 3.9. Let P be an integer linear maximization problem with n variables,
objective function fpxq “ x1, xy and transitive symmetry group G. Let the LP
relaxation of P have feasible region R and optimal solution x˚. Let Pj be
the integer feasibility problem obtained by intersecting R with layer j. Let
l “ tfpx˚qu. Define F “ tl ´ n ă j ď l | Pj is feasibleu. If F is empty, then P
is infeasible; otherwise the optimal solution is in layer k “ maxpF q.

Proof. In the following discussion, we use above and below to refer to the natural
ordering of layers by index. Since we assume G acts by permuting coordinates,
there is no real loss of generality in fixing the objective function to fpxq “ x1, xy.
As we already observed, since G is transitive FixRpGq “ Spanp1q. It is clear
that layer l is the highest layer which could intersect R; furthermore if F is non-
empty the optimal solution of P must lie in the highest layer with non-empty
intersection with R. Suppose F is empty, so no layer above l ´ n is feasible.

Define the orbit-barycenter bpxq for x P Rn as

bpxq “
1

|G|

ÿ

gPG

gx.

Note that this point lies in FixRpGq and x1, xy “ x1, bpxqy; furthermore if x P R
then bpxq P R. This allows us to assume w.l.o.g. that x˚ P FixRpGq.

There exists integer k satisfying l´n ă l1 “ kn ď l. The integer point k1 is
the unique intersection of layer l1 and FixZpGq, so since Pl1 is infeasible, R does
not intersect layer l1. Convexity then tells us that no layer below l1 intersects R
(as the segment of FixRpGq between such a layer and x˚ goes through k1).

Note that in order to check if an integer point c P Zn
pkq

is a core point or not it
is impossible to add constraints of the form of (13) for all z P Zn

pkq
because there

are infinitely many integer points in each layer. But we can add constraints for
a finite subset of integer points in Zn

pkq
. As mentioned earlier, it makes sense to

choose atom points and universal core points since they are the closest integer
points to the barycenter. For this finite set we have the following definition.

Definition 3.10. In each layer k, any choice of set of atoms and universal core
points for making inequalities (13) is called an essential set of the layer k and
is denoted by Ek.

Note that since vectors in t0, 1un are core points, a non-empty choice of
essential set always exists.

Definition 3.11. We say that layers l and l1 in Zn are congruent if l ” l1

pmod nq.

Lemma 3.5 plays an important role in defining the specific essential set for
any layer.

12

Remark 3.12. We can translate each integer point z P Ek through the fixed
space to get an integer point with entries in t´1,´2, 0, 1, 2u and use inequal-
ity (13), which can be written as

1 ` xz, pT0pcq, Tn´1pcq, . . . , T1pcqqy ă 0. (14)

Since T0pcq ` T1pcq ` . . . ` Tn´1pcq “ 0, the inequality (14) holds for both or
neither co-projective points z, z1 in congruent layers.

For example, for an ILP in R6, we can define an essential set in layer 21 by:

E21 “ tp4, 4, 4, 3, 3, 3q, p4, 3, 4, 4, 3, 3q, p4, 3, 4, 3, 4, 3q, p5, 3, 4, 3, 3, 3qu.

The corresponding constraint for z “ p4, 4, 4, 3, 3, 3q is

1 ` 4T0pcq ` 4T5pcq ` 4T4pcq ` 3T3pcq ` 3T2pcq ` 3T1pcq ă 0. (15)

Since by Lemma 3.5 we have T0pcq ` T1pcq ` T2pcq ` T3pcq ` T4pcq ` T5pcq “ 0,
inequality (15) can be written as

1 ` T0pcq ` T5pcq ` T4pcq ă 0.

Furthermore, we can define the essential set as follows and use inequality (14)
for making new constraints.

E3 “ tp1, 1, 1, 0, 0, 0q, p1, 0, 1, 1, 0, 0q, p1, 0, 1, 0, 1, 0q, p2, 0, 1, 0, 0, 0qu.

If we consider layers 1, . . . , n as representatives for all congruence classes, we
can define the essential set for layers 1, . . . , n and use universal or atom points
with entries t´2,´1, 0, 1, 2u.

Definition 3.13. The essential set in any layers 1, . . . , n is called the projected
essential set and it is denoted by pEk for k “ 1, . . . , n.

The idea is that first we search for integer points whose circulant matrix is
singular. Next we consider the case where the circulant matrix is non-singular:
by adding new constraints in each layer k we search for an integer point c
whose orbit polytope does not contain the integer points of the essential set Ek.
Since Cirpcq is non-singular in this step, we add the following constraints (cf.
Theorem 3.4 and (7), (8)):

xVm, cy
2 ` xUm, cy

2 ą 0 @m “ 1, . . . , rpn´ 1q{2s. (16)

We will present variations on this idea for different kinds of symmetry groups. In
all of these variations there are three different types of subproblems as follows:

(Q1) Add constraints (13) and (16) for each point in the projected essential set.

(Q2) Add constraints (9) and (10) for the case of singular circulant matrices.

13

Algorithm 1 Maximize with all variables active
Input Maximization ILP P with bounded relaxation, transitive symmetry

group, and objective function f .
Output Optimal objective value, or ´8 if infeasible.

1: Construct and solve a subproblem P0 of type Q2 by adding constraints (9)
and (10) to P .

2: If P0 has integer optimal solution pz1, set f1 “ fppz1q otherwise set f1 “ ´8.
3: Solve the LP relaxation of P , let x˚ be the optimal solution and let l “

tfpx˚qu, l1 “ tl{nun (cf. Figure 1).
4: for i “ l down to l1 ` 1 do
5: for j “ 1, . . . ,mi do
6: Construct and solve subproblem P j

i of type Q3 for checking the fea-
sibility of zj P Ei “ tz1, . . . , zmiu. Ź Unprojected essential set.

7: if P j
i has integer feasible solution pz2 then

8: return maxtf1, fppz2qu

9: Construct and solve a subproblem Pi of type Q1 by adding con-
straints (13) for each zj P pEi along with constraints (16) for 0 ď m ď

rpn´ 1q{2s. Ź Projected essential set
10: if Pi has integer feasible solution pz3 then
11: return maxtf1, fppz3qu

12: return ´8

(Q3) Check the feasibility of integer points in the essential sets. For Algorithm 1
they can be tested individually, for Algorithms 2 and 3 see Remark 4.5.

Algorithm 1 follows the proof of Lemma 3.9 for the case where all variables
are active. Here are some observations related to Algorithm 1:

1. It is enough to make just λ0 negative (see (12)), because if for a core point
c, λ0 is not negative, there is a permutation of c that has negative λ0.

2. There might be some non-core integer points which satisfy constraints (13)
for the given essential set.

3. By Lemma 3.5, in each layer L we need at most rpn´ 1q{2s terms Tk, to
make constraints (13). For example if n “ 6, in layer 5 for universal core
point p1, 1, 1, 1, 1, 0q we can use 1´ T5 ă 0 rather than 1` T0 ` T1 ` T2 `

T3 ` T4 ă 0.

The subproblems in steps 1 and 9 of Algorithm 1 are NP-hard, so there are no
known worst case efficient algorithms. On the other hand, the cost of generating
constraints, solving the LPs, and testing points for feasibility is all negligible.
Actually, solving a symmetric LP can be done faster since it is enough to search
through the fixed space (cf. [2, Theorem 1]). Since adding new constraints in

14

steps 1 and 9 creates a nonlinear and non-convex mixed integer program, we
should use a solver that can handle these constraints. In theory solving a non-
linear integer program is harder than the linear one, but in practice we see that
(cf. Section 7), decreasing the feasible region by adding our constraints make
it worthwhile to do so. It should also be mentioned that there is a trade off
between the number of integer points in the essential set and running time of
solving an ILP. Adding too many constraints might make the problem hard
to solve. Some universal or atom points might be more effective for a specific
problem. However, in our experiments there is no significant difference between
different selected integer points in the essential sets. We summarize this discus-
sion as follows.

Remark 3.14.

1. The main cost of Algorithm 1 is in steps 1 and 9 where nonlinear integer
programs must be solved.

2. The choice of essential set (as long as not too large) seems not to have a
large impact.

3.3 Example: solving a symmetric ILP with Algorithm 1
In this section, we illustrate using Algorithm 1 to solve a small ILP. Each of
the subproblems discussed here is solved on commodity hardware in at most
two seconds using Knitro [3]; for more details on the experimental setup see
Section 7. The integer linear program P1 with cyclic symmetry group C5 is
defined [11] as follows.

minimize x0 ` x1 ` x2 ` x3 ` x4

subj. to
515161x0 ` 18376x1 ´ 503804x2 ´ 329744x3 ` 300011x4 ď 60

300011x0 ` 515161x1 ` 18376x2 ´ 503804x3 ´ 329744x4 ď 60

´329744x0 ` 300011x1 ` 515161x2 ` 18376x3 ´ 503804x4 ď 60

´503804x0 ´ 329744x1 ` 300011x2 ` 515161x3 ` 18376x4 ď 60

515161x4 ` 18376x0 ´ 503804x1 ´ 329744x2 ` 300011x3 ď 60

x0 ` x1 ` x2 ` x3 ` x4 “ 2

x0, x1, x2, x3, x4 P Z

The group C5 has a 1-dimensional fixed space generated by 1 “ p1, 1, 1, 1, 1q

and two 2-dimensional real invariant subspaces tV1, U1u and tV2, U2u where

V1 “ p1, cosp
´2π

5
q, cosp

´4π

5
q, cosp

´6π

5
q, cosp

´8π

5
qq ,

V2 “ p1, cosp
´4π

5
q, cosp

´8π

5
q, cosp

´12π

5
q, cosp

´16π

5
qq ,

U1 “ p0, sinp
´2π

5
q, sinp

´4π

5
q, sinp

´6π

5
q, sinp

´8π

5
qq ,

15

U2 “ p0, sinp
´4π

5
q, sinp

´8π

5
q, sinp

´12π

5
q, sinp

´16π

5
qq .

Now if c “ pc0, c1, c2, c3, c4q is an integer solution of the above ILP then the
corresponding Ti in Theorem 3.4 are as below:

T0 “
xV1, cy

xV1, cy2 ` xU1, cy2
`

xV2, cy

xV2, cy2 ` xU2, cy2
,

T1 “
xσ´1pV1q, cy

xV1, cy2 ` xU1, cy2
`

xσ´1pV2q, cy

xV2, cy2 ` xU2, cy2
,

T2 “
xσ´2pV1q, cy

xV1, cy2 ` xU1, cy2
`

xσ´2pV2q, cy

xV2, cy2 ` xU2, cy2
,

T3 “
xσ´3pV1q, cy

xV1, cy2 ` xU1, cy2
`

xσ´3pV2q, cy

xV2, cy2 ` xU2, cy2
,

T4 “
xσ´4pV1q, cy

xV1, cy2 ` xU1, cy2
`

xσ´4pV2q, cy

xV2, cy2 ` xU2, cy2
.

Since all variables are active we can use Algorithm 1 to solve the problem. Note
that since the problem is in layer 2, we do not need to solve an LP relaxation
problem to determine layers.

First we choose the essential set in layer 2 as E2 “ tp1, 1, 0, 0, 0qu. By adding
the following nonlinear constraint,

1 ` T0pcq ` T1pcq ă 0,

we quickly (via Knitro) see the subproblem is infeasible. Checking the feasibility
of (1,1,0,0,0) is trivial. By adding the following constraints (see (9) and (10))
we check if there is an integer solution that has a singular circulant matrix.

xV1, cy
2 ` xU1, cy

2 ď r1pxV1, cy
2 ` xU1, cy

2q

xV2, cy
2 ` xU2, cy

2 ď r2pxV2, cy
2 ` xU2, cy

2q

´2r3 ď c0 ` c1 ` c2 ` c3 ` c4 ď 2r3

r1 ` r2 ` r3 ď 2

The final subproblem was also solved quickly by Knitro, and no integer solution
was found.

4 Partial-Circulant Matrices
In the previous section we assumed that the order of the cyclic permutation
group of an ILP was equal to the dimension of the problem. In this section,
we generalize the algorithm of the previous section for some ILP where not all
variables are active.

For the remainder of this section, we denote by xp1q the coordinates of x
that are active in the cyclic group Ck. We extend this notation below to direct

16

products of several cyclic groups. Without loss of generality, assume xp1q is
the first k ă n coordinates of x. Notice that in this case the group action is
not transitive. Indeed, the dimension of the fixed space is n ´ k ` 1 and it
is spanned by the orthogonal vectors e0 ` ¨ ¨ ¨ ` ek´1, ek, . . . , en´1 (using the
usual basis vectors). Moreover, invariant subspaces of the action of Ck on Rk

embed naturally into invariant subspaces for the action of Ck on Rn. The
following definition is a generalization of the circulant matrix that will be useful
in generalizing the constraints of the previous section.

Definition 4.1. For c P Rn, an n ˆ k Partial-Circulant Matrix, PCirpcq, is a
matrix where the first k rows are Cirpcp1qq and the remaining rows are 1T scaled
by the last n´ k elements of c.

Example 4.2. Let c “ p1, 2, 3, 4, 5q P Z5. Then the 5 ˆ 3 partial circulant
matrix of c takes the following form

»

—

—

—

—

–

1 3 2
2 1 3
3 2 1
4 4 4
5 5 5

fi

ffi

ffi

ffi

ffi

fl

.

Let c P Zn and suppose the circulant part of PCirpcq is invertible. Then the
orbit polytope of c has dimension k ´ 1 and any point x P Rn in convpGcq can
be written as

PCirpcqnˆkλ “ x for some λ P Rk. (17)

The rank of this partial-circulant matrix is k and so the solution λ of the sys-
tem (17) can be determined by the circulant part.

Suppose the permutation g P Sn factors as the product g “ h1 ¨ h2 ¨ ¨ ¨hd
of disjoint cycles hj . Let X1, . . . , Xd be the canonically associated subspaces
of Rn. Thus the cyclic group Hj “ xhjy permutes standard basis vectors for
Xj . Furthermore, each integer point z P Zn has a unique decomposition z “

‘d
j“1zpjq with zpjq P Xj X Zn. Keeping this notation, we have that the next

lemma follows from the definition of a convex combination.

Lemma 4.3. Suppose G “ xgy ď Sn, where g “ h1 ¨ h2 ¨ ¨ ¨hd, is a product of
disjoint cycles. Let c P Zn. If the integer point z “ ‘d

j“1zpjq is in convpGcq,
then for j P 1, . . . , d, we have zpjq in the orbit polytope of cpjq under Hj.

In this section we are only need the restricted case of d “ 1 of Lemma 4.3:
if the orbit polytope of cp1q “ pc0, . . . , ck´1q in Zk is lattice-free then c “

pc0, . . . , cn´1q is a core point in Zn. Moreover, since the sum of weights is 1 in
a convex combination, if z P Zn is in convpGcq then zk`1 “ ck`1, …, zn “ cn.
Furthermore, applying inequality (13), if z does not lie in convpGcq, then for at
least one cyclic permutation of zp1q the following constraint must be satisfied

z0T0pcq ` z1Tk´1pcq ` . . .` zk´1T1pcq ` 1 ă 0. (18)

17

Recall that the above constraint is nonlinear and non-convex with respect to c.
For a given symmetric (maximization) ILP where not all variables are active

in the cycle, let the optimal solution of its relaxation be x˚. In this case the
symmetry group does not act transitively. So, searching in k layers is not
sufficient and the optimal objective value can be in any layer less than or equal
to tfpx˚qu. Nonetheless we can define a finite set of subproblems where we can
apply the constraints developed in Section 3. In the following discussion, we use
sub-layer j to refer to the set of integer points whose first k coordinates sum
to j.

Lemma 4.4. Given an ILP P with a cyclic symmetry group G “ xp1, 2, . . . , kqy ď

Sn acting on the first k coordinates,

1. P can be solved by solving k subproblems created by adding the constraint

k´1
ÿ

j“0

xj “ i pmod kq for i P t1 . . . ku . (19)

2. We can use the constraints (13) in each subproblem.

3. Each of the subproblems can be modelled by adding a single integer variable
and a single integer linear constraint to P .

Proof. Let L “ l` l˚ be the layer of an integer point z P Zn in P where l is the
layer of active variables and l˚ is the layer of non-active variables. The point z
must fall into one of the k congruence classes defined by (19), which establishes
the first point.

By Lemma 3.8 all congruent sub-layers l have the same constraints for co-
projective integer points (see Definition 2.6 and Definition 3.11). Indeed congru-
ence is not needed here, only that co-projective points form equivalence classes
for (13).

Although the constraint (19) is nonlinear, it is easy to model using integer-
linear constraints. Consider the congruence relation between layers (see Defini-
tion 3.11). Let i “ 1, . . . , k be the representative of each class. Let qi, be an
integer solver variable. Constraint (19) can be reformulated as

k´1
ÿ

j“0

xj “ qik ` i .

Algorithm 1 in the previous section can be modified in this case as Algo-
rithm 2 below. The difference is we should check sub-layers li “ qik ` i where
q1, . . . , qk are some new integer variables (rather than a fixed layer). For exam-
ple, if k “ 3, then all layers in Z3 can be classified as

l1 “ 3q1 ` 1, l2 “ 3q2 ` 2, or l3 “ 3q3 ` 3.

Note that since the algorithm for this case is not searching layer by layer, check-
ing the feasibility of integer points in the essential set is different. In other

18

words, we know the layers of points we have (since by Remark 3.12 the integer
points in each projected essential set are in the layers 1, . . . , k) but they are
only representatives for (many) pre-images, and we don’t know the layers of the
pre-images. If zp1q “ σipcp1qq then the solution of Cirpcp1qqλ “ zp1q is ea, that
is:

λa “ 1, λi “ 0 @i “ 0, . . . , k ´ 1, i ‰ a,

where a P t0, . . . , k ´ 1u. Furthermore, by Theorem 3.4, to check if at least one
of the pre-images of zp1q in the projected essential set is a feasible point or not,
for a “ 0, we can add the following constraints:

xσ0pzp1qq, T pcp1qqy “ 1,

xσ1pzp1qq, T pcp1qqy “ 0,

...
xσk´1pzp1qq, T pcp1qqy “ 0.

Remark 4.5. Since the coordinates of integer points in the projected essential
set are 0,1,-1,2,-2, another way to check the feasibility of all translates along
the fixed space (which uses only linear constraints with small coefficients) is to
chose one of the coordinates ci as a base and write other coordinates with respect
to that coordinate.

For example if z “ p1,´2, 0, 0, 0, 0, 0q P pE1, then by choosing c2 as a base
we can add the following constraints to check the feasibility of all integer points
p1,´2, 0, 0, 0, 0, 0q ` tp1, 1, 1, 1, 1, 1, 1q, t P Z, in the sub-layers 7t` 1 :

c0 “ c2 ` 1,

c1 “ c2 ´ 2,

c3 “ c2,

c4 “ c2,

c5 “ c2,

c6 “ c2 .

Algorithm 2 on the next page generalizes Algorithm 1 to the case where
k ă n coordinates are active in the symmetry group. For conciseness, we write
OPT8pP q for the optimal objective value of maximization problem P . If P is
infeasible, OPT8pP q is defined as ´8. In practice this can be implemented by
a Boolean flag, and does not require any specialized arithmetic.

As discussed in Remark 3.14, giving precise complexity bounds for Algo-
rithm 2 is difficult. But it is worthwhile to compare the complexity of Algo-
rithm 1 and Algorithm 2. In step 1 of of both algorithms the same constraints
are used but the difference is that, in the second algorithm there are some
non-active coordinates. So the subproblem in this case is harder to solve since

19

Algorithm 2 Maximize with first k variables active.
Input Maximization ILP P with bounded relaxation, cyclic symmetry group

acting on the first k coordinates, and objective function f .
Output Optimum objective value, or ´8 if P is infeasible.

1: Construct and solve a subproblem P0 of type Q2 by adding constraints (9)
and (10) to P . Set f˚ to OPT8pP0q.

2: for i “ 1 . . . k do
3: Construct a subproblem Li by adding constraint

řk´1
j“0 xj “ qik`i where

qi is a new integer variable.
4: Choose projected essential set pEi “ tz1, . . . , zmiu.
5: for j “ 1, . . . ,mi do
6: Construct and solve subproblem P j

i of type Q3 by adding constraints
described in Remark 4.5 to Li for point in zj P pEi

7: f˚ Ð maxtf˚,OPT8pP j
i qu.

8: Construct a subproblem Pi of type Q1 by adding to Li constraint (16)
for all m “ 0, . . . , rpn´ 1q{2s and constraints (13) for each zj P pEi.

9: f˚ Ð maxtf˚,OPT8pPiqu.

10: return f˚

constraints are effective on a small dimension of the problem. The type of con-
straints in step 8 of Algorithm 2 and step 9 of Algorithm 1 is the same but
there are two differences: 1) less coordinates are again active in the second al-
gorithm, and 2) in the first algorithm in each subproblem is in a single layer,
but in the second algorithm in each subproblem is solved over an equivalence
class of sub-layers. Both of these factors make the type Q1 subproblems harder
to solve in Algorithm 2. The other important fact is that, in the first algorithm
since we are searching layer by layer, the first integer solution (if there is any)
is an optimal solution. But in the second algorithm since all coordinates are
not active if an integer solution is found it might not be optimal. On the other
hand, when using Algorithm 2 for feasibility problems the subproblems can also
be solved as feasibility problems, using local solvers if desired. Finally, checking
the feasibility of universal and atom core points in these two algorithms is done
differently. In the first algorithm in each subproblem, it is just testing an integer
point against a set of linear inequalities. But in the second algorithm since not
all coordinates are active, in each subproblem an ILP should be solved after
adding constraints described in Remark 4.5.

20

5 New Constraints for Direct Products of Cyclic
Groups

Lemma 4.4 shows that Algorithm 2 can be used for a cyclic subgroup of the
symmetric group of an ILP. In some cases the cyclic subgroup is small and
Algorithms 1 and 2 are not very practical. In this section we generalize Algo-
rithm 2 for direct products of cyclic groups. Like Algorithm 2, the algorithm in
this section also does not search layer by layer in the feasible region. Instead,
we search in all equivalence classes of sub-layers.

Recall that the Cartesian product of the d sets X1, . . . , Xd is

X1 ˆ . . . ˆXd “

d
ź

i“1

Xi “ tpx1, . . . , xdq : xi P Xi for every i P t1, . . . , duu.

Definition 5.1. Let Gi, i “ 1, . . . , d be some finite groups. The direct product
G1 ˆ . . . ˆGd is defined as follows.

1. The underlying set is G1 ˆ . . . ˆGd.

2. Multiplication is defined coordinate-wise:

pg1, . . . , gdq ¨ pg1
1, . . . , g

1
dq “ pg1.g

1
1, . . . , gd.g

1
dq.

3. The identity element of this group is defined as pe1, . . . , edq where ej is the
identity element of Gj for j “ 1, ¨ ¨ ¨ , d.

It is routine to check that with the above operation,
śd

i“1Gi is a group.
Consider a product g “ h1 ¨ h2 ¨ ¨ ¨hd of disjoint cycles in Sn, and let Hi “ xhiy.

Lemma 5.2. The direct product G “ H1 ˆ ¨ ¨ ¨ ˆ Hd is isomorphic to G1 “

xh1, . . . , hdy.

Proof. Let gi “ htii denote a general element of the cyclic group Hi. Consider
the following map between G and G1

φ : G Ñ G1

pg1, . . . , gdq Ñ g1g2 ¨ ¨ ¨ gd,

It is straightforward to check φ is a bijection since the cycles are disjoint (gi’s
commute since the hi’s are disjoint). Also we have

φppg1, . . . , gdq ¨ pg1
1, . . . , g

1
dqq “ φpg1g

1
1, . . . , gdg

1
dq “ g1g

1
1 . . . gdg

1
d “

g1 . . . gdg
1
1 . . . g

1
d “ φpg1, . . . , gdqφpg1

1, . . . , g
1
dq.

So φ is a group isomorphism. Note that the second to last equality holds since
the cycles are disjoint.

21

Example 5.3. The permutation group G “ xp1, 2, 3, 4q, p5, 6, 7qy on the set
t1, 2, 3, 4, 5, 6, 7u is isomorphic to the direct product of two cyclic groups H1 “

xp1, 2, 3, 4qy and H2 “ xp5, 6, 7qy

In this section we denote by zpiq the coordinates of z that are active in the
i-th cyclic group in the direct product H1 ˆ . . . ˆHd.

The following theorem states that if a permutation group G ď Sn is a direct
product of other permutation groups Gi, (that is, permutation groups Gi acting
on disjoint subsets of coordinates in the usual way), then the core set of G is
also a Cartesian product.

Theorem 5.4. [8, Theorem 8] Let G “
śd

i“1G
i, Gi ď Sn. Then

corepGq “

d
ź

i“1

corepGiq.

Proof. The product structure of G induces a decomposition of Rn into a Carte-
sian product of pairwise orthogonal coordinate subspaces ‘d

i“1Xi “ Rn. Thus,
we can write every point z P Rn as z “ ‘d

i“1zpiq. The claim of the theorem
follows immediately from convpGzq “

śd
i“1 convpGi

zpiqq.

We are concerned with various subgroups of the direct product
śd

j“1Hj ,
where the cyclic groups Hj “ xhjy are generated by disjoint cycles h1, . . . , hd
in Sn. Let kj denote the length (period) of the cycle hj . Thus, if g “ h1 ¨ ¨ ¨hd
is the complete factorization of the permutation g P Sn into disjoint (possibly
trivial) cycles, then k1 ` ¨ ¨ ¨ kd “ n.

Note that we can use the same pT pcq as in Lemma 3.3 for each cycle of the
direct product groups. In other words, let c “

Àd
i“1 cpiq P Zn. When required,

we will suppose that the vector c has the property that the matrices Cirpcpjqq

are invertible, 1 ď j ď d. Lemma 3.3 then tells us the corresponding inverse
matrices are Cirp pT pcpjqqq. Then a point x “

Àd
i“1 xpiq P Rn is in convpGcq if

and only if

xp1q “ Cirpcp1qqλ1 ñ λ1 “ Cirp pT pcp1qqqxp1q ,

...

xpdq “ Cirpcpdqqλd ñ λd “ Cirp pT pcpdqqqxpdq .

Furthermore, by Theorem 5.4 we can apply our new constraints on each sub-
space.

We denote by lji the sub-layer of active variables of an integer point in
the j-th cyclic group and in the i-th equivalence class, and denote by pEj

i the
corresponding projected essential set of each sub-layer lji .

Similarly to the previous section, all equivalence classes of all sub-layers must
be checked. By Lemma 3.8, Remark 3.12 and Lemma 5.2, in each cyclic group
Hi we need to search in ki sub-layers. Then there are k1ˆ. . .ˆkd possibilities for

22

sub-layers of an integer point. For example suppose G “ xp1, 2, 3qy ˆ xp4, 5qy ď

S5. Then we have decomposition Zn “ X1 ˆ X2 where zp1q “ pz0, z1, z2q and
zp2q “ pz3, z4q. So we have the following possibilities for sub-layers of a feasible
solution z

l11 “ 3q1 ` 1, l21 “ 2q2 ` 1,

l12 “ 3q1 ` 2, l21 “ 2q2 ` 1,

l13 “ 3q1 ` 3, l21 “ 2q2 ` 1,

l11 “ 3q1 ` 1, l22 “ 2q2 ` 2,

l12 “ 3q1 ` 2, l22 “ 2q2 ` 2,

l13 “ 3q1 ` 3, l22 “ 2q2 ` 2,

where q1 and q2 are arbitrary integers.
Consider a cycle hj . Since its length is kj , a complete set of residues modulo

kj is the set rkjs :“ t1, . . . , kju. We require their Cartesian product

K “ rk1s ˆ . . . ˆ rkds “ tpt1, . . . , tdq : tj P rkjs 1 ď j ď du.

For each element pt1, . . . , tdq of K Ă Zn, a subproblem of type Q1 is solved,
where tj , j “ 1, . . . , d, is the sub-layer of active variables of cycle hj .

Remark 5.5. In the direct product group G “
śd

i“1Hi, each sub-layer has its
own projected essential set. In step 6 of Algorithm 2 the feasibility of pre-images
of integer points of the projected essential sets is checked. In the direct product
case we can check the feasibility of these pre-images corresponding to each cycle
separately. If sj :“

řkj

i“1 | pEj
i |, then

řd
j“1 sj subproblems must be solved.

On the other hand if adding constraints for one cycle is not enough, we can
check for simultaneous feasibility. Let pt1, . . . , tdq P K be a vector of residues
(where K is defined above). Given points zpjq P pEj

tj , j “ 1 . . . d, we can check
simultaneous feasibility of zp1q, . . . , zpdq. In this case, Πd

j“1sj subproblems must
be solved.

For example if G “ C5 ˆ C8 and a universal core point in the projected
essential set pE1

2 is p1, 1, 0, 0, 0q, by Remark 4.5, we add the following constraints
to the problem:

x1 “ x0 ,

x2 “ x0 ´ 1 ,

x3 “ x0 ´ 1 ,

x4 “ x0 ´ 1 .

We can also check all possible combinations of integer points in the projected
essential sets. For example if G “ xp1, 2, 3, 4qyˆxp5, 6, 7qy ď S7 , for l12 and l21 let
pE1
2 “ tp1, 1, 0, 0q, p1, 0, 1, 0qu and pE2

1 “ tp1, 0, 0q, p2,´1, 0qu. Then all possible
combinations of pE1

2 and pE2
1 are as below:

p1, 1, 0, 0, 1, 0, 0q, p1, 1, 0, 0, 2,´1, 0q, p1, 0, 1, 0, 1, 0, 0q, p1, 0, 1, 0, 2,´1, 0q.

23

Now we can generalize Algorithm 2 for direct product groups as shown in
Algorithm 3. For simplicity we present the version which tests the essential
points individually for feasibility; the modification of the loop at step 5 for
simultaneous testing is straightforward.

Algorithm 3 Maximization for ILPs with direct product cyclic symmetry
Input maximization ILP P with symmetry group G “ Πd

j“1Hj , bounded re-
laxation, objective function f .

Output The optimal objective value, or ´8 if P is infeasible.
1: f˚ Ð ´8

2: Let kj be the order of cyclic group Hj .
3: for t “ pt1, . . . , tdq P rk1s ˆ . . . ˆ rkds do
4: Choose projected essential sets pEt “

Ť

t pE1
t1 , . . . ,

pEd
td

u.
5: for z P pEt do
6: Construct and solve subproblem P z

t of type Q3 by adding constraints
described in Remark 4.5 to P for point z.

7: f˚ Ð maxtf˚,OPT8pP z
t qu

Construct and solve a subproblem Pt by adding to P :
8: for a “ 1, . . . , d, do
9: if ta “ ka then

10: Constraints (9) and (10). Ź constraint type Q2.
11: else
12: Constraints (16) for 0 ď m ď rpn´ 1q{2s and constraints (13) for

each z in pEt. Ź constraint type Q1.

13: f˚ Ð maxtf˚,OPT8pPtqu

14: return f˚

Remark 5.6. Compared to Algorithm 2, both the number of subproblems and
their difficulty are potential bottlenecks in Algorithm 3. While the steps are
similar to the Algorithm 2, the running time of each subproblem is longer. In
particular in each subproblem of step 6 we either have constraints acting on a
small set of coordinates (if we check each subgroup individually), or a very large
number of subproblems (if we check for simultaneous feasibility).

6 New Constraints For Permutation Groups
In this section we use Algorithms 3, 2 or 1 for a symmetric ILP with some
permutation group as its symmetry group. First we define subdirect product
groups and then classify the permutation groups with respect to their generators.

24

Definition 6.1. Let H1 and H2 be groups. A subdirect product of H1 and H2

is a subgroup H of the external direct product H1 ˆH2 such that the projection
from H to either direct factor is surjective. In other words, if p1 : H1ˆH2 Ñ H1

is given by ph1, h2q ÞÑ h1 and p2 : H1 ˆ H2 Ñ H2 is given by ph1, h2q ÞÑ h2,
then p1pHq “ H1 and p2pHq “ H2. Subdirect products of more than two groups
are obtained naturally by iterating this construction.

Example 6.2. The group xp1, 2qp3, 4, 5, 6qy is a subdirect product of xp1, 2qy and
xp3, 4, 5, 6qy and is a subgroup of the direct product xp1, 2qy ˆ xp3, 4, 5, 6qy.

Remark 6.3. Suppose g P G ď Sn is factored as a product of disjoint cycles.
These cycles themselves may or may not be elements of G. But Lemma 4.3 shows
that for exploring feasible integer points of a symmetric polyhedron considering
some of the cycles is enough. In other words, we can make our constraints for
a few cycles and keep other variables non-active.

Note that our constraints are still valid for a subdirect product of disjoint
cycles, since in each sub-problem we remove universal or atom points (by gen-
erating constraints from their projections) from the orbit polytope of active
variables of each cycle. So Algorithms 2 and 3 work for this case as well.

Now we classify permutation groups with respect to their generators.

Disjoint Cycles If G is a group generated by disjoint cycles h1, . . . , hd, then
G is the direct product of H1, .., Hd (Lemma 5.2). In this case Algorithm 3 can
be applied.

Example 6.4. The group G “ xp1, 2, 3, 4q, p6, 8, 9q, p5, 7, 12, 11qy is the direct
product of the three cyclic groups H1 “ xp1, 2, 3, 4qy, H2 “ xp6, 8, 9qy, H3 “

xp5, 7, 12, 11qy.

Product of disjoint cycles If the given set of generators of a group G is
a single permutation which is the product of two or more disjoint cycles, then
G is a subdirect product of the corresponding cyclic groups. In this case by
Remark 6.3, Algorithm 3 can be applied.

Example 6.5. The subdirect product group G “ xp1, 2, 5, 3qp6, 10, 11qp9, 7, 12, 8qy

is a subgroup of the direct product of three cyclic groups H1 “ xp1, 2, 5, 3qy,
H2 “ xp6, 10, 11qy, H3 “ xp9, 7, 12, 8qy.

Combination of two of the above cases If the generators of G are products
of various numbers of disjoint cycles, then Algorithm 3 can be applied.

Example 6.6. Let G “ xp1, 2, 3, 4qp5, 6, 12, 13q, p7, 8, 9, 10qy, then G is a sub-
group of the direct product of three cycles H1 “ xp1, 2, 3, 4qy, H2 “ xp5, 6, 12, 13qy,
H3 “ xp7, 8, 9, 10qy.

25

Non-disjoint cycles If the given set of generators of G are not disjoint cycles,
we find a subgroup of G where all generators are disjoint. Then it falls into one
of the previous three cases. Note that for finding the biggest cyclic subgroup
we can find representatives of the conjugacy classes (e.g. by using GAP [6]) and
choose the biggest cycle.

Example 6.7. Let G “ xp1, 2, 3, 4, 5q, p7, 5, 8, 10, 11qp12, 13, 2, 14qy then H1 “

xp1, 14, 12, 13, 2, 3, 4, 8, 10, 11, 7, 5qy is a cyclic subgroup and since 9 and 6 are
fixed, Algorithm 2 can be applied.

7 Computational Experiments
In order to test the efficiency of our algorithms, in this section we create some
symmetric integer linear programs that are hard to solve with standard solvers.
For this purpose, we can use the orbit polytopes of core points. As the orbit
polytope of a core point contains no integer points aside from the vertices, if
we can cut off these vertices then the integer program corresponding to this
polytope will be infeasible.

Infeasible problems are typically hard for branch-and-bound algorithms be-
cause there is no chance of early success. The goal of the integer feasibility
problems is to find an integer point in a polyhedron P or decide that no such
point exists. Aaarden and Lenstra presented some difficult integer feasibility
problems [1, 5] whose relaxations are simplices. Our techniques are not suit-
able for the examples of [1, Table 1] because these simplices lack symmetries
in the sense of Remark 2.2. Symmetric instances are interesting in their own
right because equivalent partial solutions can blow up the branch-and-bound-
tree (cf. [14]). In order to construct symmetric examples that are still integer
infeasible, we start with lattice-free symmetric simplices and cut off the (integer)
vertices; a similar technique is used in [15].

The convex hull of the orbit of a core point under a cyclic group with an
invertible nˆ n circulant matrix is a simplex with dimension n´ 1. We say an
integer point has a globally minimal projection (with respect to some invariant
subspace V) if

}z|V } ď }z1|V } for all z1 P affpGzq
č

Zn.

For a primitive group the following theorem shows that the corresponding orbit
polytope is often a simplex.

Theorem 7.1. [15, Theorem 5.37] Let G ď Sn be primitive and let V ď Rn

be a rational invariant subspace. If e0 “ p1, 0, 0, . . . , 0q has globally minimal
projection onto V , then there are infinitely many core points in layer one. The
corresponding orbit polytopes are simplices.

The groups used for these experiments are the primitive groups with GAP
identifiers p15, 2q, p21, 2q, p45, 1q (all three of them have rational invariant sub-
spaces) along with the cyclic group C5. C5 has only trivial rational invariant

26

Table 1: ILP-feasibility problems.
Name Symmetry group Generators of the group

P1 Cyclic group C5 p1, 2, 3, 4, 5q

P2 Primitive group
(15,2)

p1, 15, 7, 5, 12qp2, 9, 13, 14, 8qp3, 6, 10, 11, 4q,
p1, 4, 5qp2, 8, 10qp3, 12, 15qp6, 13, 11qp7, 9, 14q

P3 Primitive group
(21,2)

p1, 7, 12, 16, 19, 21, 6qp2, 8, 13, 17, 20, 5, 11q¨

p3, 9, 14, 18, 4, 10, 15q,
p4, 6, 5qp9, 11, 10qp13, 15, 14qp16, 18, 17qp19, 20, 21q

P4 Primitive group
(45,1)

p1, 2, 7qp3, 11, 27qp4, 14, 31qp5, 18, 32qp6, 20, 36q¨

p8, 24, 39qp9, 25, 28qp10, 26, 42qp12, 15, 16qp13, 30, 40q¨

p17, 19, 21qp22, 35, 44qp23, 33, 29qp34, 43, 37q¨

p38, 45, 41q, p1, 3, 5, 6, 7, 22, 13, 23qp2, 8, 9, 10q¨

p4, 15, 16, 17, 14, 21, 19, 12q¨

p11, 28, 29, 38, 44, 25, 20, 37q¨

p18, 33, 34, 24, 40, 36, 41, 39q¨

p26, 43, 35, 32, 42, 45, 27, 30q,
p1, 4qp3, 12qp5, 19qp6, 21qp7, 14qp8, 10qp11, 20q¨

p13, 16qp15, 23qp17, 22qp18, 33qp24, 41qp25, 28q¨

p26, 43qp27, 32qp29, 44qp30, 35qp34, 39qp36, 40qp42, 45q

subspaces; it is nonetheless easy to find integer points whose orbit under C5 is a
4-simplex. Table 1 gives more details about symmetry groups of these instances.

As it was mentioned before, these problems are hard to solve with standard
solvers. They take more than 3600 seconds to be solved in Gurobi 8.1, CPLEX
12.10 and GLPK 4.6 on an Intel Core-i5 machine with CPUs at 1.4 GHz and
8 GB RAM. Since adding new constraints creates a nonlinear and non-convex
MILP, we should use a solver that can handle these constraints. We used Knitro
to solve these instances. Knitro has three algorithms for mixed-integer nonlinear
programming (MINLP):

1. Nonlinear branch-and-bound method.

2. A mixed-integer Sequential Quadratic Programming (MISQP) method.

3. The hybrid Quesada-Grossman method (for convex problems).

We used the first method above (branch-and-bound method) to solve these
problems. This method involves solving a relaxed, continuous nonlinear opti-
mization subproblem at every node of the branch-and-bound tree. It can also be
applied to non-convex models. However it is a local solver and hence may some-
times get stuck at integer feasible points that are not globally optimal solutions
when the model is non-convex. In addition, the integrality gap measure may not
be accurate since this measure is based on the assumption that the nonlinear
optimization subproblems are always solved to global optimality (which may
not be the case when the model is non-convex). But local solvers can be used

27

for solving feasibility problems (checking if the problem has a feasible integer
solution or not).

For some instances we used both Algorithms 2 and 3 to compare results. We
solved all of them on an Intel Core-i5 machine with CPUs at 1.4 GHz and 8
GB RAM. As Table 2 shows the total time of Algorithm 2 is less than the total
time of Algorithm 3 in all instances.

Table 2: Total times in seconds and number of subproblems of Algorithm 1, 2
and 3

Name Al Cycle TTs NSP
P1 1 p1, 2, 3, 4, 5q 3.1 3
P2 2 (1,15,7,5,12) 17 11
P2 3 p1, 15, 7, 5, 12q p2, 9, 13, 14, 8q 97 36
P3 2 p1, 7, 12, 16, 19, 21, 6q, 15 14
P4 2 p11, 28, 29, 38, 44, 25, 20, 37q 335 36

P4 3
p11, 28, 29, 38, 44, 25, 20, 37q,
p18, 33, 34, 24, 40, 36, 41, 39q 566 91

Al: Algorithm; NSP: Number of subproblems
TTs: Total time in seconds.

Table 3 shows the total time and number of subproblems of type Q1, Q2

and Q3. The number of subproblems of type Q1 corresponding to cycle hi
in Algorithm 2 is ki (we have to check ki sub-layers) and in Algorithm 3 is
k1 ˆ . . . ˆ kd. The number of subproblems of type Q3 is the total number of
integer points of the projected essential sets. Recall that a projected essential
set contains a small subset of universal or atom points in each layer.

Table 3: Total times in seconds and number of subproblems of type Qj

Name Al
TT(s) of
SP’s Q1

TT(s) of
SP’s Q2

TT(s) of
SP’s Q3 # Q1 # Q2 # Q3

P1 1 1.987 1.113 0.008 1 1 1
P2 2 5 3 9 4 1 6
P2 3 62 20 15 16 8 12
P3 2 10 3 2 6 1 7
P4 2 50 5 280 7 1 28
P4 3 540 23 280 49 14 28

Al: Algorithm; TT(s): Total time in seconds; SP’s : subproblems

As Table 3 shows Algorithm 2 is more efficient for our instances. Algorithm 3
might work better in the case that the symmetry group does not have a cycle
which is big enough to make the problem easier to solve. All of our instances
could be solved by using one cycle. Problem P4 (primitive group 45-2) we used
at most four integer points in each sub-layer in Algorithm 2. For other problems
we used at most two integer points in each sub-layer.

28

8 Conclusions
In this paper we introduced some new techniques for solving symmetric linear
programs based on deriving nonlinear constraints from the symmetry group of
the formulation. Since these constraints depend only on the symmetry group,
the same constraints can be re-used for many problems. The practical benefits
of using a nonlinear solver in order have a smaller search space need more
evaluation, but at least on the artificial instances in Section 7 they show some
promise, allowing the fast solution of instances not solvable within 1 hour on the
same hardware using commercial MILP solvers. We think our methods may be
useful for problems with a large enough cyclic subgroup in their symmetry group,
particularly those where determining integer feasibility is a challenge. From a
theoretical point of view, these techniques show that core point techniques are
not limited to groups where the number of (non-equivalent) core-points is finite.

Acknowledgements
The authors wish to thank two anonymous referees for many helpful suggestions,
including the simplified proof of Lemma 3.5 that is given here. They would also
like to thank Barry Monson, Branimir Ćaćic and Nicholas Touikan for helpful
feedback on earlier versions of the paper.

References
[1] Karen Aardal and Arjen K. Lenstra. Hard equality constrained integer

knapsacks. Math. Oper. Res., 29(3):724–738, 2004.

[2] Richard Bödi, Katrin Herr, and Michael Joswig. Algorithms for highly
symmetric linear and integer programs. Math. Prog., 137(1-2):65–90, 2013.

[3] Richard H Byrd, Jorge Nocedal, and Richard A Waltz. KNITRO: An
integrated package for nonlinear optimization. In Large-scale nonlinear
optimization, pages 35–59. Springer, 2006.

[4] Philip J. Davis. Circulant Matrices. Wiley, New York, 1979.

[5] Liyan Gao and Yin Zhang. Computational experience with Lenstra’s
algorithm. Technical Report TR02-12, Rice University, 2002. https:
//hdl.handle.net/1911/101992.

[6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.11.1, 2021.

[7] Robert M. Gray. Toeplitz and circulant matrices: A review. Foundations
and Trends® in Communications and Information Theory, 2(3):155–239,
2006.

29

[8] Katrin Herr, Thomas Rehn, and Achill Schürmann. Exploiting symmetry in
integer convex optimization using core points. Operations Research Letters,
41(3):298–304, 2013.

[9] Christopher Hojny and Marc E Pfetsch. Polytopes associated with sym-
metry handling. Math. Prog., 175(1-2):197–240, 2019.

[10] Lingchen Huang, Huazi Zhang, Rong Li, Yiqun Ge, and Jun Wang. AI
coding: Learning to construct error correction codes, 2019. Preprint.
https://arxiv.org/abs/1901.05719.

[11] Frieder Ladisch and Achill Schürmann. Equivalence of lattice orbit poly-
topes. SIAM J. Applied Algebra and Geom., 2(2):259–280, 2018.

[12] Sanja Petrovic and Carole Fayad. A genetic algorithm for job shop schedul-
ing with load balancing. In Shichao Zhang and Ray Jarvis, editors, AI 2005:
Advances in Artificial Intelligence, pages 339–348, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[13] Marc Pfetsch. Symmetry handling in MIPs using SCIP. https://www2.
mathematik.tu-darmstadt.de/~pfetsch/symmetries.html, visited July
2020.

[14] Marc E Pfetsch and Thomas Rehn. A computational comparison of sym-
metry handling methods for mixed integer programs. Math. Prog. Comput.,
11(1):37–93, 2019.

[15] Thomas Rehn. Exploring Core Points for Fun and Profit — A Study Of
Lattice-free Orbit Polytopes. PhD thesis, Universität Rostock, 2014.

30

