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A. Matroid polytopes form an intermediate structure useful in
searching for realizable convex spheres. In this article wepresent a class
of self-polar 3-spheres that motivated research in the inductive genera-
tion of matroid polytopes, along with two new methods of generation.

1. I

The study of polyhedra within the framework of oriented matroids has
become a natural approach. Methods for enumerating combinatorial types
of convex polytopes inductively within the Euclidean setting alone have not
been established. In contrast, the oriented matroid concept allows one to
generate matroid polytopes inductively. Matroid polytopes, when not inter-
esting in their own right as topological balls with certain sphere properties,
form an intermediate structure to search for realizable convex spheres. We
provide in this article an interesting class of self-polar 3-spheres that stim-
ulated research in this area. What are effective methods of generating ma-
troid polytopes with prescribed properties? Having in mindopen problems
for which a corresponding solution is still open, we presentthe class of 3-
spheres of Gábor Gévay that were found independently by other authors as
well. We discuss two new algorithmical methods of David Bremner and of
Jürgen Bokowski for generating matroid polytopes that weretested in this
context.

2. S - 3-

Here we describe an infinite series of self-polar polyhedral3-spheres
which were found first by the third author [22], and later, independently,
by others [36, 38].

2.1. Description of the structure. We use two regularn-gons with vertex
setsU = {u1,u2, . . . ,un} andV = {v1,v2, . . . ,vn} lying in two completely or-
thogonal linear 2-subspaces and both located on the unit 3-sphereS3. We
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denote byai, ai andbi
j the midpoints of the line segmentsuiui+1, vivi+1 and

uiv j , respectively. Note that throughout this section, all indices are taken
modulon.

We define convex 3-cells as follows:

• For anyai, i ∈ {1, . . . ,n} and anya j , j ∈ {1, . . . ,n}, we define the con-
vex hull

Pi
j := conv{ai, bi

j , b
i+1
j , b

i+1
j+1, b

i
j+1, a j}.

• For any pair (ai−1,ai), i ∈ {1, . . . ,n}, we define the pyramids

(Pi)1 := conv{ai−1, bi
1, b

i
2, . . . , b

i
n},

(Pi)2 := conv{bi
1, b

i
2, . . . , b

i
n, a

i}.

• For any pair (ai−1,ai), i ∈ {1, . . . ,n}, we define the pyramids

(Pi)1 := conv{ai−1, b
1
i , b

2
i , . . . , b

n
i },

(Pi)2 := conv{b1
i , b

2
i , . . . , b

n
i , ai}.

In addition we define the polyhedraPi := (Pi)1∪ (Pi )2 andPi := (Pi)1∪

(Pi)2.
The convex hullPi

j is a 3-polytope which forms (combinatorially) an oc-
tahedron since its vertices are the midpoints of the 6 edges of the tetrahedron
T(i, i +1, j, j +1) := conv{ui ,ui+1,v j ,v j+1}. The set of all tetrahedraT form
the boundary of thefree sumconv(U ∪V) of convU and convV.

The interiors intPi
j , int(Pk)p, and int(Pl)q, k, l ∈ {1, . . . ,n}, p,q∈ {1,2}, are

pairwise disjoint. E.g. an arbitrary interior point in a pyramid (Pk)p can be
written as a convex combination with at least three non-zerocoefficients for
the pointsbk

s, s∈ {1, . . . ,n}, whereas an interior point ofPi
j cannot have such

a representation. All the 3-dimensional cellsPi
j , Pk andPl form together a

polyhedral 3-sphere with altogether (n+2)n facets. We denote this sphere
by GSn.

In Figures 1 to 4 we have depicted a planar affine projection from 4-space
in the casen= 5. The projection shows, apart from all vertices, in particular
two octahedra,P1

5, P2
5 (Figure 2) and two unions of pyramids (P1)1∪ (P1)2

and (P1)1∪ (P1)2 (Figure 3). For each octahedron four non-adjacent sub-
facets belong to other octahedra, while the other subfacetsbelong to unions
of pyramids (see Figure 4). All 2-faces of a unionPi or Pi are 2-faces of
octahedra. When we project a cellPi , or Pi , radially from the center onto
the boundary of the free sum conv(U ∪V), we see this image as a union of
2n tetrahedra around a vertex of conv(U ∪V).
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F 1. Planar Affine Projection forn= 5.

2.2. Symmetry properties. In what follows we make distinction between
thecombinatorial symmetry groupand thegeometric symmetry groupof a
structure under investigation and we use the notation Aut (.) and Sym(.),
respectively. In general, the former, being the group of combinatorial au-
tomorphisms, may be larger in the sense that it contains a proper subgroup
isomorphic to the latter, which is the group of (Euclidean) isometries leav-
ing the structure invariant.

Just as the starting point for describing the structure ofGSn was the set
U∪V, here we establish first the symmetry properties of conv(U∪V). This
is a 4-polytope which we shall denote byPnn. We describe its symmetry
properties in terms of Coxeter groups.

Since the symmetry group of a regularn-gon isDn, the dihedral group of
order 2n, the symmetry group ofPnn obviously contains the direct product
Dn×Dn as a subgroup. The whole symmetry group Sym(Pnn) is an exten-
sion of this direct product by a transformation of order 2 that interchanges
U andV.

In Coxeter’s notation, we have the following relation, see [15], p. 563:

Dn×Dn � [n] × [n] � [n,2,n] = • • • •
n n

. (1)
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F 2. Planar Affine Projection forn = 5, showing two
octahedral facets

Recall the basic theorem by which the fundamental domain of afinite Cox-
eter group is a spherical simplex (considering its action onthe unit sphere,
see [14], Theorem 11.23). The fundamental tessellation belonging to the
group [n,2,n] is a tessellation onS3 consisting of altogether 4n2 tetrahedra.
We denote it byT . The following properties of the fundamental tetrahe-
dron are encoded in the Coxeter diagram of the group given in (1). It has
two opposite edges of equal length, the degree of which is 2n in the sense
that there are 2n tetrahedra meeting in such an edge. The other four edges
are also equal to each other and are of degree 4. Hence this tetrahedron
is a (spherical)tetragonal disphenoid, i.e. it is bounded by equal isosceles
triangular facets [14]. It is symmetrical by a half-turn̺ about the join of the
midpoints of two opposite edges of degree 4. Thus̺ induces an automor-
phism of the group• • • •

n n
. This automorphism interchanges the

two factors in the direct product.
We obtain a tessellationT ′ on S3 by radially projectingPnn onto this

sphere. SincePnn is a free sum of two regularn-gons, it hasn2 equal
facets. These are tetragonal disphenoids. The (geometric)symmetry of
these disphenoids is preserved through the projection, thusT ′ consists of
n2 disphenoidal tiles. Two opposite edges of such a spherical disphenoid
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F 3. Planar Affine Projection forn = 5, showing two
bipyramid facets

are of degreen, and the four other edges are of degree 4. Furthermore, we
observe the following symmetry properties. In addition to the half-turn of
the type mentioned above, a tetragonal disphenoid has mirror symmetry as
well, with respect to two distinct mirror planes perpendicular to each other.
Each of these planes passes through an edge while dissectingthe opposite
edge (these edges are those that coincide with the bases of the isosceles tri-
angular faces). The two planes thus decompose the disphenoid into 4 equal
smaller disphenoids. Thus we see that each tile ofT ′ contains four of the
tiles ofT . This means thatT can be considered as a refinement ofT ′.

Note, in addition, that the line of intersection of the two mirror planes
serves as an axis of a half-turn to which the larger disphenoid (and hence
the whole tessellationT ′) is symmetrical. The segment of this line within
the disphenoid is thus a common edge of the four smaller disphenoids. We
denote byγ the half-turn of this second type.

Having related to each other the tessellationsT andT ′, it is directly seen
that for a transformation that interchangesU andV the half-turn̺ can be
chosen. Thus we obtained:

Sym(Pnn) � [n,2,n] Y 〈̺〉 (2)
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F 4. Planar Affine Projection forn= 5, showing shared
triangles between facets

for n = 3 and n > 5 (in Coxeter’s notation this is the group [[n,2,n]],
see [15], p. 566). The exceptional case ofn = 4 leads to the vertex set
of a regular 16-cell, whose symmetry group is larger (= [3,3,4]).

As a next step, we construct a variant ofGSn by projecting radially all the
cellsPi

j , Pi andPj ontoS3. We regard the spherical tessellation obtained in

this way as a kind of geometric realization ofGSn. We denote it by÷GSn,
as well as the cells byóPi

j ,
óPi and óPj , respectively. In addition, we denote

the spherical image of the centroid of the cellPi
j by óci

j . We have as well:óui ≡ ui andóvj ≡ v j . Finally, óai , óaj andóbi
j denotes the spherical image ofai,

a j andbi
j , respectively.

Taking into account the description ofGSn given in the preceding sec-
tion, the superposition of÷GSn and óPnn = T

′ shows directly that the geo-
metric symmetry group of÷GSn remains the same as that ofPnn:

Sym(÷GSn) = Sym(óPnn) � Sym(Pnn). (3)

Some properties of this group, which we shall need later as well, are as
follows.
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We establish that the stabilizer subgroups in Sym(÷GSn) are isomorphic
to

(A) • • •
n

= [n,2] � Dnh for óui , óai , óvj and óaj ;

(B) [4,2+] � D2d for óbi
j and óci

j .

(Here we use the standard group notation by Coxeter and Schoenflies re-
spectively, cf. [16], Table 2).

It follows from (A) that both óPi and óPj is a sphericalregular n-gonal
bipyramid, i.e. the spherical version of a 3-polytope that is composedof
two equal right pyramids having a regularn-gonal basis in common. Both
the geometric and combinatorial symmetry group of such a bipyramid is
isomorphic to the given group. This group serves not only as the stabilizer
of the points in question, but also as the stabilizer of the bipyramidal tiles
containing these points in their interior.

Likewise, (B) implies that the stabilizer ofóPi
j must be the given group.

However, the symmetry group of a tile of this type is larger, which is the
consequence of the way as its Euclidean preimage has been constructed
from a tetragonal disphenoid. Namely, this group is isomorphic to [4,2] �
D4h. This means that geometrically it is a (spherical)tetragonal bipyramid.

The casen= 4 is an exception again, in that both types of the cells become
regular octahedra, and we obtain (the sperical image) of theregular 24-cell.

Remark 1. Observe that in this case the construction as we obtain GSn
from Pnn is exactly the construction by which the regular 24-cell is obtained
from the regular 16-cell through truncating its vertices(Cèsaro’s construc-
tion) [14].

Recall that here a symmetry increase occurs, namely [3,3,4]→ [3,4,3].
Finally, we note that÷GSn geometrically realizes its full combinatorial

symmetry, i.e. Sym(÷GSn) � Aut(÷GSn). On the other hand, it is clear that
the combinatorial symmetry is preserved through the projection procedure,
i.e. Aut (÷GSn) � Aut(GSn). Comparing this with (2) and (3), we obtain:

Aut(GSn) � Sym(÷GSn) �

� [n,2,n] Y 〈̺〉 � [[n,2,n]] .
(4)
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2.3. Self-polar-duality. The f -vector ofGSn is easily established as:

f (GSn) = (n2+2n,6n2,6n2,n2+2n) .

We shall see that the symmetry of thef -vector stems in fact from self-
duality. Actually, we prove more, namely, that the geometric realization of
GSn onS3 is self-polar. We are working again in the spherical image÷GSn.

We complete the notation introduced above for certain typesof points as
follows: óci = óui ≡ ui and ócj = óvj ≡ vj . (5)

We note that (A) and (B) in the preceding section justifies thefollowing
assignment of these points, andóci

j as well, as the (spherical) centroid of the
respective bipyramidal tiles:óci ←→ óPi , ócj ←→

óPj , óci
j ←→

óPi
j . (6)

We have seen above thatT ′ is symmetrical to a half-turn about the axis
joining the midpoints of two opposite edges of degreen of any of its tiles.
From the comparison of the two tessellations above, it can beseen that the
same is true forT , concerning the edges of degree 2n. We denote the half-
turn of this latter type byβ.

Consider a tileT′ ∈ T ′ with vertex set{ui ,ui+1,v j ,v j+1}. Let T ∈ T be
a tile contained inT′ such that its vertex set is{ui,óai ,v j ,óaj} = {óci ,óai ,ócj ,óaj}.
Then it is seen that a half-turn of typeβ interchangesóai andóci , likewiseóaj

andócj . This amounts to saying that one apex of then-gonal bipyramidóPi is
interchanged with its centroid, and the same happens withóPj . On the other
hand,óci

j is interchanged withóbi
j , i.e. the centroid ofóPi

j is sent to one of its
basal vertices and vice versa.

In general, we have the following correspondence:óai+k←→ óci−k+n, óa j+ l ←→ óc j− l+n , óci+k
j+ l ←→

óbi−k+n
j− l+n , (7)

k, l ∈ {1, . . . ,n}, that is, the correspondence between the bipyramids and their
vertices established locally extends to the whole structure.

Moreover, again from (A) and (B) in the preceding section follows that
this correspondence induces conjugation between the respective stabilizer
subgroups. This ensures that the bipyramid tiles having a vertex in common
surround it according to exactly the same symmetry as the vertices surround
the centroid of a corresponding bipyramid they belong to.

Thus we have proved:

Theorem 1. ÷GSn is self-polar in the sense that the transformation sending
it to its dual can be realized by an isometry of order 2.
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We note that for convex 3-polytopes the analogous property has been
investigated by Grünbaum et al., who call such a polyhedronharmoniously
self-dual[1].

2.4. A non-realizability result. In this section we investigate whetherGSn
has a polytopal realization with full symmetry. We find that the answer is
negative:

Theorem 2. For n = 3 and n> 5, GSn cannot be realized as a bound-
ary complex of a convex 4-polytopeGSn such that its geometric symmetry
group SymGSn is isomorphic to AutGSn, the automophism group of its face
lattice.

In proving this, we proceed indirectly. Suppose that a polytopal realiza-
tion GSn with full symmetry exists. Hence÷GSn can be considered as the
spherical image of such a polytopeGSn under a radial projection. More-
over, up to isometry,÷GSn is unique in this sense:

Lemma 1. Keeping the geometric symmetry group given in(4) fixed, one
cannot alter the location of the vertices of the tessellation ÷GSn onS3 with-
out changing the action of this group on÷GSn.

Proof. Consider first the set
�óai ,óaj

�� i, j = 1, . . . ,n
©
. As we have seen in the

proof of Theorem 1, cf. the relations (5) and (7), this set is congruent to
the setU ∪V. But is directly seen that the arrangement of the points in
the latter set cannot be altered without changing its symmetry given in (2).
(Equivalently, one may say as well that the convex hull of this set, being
isometric withPnn = conv(U ∪V ), is aperfect polytope[23, 42].)

Secondly, consider the set
�óbi

j
�� i, j = 1, . . . ,n

©
. A point belonging to this

set is located in the midpoint of a spherical line segmentuiv j . Such a line
segment, being part of the intersection of two mirror planesperpendicu-
lar to each other, belongs to an axis of rotation of order four(all is meant
in spherical sense). Hence these points cannot leave such axes, otherwise
their number would be multiplied by 4. Neither can they be shifted within
those line segments out of the midpoint positions. For, as wehave seen
in the preceding section, there are axes of half-turn passing through these
midpoints (such half-turns are the conjugates of̺). So shifting to a neigh-
bouring position would double the number of the points in question. �

This result implies that for reconstructing the polytopeGSn from this
spherical image the only possibility is to locate its vertices along fixed radi-
al straight lines.
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This further implies that the shape of the bipyramid facets of GSn is fixed
as well. This is true for the facets of both type. We see it for the tetragonal
bipyramid facets as follows. Fix the apices of all the facetsso as to coincide
with the pointsóai andóaj . Then take a tetragonal bipyramid facetPi

j , and
consider its centroidci

j . Recall that the symmetry group of a tetragonal
bipyramid is isomorphic to [4,2] � D4h. Then we have the following

Observation 1. Let BPn be an n-gonal bipyramid, i.e. a bipyramid such
that its symmetry group is isomorphic to[n,2] � Dnh. Then its centroid can
be given either as the centroid of its apices or as the centroid of its basal
vertices.

Now having fixed the apices, the only way to change the shape ofthis
bipyramid is shifting its basal vertices along radial straight lines, all to the
same extent. But such a shift would imply that the centroid inthe one sense
were not coinciding any more with the centroid in the other sense, which is
a contradiction.

Thus we have seen that the shape of the tetragonal bipyramid facets of
GSn is uniquely determined.

Take now the other type of facets, which must ben-gonal bipyramids,
with uniquely determined shape as well. Since vertices of such a bipyramid
facet are completely fixed, its centroid is also fixed. Consider, say,óci . Using
Observation 1, we calculate its position in two different ways.

Let U andV be given as

U = {ui | i = 1,2, . . . ,n} =
��

cos
2πi
n
, sin

2πi
n
, 0,0

����� i = 1,2, . . . ,n
�

V = {v j | j = 1,2, . . . ,n} =
��

0,0, cos
2π j
n
, sin

2π j
n

����� j = 1,2, . . . ,n
�
.

(8)

Forai anda j we have:

ai =
1
2

(ui +ui+1) and a j =
1
2

(v j +v j+1) ,

for i, j = 1,2, . . . ,n.
We write an apex of a bipyramid facet ofGSn in the formai = λ0a

i and
aj = λ0a j with someλ0 ∈ R. For convenience, we chooseλ0 = 2, thus we fix
the apices as

ai = ui +ui+1 and aj = v j +v j+1 for i, j = 1,2, . . . ,n. (9)

Forbi
j we have

bi
j =

1
2

(ui +v j).
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A basal vertex of a bipyramid facet ofGSn takes the formb
i
j = λ1b

i
j for

someλ1 ∈ R. We determineλ1 by applying Observation 1 for the tetragonal
bipyramid facets.

Consider the facetPi
j . Its centroidci

j can be given on the one hand as

ci
j =

1
2

�
ai +aj

�
=

1
2

(ui +ui+1+v j +v j+1),

where we applied (9). On the other hand, it can also be given as

ci
j =

1
4

�
b

i
j +b

i+1
j +b

i+1
j+1+b

i
j+1

�
=

1
4
λ1

�
bi

j +bi+1
j +bi+1

j+1+bi
j+1

�
=

1
4
λ1

�
ui +ui+1+v j +v j+1

�
.

The comparison yieldsλ1 = 2. (Note that equality ofλ0 andλ1 is consistent
with the observation thatPi

j is in fact a 3-polytope even inGSn, see Sec-

tion 2.1. ThusóPi
j is just a two times larger homothetic copy ofPi

j .) Hence
we obtain for the basal vertices:

b
i
j = ui +v j . (10)

Now we are ready to calculateóci both from the apices and from the basal
vertices. We denote its value obtained in the two ways by

�óci
�
A and

�óci
�
B ,

respectively. For symmetry reasons it is sufficient to see what happens in
one particularn-gonal bipyramid, thus we choosei = 1. From the corre-
sponding apices we obtain:�óc1

�
A =

1
2

�óan+ óa1
�
=

1
2

(un+2u1+u2)

=
1
2

�
(1,0,0,0)+2

�
cos

2π
n
, sin

2π
n
, 0, 0

�
+

�
cos

4π
n
, sin

4π
n
, 0, 0

��
=

�1
2
+cos

2π
n
+

1
2

cos
4π
n
, sin

2π
n
+

1
2

sin
4π
n
, 0, 0

�
,

and the basal vertices yield:
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�
B =

1
n

nX
j=1

b
1
j =

1
n

nX
j=1

(u1+v j)

=
1
n

nX
j=1

�
cos

2π
n
, sin

2π
n
, cos

2π j
n
, sin

2π j
n

�
=

�
cos

2π
n
, sin

2π
n
, 0, 0

�
,

where for the substitution we used (8), (9) and (10).
Take the norm of these vectors:�óc1

�
A

 = 1+cos
2π
n
,

�óc1
�
B

 = 1. (11)

We see that the equality holds only forn = 4. Forn = 3 andn > 5, how-
ever, we have arrived at a contradiction, and this completesthe proof of
Theorem 2.

The fact that the full combinatorial symmetry group cannot be realized
by affine symmetries of a combinatorially prescribed polytope does not oc-
cur in 3 dimensions [33]. The first observation of this phenomenon in 4
dimensions is due to Bokowski, Ewald, and Kleinschmidt [7].The open
problem of McMullen [6] is of the same kind. Smith Theory implies that in
cases where a complex is not realizable with full symmetry, the realization
space is not contractible.

2.5. Polytopality of GSn. The self-duality ofGSn provides an alternative
way of obtaining it, by starting from a dual polytope and applying a con-
struction that is a dual of ours described above. We exemplify this through
a historically interesting instance. Recall that the regular 24-cell can be
constructed not only by Cèsaro’s method but byGosset’s constructionas
well: in contrast to Cèsaro, who cuts pyramids from the corners of the reg-
ular 16-cell, Gosset, dually, erects pyramids on the facetsof the 4-cube (cf.
Remark 1 above and Coxeter [14], p. 150). (A closely related but a much
simpler example in dimension 3 is the way as therhombic dodecahedronis
constructed from the cube [14], p. 26).)

More generally, instead of thefree sumof two regularn-gons ofequal
size, one can start from theproduct Cm×Cn of two regular polygons such
that neither their size nor the number of their sides is not necessarily equal.
We denote this 4-polytope, which is the dual of ourPnn above form= n, by
Qmn. Now apply a method, which is called anE-construction, performed
in two steps as follows:
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(1) stellarly subdivide all facets ofQmn,
(2) merge facets of the subdivision sharing a 2-face ofQmn.

The E-construction was introduced by Eppstein, Kuperberg and Ziegler
in 2003 in order to obtain 2-simple, 2-simplicial 4-polytopes [18]. It was
soon extended to arbitrary dimensions and to spheres and lattices by Paf-
fenholz and Ziegler [38]. In this line of research, which is independent of
ours, it turned out that theE-construction yieldsGSn as a special case, as
we just outlined [46].

For arbitrarym,n> 3, denote the correspondingCW-spheres that theE-
construction yields byE(Qmn). In [46] Ziegler has given a proof that they
are combinatorially self-dual (his proof and our proof for Theorem 1 above
closely resemble, necessarily, each other; cf. Theorem 4.1in [36]).

In this more general setting, one can prove the following interesting re-
sult.

Theorem 3. (Paffenholz [36])The CW-spheres E(Qmn) are polytopal for
all m,n> 3.

In the special case
1
m
+

1
n
>

1
2

(12)

the first proof was given by Francisco Santos. It is known froma personal
communication 2003 by him, cited in [36] and [46]. This special case has
been treated also by Ziegler in [46], where he applied a certain general-
ization of the construction given by Santos forE(Q33). Ziegler has given
coordinates here as well.

Andreas Paffenholz in [36] has investigated in detail the polytopal re-
alizations ofE(Qmn). In particular, he proved as well that the projective
realization space ofE(Q33) is at least nine-dimensional and that ofE(Q44)
at least four-dimensional (the latter result implies that the 24-cell is not pro-
jectively unique). He established as well that for all polytopesP realizing
E(Qmn) with relatively primem,n > 5 the combinatorial symmetry group
Aut(P) is greater than the geometric symmetry group Sym(P). More-
over, even the groupZm× Zn, which is always contained as a subgroup
in Aut(P), can be geometrically realized only in the five cases (m,n) =
(3,3), (3,4), (3,5), (4,4), (3,6) allowed by condition (12) (up to interchang-
ing m andn). For further details see the Ph.D. thesis of Paffenholz [37].

3. C -    

The task of finding a matroid polytope consistent with a certain bound-
ary complex can be viewed as a constraint satisfaction problem where the
orientations of bases are the variables, and the constraints are the chirotope
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axioms of oriented matroids (see e.g. [2]), along with certain equations in-
duced by the boundary structure. In the uniform case, this results in a varia-
tion of the well known Boolean Satisfiability (or SAT) problem [21], where
the constraints are the 3-term Grassmann-Plücker relations (which can be
encoded in SAT as ternary exclusive-ors of binary exclusive-ors), along with
the aforementioned equalities (which can be viewed as a certain projection
of the Grassmann-Plücker relations). Although SAT is the canonical NP-
Complete problem, variations on the heuristic backtracking procedure of
Davis-Putnam-Logemann-Loveland (DPLL) [17] have achieved reasonable
success for certain classes of problems. In this subsectionwe describe a
DPLL-like algorithm (and implementation) for the generation of matroid
polytopes in the non-uniform case. This requires the use of athree val-
ued “logic” of signs, and some additional constraints as compared to the
uniform case.

The key idea of our constraint satisfaction algorithm is that of variable
forcing. This is based on the observation that if all but one of the variables in
a disjunction are fixed, and the disjunction is not yet satisfied, then the value
of the last variable is forced. This forcing is known asunit propagationin
the DPLL context. In the constraint satisfaction algorithmimplemented in
nuoms [12] a slightly more general inference system is used, sincefor each
variable we maintain what subset of{−1,0,+1} is still possible; furthermore
the clauses are slightly more complex than disjunctions. Nonetheless it is
possible after setting the value of a variable in a clause to deduce constraints
on the values of the remaining variables (in the best case forcing them to a
particular value). We discuss certain optimizations of thevariable forcing
process after introducing the various types of clauses.

There are four types of constraints used innuoms: the boundary con-
straintsinduced by the boundary complex, theconvexity constraintsto in-
sure no (relative) interior points are present in final result, thematroid con-
straintsthat insure that the basis exchange axiom is not violated, and the
3-term Grassmann-Plückerconstraints. They are checked in this order,
roughly in order of increasing effort. In the uniform case, neither the con-
vexity constraints (implied by the boundary constraints) nor the matroid
constraints (implied by the uniformity condition) are necessary.

The boundary constraints are a set of equalities derived from the input
boundary complex. Each top dimensional setF of the input boundary com-
plex defines afacetof the resulting matroid polytope in the following sense.
In order to avoid interior points, it must be the case that forall boundary
simplices, i.e. (r −1)-setsG⊆ F, for all i, j <G, [Gi] = [G j]. Thus for each
input facet, we derive at leastn− r −1 equalities wherer is the rank andn is
the total number of elements (in general of course many more equalities are
implied by transitivity). It may be desirable to apply a preprocessing step to
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eliminate sign variables using these equalities. In order to support working
with partial and dynamically discovered boundary information (more inter-
esting in the context [13] where the uniform code was developed), we con-
sider a constraint of the form that insists that the signs of bases derived as
single element extensions of boundary simplices aremonotone, i.e. do not
contain both positive and negative signs. For problems currently approach-
able by constraint satisfaction, this constraint, and any forcing of variables,
can be checked very efficiently via the use of bitmasks.

The convexity constraints check a combinatorial analogue of Caratheo-
dory’s theorem for each element. Although in the uniform case it suffices to
establish that each element is contained in some facet, in the non-uniform
case, the lower dimensional structure of the facets can be more complicated,
so some kind of further constraint is necessary. These are again reduced to
checking for each element that a certain set of signs is monotone, and the
implementation is similar to checking the boundary constraints.

In order to simplify checking that the basis exchange axiom is satisfied,
we employ an observation of Guedes de Oliveira (see [2], Ex. 3.21) that in-
stead of checking every pair of non-zero bases, it suffices to know that there
exists some non-zeroroot basis B0 such that for every other basisB′, there
exists a pivot that moves closer toB0. This amounts to computing a span-
ning tree of the graph of all pivots and is much faster, although it requires a
non-zero basis be known. The existence of a non-zero neighbouring basis
to each basis can also be checked in a constant number of operations using
bitmasks.

In general the largest set of constraints is the 3-term Grassmann-Plücker
relations. Since these constraints are so numerous, but on the other hand
involve only six basis signs, we take some care to process them efficiently.
The permissable values are for each variable are stored as a three bit mask,
and the state of a given Grassmann-Plücker relation is then encoded into a
single 18 bit number. A simple (although a bit large) state machine is then
used to decide given the current state, and a new assignment,what is the
new state, and what if anything is forced.

The inductive structure of the algorithm is as follows. Given a partial
chirotope, choose some unoriented basis, and orient it. Find all variables
forced (constrained) by the previously described constraints. If this does
not yield a contradiction, repeat. In order to systematically try all possible
orientations, a stack is used in the manner of the standard depth first search
of a graph. When an unoriented basis is examined, all possible orientations
are pushed onto the stack, and after the program has exploredone setting
in a depth first manner (i.e. tried to either complete a chirotope or derive a
contradiction), it returns to the stack to retrieve the other possibilities.
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Using the software [12] described in this section, we were able to find
several million matroid polytopes consistent with the spheres described in
Section 2 after a computation of only a few seconds on a current desktop
PC.

4. I C  H 

Hyperline arrangements have previously been used by Bokowski and
Guedes de Oliveira [8] to generate uniform oriented matroids (for complete
discussion of hyperline arrangements see [5]). In this section we describe,
via some Haskell [25] code, the generalization to the non-uniform case. In
general a rankr hyperline arrangement onn− 1 elements consists of all
rank 2 contractions of some oriented matroid. Each rank 2 contraction (i.e.
a row in Figure 5) is represented by the contracted elements (△), along with
a hyperline sequence, i.e. an oriented matroid of rank 2 (ω), represented as
a signed permutation. To extend this to ann element oriented matroid, we
need to insert the elementn either into the signed permutation, or, in the
non-uniform case, possibly into the set of contracted elements. In order to
simplify the presentation, we restrict our attention to therank 5 case.

For a hyperline sequence representation of a rank 5 matroid polytope we
can use a special data structure. Our convexity requirementimplies that we
have never three elements within one line. Moreover, each 2-dimensional
affine hull of vertices of a convex polytope is convex again. Thisimplies
that we can assume that each hyperline is that of a planarn-gon. The cor-
responding rank 2 oriented matroid can be descibed via the cyclic order of
these elements. We can store the rank 5 oriented matroid as a list of pairs
of k-gons, withk > 3 depending on the hyperline, together with rank 2 ori-
ented matroids, the hyperline sequences, i.e., rank 2 contractions at these
hyperlines. The latter has a circular structure and we can assume to have
the smallest element with positive sign within their first set. For then-gons
we can also assume that their lists begin with the smallest element of each
n-gon. For one row in the hyperline representation we obtain a5-tuple with
a zero sign when either two elements belong to the same list within the rank
2 oriented matroid or when we can choose four elements withinthe first
component of that row.

4.1. The uniform case. Before delving into the non-uniform case, we first
recall extending a hyperline arrangement by one element in the uniform
case.

4.1.1. The functioninRow in the uniform case.The top level function in
the extension algorithm isinRow. The variablehyprepresents the list of all
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hyperline sequences that we extend row by row. The variableχ represents
the signs of all abstract simplices that we know so far.

inRow:: Int→ Int→ ([(Ngon,OM2)], [Or ])→ [([(Ngon,OM2)], [Or ])]
inRow n row(hyp,χ) =

[((firstRows++ [(△,ext s n pω)] ++ lastRows),newsigns)
| s← [−1,1],p← [1 . . |ω|],
newsigns← let st= [norm(△++ [ω !! ( i −1),s∗n],1) | i← [1 . .p]]
++ [norm(△++ [s∗n,ω !! ( i −1)],1) | i← [(p+1). . |ω|]]
in newOrEmpty nχ st]

where (firstRows, ((△,ω) : lastRows)) = splitAt (row−1) hyp
|ω| = lengthω

For the most part, the notation used by Haskell is standard. We mention
only a few notational aspects here (for further details, seee.g. [25]).

(1) Lists are denoted by [ ], tuples by ()
(2) a++b denotes the concatenation of listsa andb
(3) l !! n denotes itemn in list l
(4) h : t = l denotes the decomposition of listl into first elementh and

remaindert.
We interpret the pair of a list of integers and a sign (where 2 indicates

unknown) as an oriented (abstract) simplex. The functionnormreturns such
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an oriented simplex with positive and sorted elements whereby the sign has
changed accordingly.

norm::OB→OB
norm(tu@(h : rest),s) = normPos(list,s∗signum prod)
where prod= product tu; list =map abs tu

normPos::OB→OB
normPos (tuple@(h : rest),sign)
| rest≡ [ ] = ([h],sign)
| h≡minimum tuple= ([h] ++ fst next,snd next)
| odd(length rest) = normPos(rest++ [h],−sign)
| otherwise= normPos(rest++ [h],sign)

where next= normPos(rest,sign)

Splitting hyp at the positionrow leads to the current row data structure
(△,ω) as the head of the second component of list returned by the function
splitAt. We insert the new signed elements×n in ω by using the function
ext (described below) in all possible ways. The variablest stores the list of
new signs that we know after the insertion has been completedin this row.
We compare the new signed elements×n with all other elements in this row
to obtain new signs of abstract simplices. When we cannot pick newsigns,
we do not get an extension. This occurs when we have a sign contradiction
that will be detected in the functionnewOrEmpty.

newOrEmpty:: Int→ [Or ]→ [(Tu,Or)]→ [[ Or ]]
newOrEmpty nχ [ ] = [χ]
newOrEmpty nχ ((tu,s) : rest)
| e< [s,2] = [ ]
| otherwise= newOrEmpty n newChi rest
where i = head(elemIndices tu(tailTup n))

(a, (e:b)) = splitAt i χ;newChi= a++ [s] ++b

This function compares the preliminary sign listχ with st. Within the list
tupels5 finalN we determine the positioni of the actual tupletu and we find
the corresponding signe. When this signe is different from 2, i.e., it has
been determined, and when it is not equal tos, we obtain a contradiction,
i.e., the result is the empty set. Thus the functioninRowleads to a list of all
extensions within the row under consideration together with new signs that
are compatible with the given sign vector.

The functiontailTup returns all new 5-tuples that occur the first time
when we haven as the new element, i.e., all 5-tuples withn at the end. At
first the signs of all

�n
5

�
signed bases are considered to be unknown, i.e.,

signsprovided such a list with entries 2.
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The details of inserting a signed element into a hyperline sequence are
taken care of by the functionext. It determines for a signs of the new
elementn, its positionp and for the uniform rank 2 contraction along the
hyperline its one element extension.

ext:: Int→ Int→ Int→OM2→OM2
ext s n pω = a++ [[ s∗n]] ++b

where (a,b) = splitAt pω

We do not discuss the frame that is still missing to apply thiskernel struc-
ture inRow repeatedly and that does the next extension when we do not
extend the matroid polytope by just one element.

4.2. The non-uniform case. We now discuss the changes needed to extend
a hyperline configuration in the non-uniform case.

The functioninRownow has two cases, depending on whether we insert
the new element into the hyperlinegon, or into the corresponding rank 2
oriented matroidω.

inRow:: Int→ Int→ ([OM5], [Or ])→ [([ OM5], [Or ])]
inRow n row pair= (inHl n row pair)++ (inOM2 n row pair)

The case of inserting into the rank 2 oriented matroid is analogous to the
uniform case ofinRow, with the distinction that each position may have a
set of elements.

inOM2:: Int→ Int→ ([OM5], [Or ])→ [([ OM5], [Or ])]
inOM2 n row(rows,χ)
= [((firstRows++ [(gon,ext s n p qω)] ++ lastRows),

newOrEmpty nχ (newSigns q gonω))
| s← [−1,1],p← [1 . . |ω|],q← [0,1],

where (firstRows, ((gon,ω) : lastRows)) = splitAt (row−1) rows
|ω| = lengthω;

We omit here basic functionstuples, tuplesL. The functiontuplesreturns
all r-tuples of the list of the firstn natural numbers and the functiontuplesL
returns allr-tuples of any given list of integers.
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newSigns:: Int→ Ngon→OM2→ [(Tu,Or)]
newSigns between gonω
| between≡ 0=

[norm(△++ [ω !! ( i −1),s∗n],1) | i← [1 . .p−1],△← trs]
++ [norm(ω !! (p)++ [ω !! (p),s∗n],0)]
++ [norm(△++ [s∗n,ω !! ( i −1)],1) | i← [p+1. . |ω|],△← trs]
++ [norm(�++ [n],0) | �← tuplesL4 gon]

| between≡ 1=
[norm(△++ [ω !! ( i −1),s∗n],1) | i← [1 . .p],△← trs]
++ [norm(△++ [s∗n,ω !! ( i −1)],1) | i← [p+1. . |ω|],△← trs]
++ [norm(�++ [n],0) | �← tuplesL4 gon]

where
trs= tuplesL3 gon

The functioninHl considers the various ways to insert into the hyperline
(convex polygon).

inHl :: Int→ Int→ ([OM5], [Or ])→ [([ OM5], [Or ])]
inHl n row (rows,χ)
= [((firstRows++ [(take g gon++ [n] ++drop g gon,ω)]
++ lastRows),signs)
| g← [1 . . length gon],
signs← let si= [norm(△++ [ p1, p2 ],1)
| △ ← tuplesL3 (take g gon++ [n] ++drop g gon),
n ∈ △, [ p1, p2 ]← pairsω]
++ [norm(△++ [ p1, p2 ],0)
| △ ← tuplesL3 (take g gon++ [n] ++drop g gon),
n ∈ △,u← [1 . . lengthω],
[ p1, p2 ]← tuplesL2 (ω !! (u−1))]
++ [norm(△++ [n,x],0) | △ ← tuplesL3 gon,

n < △,u← [1 . . lengthω],
x← (ω !! (u−1))++ (gon\\△)]

in newOrEmpty nχ si]
where (firstRows, ((gon,ω) : lastRows)) = splitAt (row−1) rows

pairs::OM2→OM2
pairsω = [[ x,y] | [u,v]← tuples2 (lengthω),

x← ω !! (u−1),y← ω !! (v−1)]

The former functionext has now two cases (specified by the flagq) de-
pending of whether we insert the new element at position p within an al-
ready existing list or as a new single element list between two lists.

ext:: Int→ Int→ Int→ Int→OM2→OM2
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ext s n p qω
| q≡ 0= take(p−1) a++ [(last a)++ [s∗n]] ++b
| q≡ 1= a++ [[ s∗n]] ++b
where (a,b) = splitAt pω

The method of the second author of using his specific SAT solver for
finding matroid polytopes was much faster than the Haskell based algorithm
of the first author. However, different methods cast new light on each other
and facilitate the checking of results.

In this context we mention that Schewe [44] has used successfully ex-
isting SAT solvers different from that of the second author to decide the
embeddability of certain 2-manifolds and the realizability of certain point-
line configurations.
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