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Abstract. We give subquadratic algorithms that, given two necklaces
each with n beads at arbitrary positions, compute the optimal rotation
of the necklaces to best align the beads. Here alignment is measured ac-
cording to the `p norm of the vector of distances between pairs of beads
from opposite necklaces in the best perfect matching. We show surpris-
ingly different results for p = 1, p = 2, and p =∞. For p = 2, we reduce
the problem to standard convolution, while for p = ∞ and p = 1, we
reduce the problem to (min, +) convolution and (median, +) convolu-
tion. Then we solve the latter two convolution problems in subquadratic
time, which are interesting results in their own right. These results shed
some light on the classic sorting X + Y problem, because the convolu-
tions can be viewed as computing order statistics on the antidiagonals
of the X + Y matrix. All of our algorithms run in o(n2) time, whereas
the obvious algorithms for these problems run in Θ(n2) time.

1 Introduction

How should we rotate two necklaces, each with n beads at different locations, to
best align the beads? More precisely, each necklace is represented by a set of n
points on the unit-circumference circle, and the goal is to find rotations of the
? Supported by NSERC.

?? Supported in part by NSF grants CCF-0430849 and OISE-0334653 and by an Alfred
P. Sloan Fellowship.

bremner@unb.ca
tmchan@uwaterloo.ca
edemaine@mit.edu
jeffe@cs.uiuc.edu
Ferran.Hurtado@upc.es
http://john.poly.edu
stefan.langerman@ulb.ac.be
perouz@cs.mcgill.ca


s = 1

c

y0

y1

y2

y3

x0

x1

x3

x2
y0

x0

x3 x2

y1

y2

x1

y3

Fig. 1. An example of necklace alignment: the in-
put (left) and one possible output (right).

necklaces, and a perfect
matching between the
beads of the two necklaces,
that minimizes some norm
of the circular distances
between matched beads.
In particular, the `1 norm
minimizes the average
absolute circular distance
between matched beads,
the `2 norm minimizes the
average squared circular
distance between matched beads, and the `∞ norm minimizes the maximum
circular distance between matched beads. The `1 version of this necklace align-
ment problem was introduced by Toussaint [29] in the context of comparing
rhythms in computational music theory, with possible applications to rhythm
phylogeny [14,30].

Toussaint [29] gave a simple O(n2)-time algorithm for `1 necklace alignment,
and asked whether the problem could be solved in o(n2) time. In this paper,
we solve this open problem by giving o(n2)-time algorithms for `1, `2, and `∞
necklace alignment, in both the standard real RAM model of computation and
the less realistic nonuniform linear decision tree model of computation.

Our approach is based on reducing the necklace alignment problem to an-
other important problem, convolution, for which we also obtain improved al-
gorithms. The (+, ·) convolution of two vectors x = 〈x0, x1, . . . , xn−1〉 and
y = 〈y0, y1, . . . , yn−1〉, is the vector x ∗y = 〈z0, z1, . . . , zn−1〉 where zk =∑k

i=0 xi · yk−i. While any (⊕,�) convolution with specified addition and mul-

tiplication operators (here denoted x
�∗
⊕

y) can be computed in O(n2) time, the

(+, ·) convolution can be computed in O(n lg n) time using the Fast Fourier
Transform [10,21,22], because the Fourier transform converts convolution into
elementwise multiplication. Indeed, fast (+, ·) convolution was one of the early
breakthroughs in algorithms, with applications to polynomial and integer mul-
tiplication [3], batch polynomial evaluation [11, Problem 30-5], 3SUM [15,1],
string matching [17,23,9], matrix multiplication [7], and even juggling [5].

As we show in Theorems 1, 3, and 11, respectively, `2 necklace alignment re-
duces to standard (+, ·) convolution, `∞ necklace alignment reduces to (min,+)
[and (max,+)] convolution, and `1 necklace alignment reduces to (median,+)
convolution (whose kth entry is mediank

i=0 (xi + yk−i)). The (min,+) convolu-
tion problem has appeared frequently in the literature, already appearing in Bell-
man’s early work on dynamic programming in the early 1960s [2,16,24,25,26,28].
Its name varies among “minimum convolution”, “min-sum convolution”, “inf-
convolution”, “infimal convolution”, and “epigraphical sum”.9 To date, however,

9 “Tropical convolution” would also make sense, by direct analogy with tropical ge-
ometry, but we have never seen this terminology used in print.



no worst-case o(n2)-time algorithms for this convolution, or the more complex
(median,+) convolution, has been obtained. In this paper, we develop worst-
case o(n2)-time algorithms for (min,+) and (median,+) convolution, in the real
RAM and the nonuniform linear decision tree.

Necklace alignment problem. More formally, in the necklace alignment problem,
the input is a number p representing the `p norm, and two sorted vectors of
n real numbers, x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, representing
the two necklaces. See Figure 1. Canonically, we assume that each number xi

and yi is in the range [0, 1), representing a point on the unit-circumference circle
(parameterized clockwise from some fixed point).

The optimization problem involves two parameters. The first parameter, the
offset c ∈ [0, 1), is the clockwise rotation angle of the first necklace relative to
the second necklace. The second parameter, the shift s ∈ {0, 1, . . . , n}, defines
the perfect matching between beads: bead i of the first necklace matches with
bead (i + s) mod n of the second necklace. (Here we use the property that an
optimal perfect matching between the beads does not cross itself.)

The goal of the `p necklace alignment problem is to find the offset c ∈ [0, 1)
and the shift s ∈ {0, 1, . . . , n} that minimize

∑n−1
i=0

∣∣xi − y(i+s) mod n + c
∣∣p or, in

the case p = ∞, that minimize maxn−1
i=0

∣∣xi − y(i+s) mod n + c
∣∣.

Although not obvious from the definition, the `1, `2, and `∞ necklace align-
ment problems all have trivial O(n2) solutions. In each case, as we show, the
optimal offset c can be computed in linear time for a given shift value s (some-
times even independent of s). The optimization problem is thus effectively over
just s ∈ {0, 1, . . . , n}, and the objective costs O(n) time to compute for each s,
giving an O(n2)-time algorithm.

Related work. Although necklaces are studied throughout mathematics, mainly
in combinatorial settings, we are not aware of any work on the necklace alignment
problem before Toussaint [29]. He introduced `1 necklace alignment, calling it
the cyclic swap-distance or necklace swap-distance problem, with a restriction
that the beads lie at integer coordinates. Colannino et al. [8] consider some
different distance measures between two sets of points on the real line in which
the matching does not have to match every point. They do not, however, consider
alignment under such distance measures.

The only subquadratic results for (min,+) convolution concern two special
cases. First, the (min,+) convolution of two convex sequences or functions can
be trivially computed in O(n) time by a simple merge, which is the same as
computing the Minkowski sum of two convex polygons [26]. This special case is
already used in image processing and computer vision [16,24]. Second, Bussieck
et al. [4] proved that the (min,+) convolution of two randomly permuted se-
quences can be computed in O(n lg n) expected time. Our results are the first to
improve the worst-case running time for (min,+) convolution.

Connections to X + Y . The necklace alignment problems, and their corre-
sponding convolution problems, are also intrinsically connected to problems on



X + Y matrices. Given two lists of n numbers, X = 〈x0, x1, . . . , xn−1〉 and
Y = 〈y0, y1, . . . , yn−1〉, X + Y is the matrix of all pairwise sums, whose (i, j)th
entry is xi+yj . A classic unsolved problem [12] is whether the entries of X+Y can
be sorted in o(n2 lg n) time. Fredman [19] showed that O(n2) comparisons suffice
in the nonuniform linear decision tree model, but it remains open whether this
can be converted into an O(n2)-time algorithm in the real RAM model. Steiger
and Streinu [27] gave a simple algorithm that takes O(n2 log n) time while using
only O(n2) comparisons.

The (min,+) convolution is equivalent to finding the minimum element in
each antidiagonal of the X + Y matrix, and similarly the (max,+) convolution
finds the maximum element in each antidiagonal. We show that `∞ necklace
alignment is equivalent to finding the antidiagonal of X + Y with the smallest
range (the maximum element minus the minimum element). The (median,+)
convolution is equivalent to finding the median element in each antidiagonal of
the X + Y matrix. We show that `1 necklace alignment is equivalent to find-
ing the antidiagonal of X + Y with the smallest median cost (the total distance
between each element and the median of the elements). Given the apparent diffi-
culty in sorting X +Y , it seems natural to believe that the minimum, maximum,
and median elements of every antidiagonal cannot be found, and that the cor-
responding objectives cannot be minimized, any faster than O(n2) total time.
Figure 2 shows a sample X + Y matrix with the maximum element in each an-
tidiagonal marked, with no apparent structure. Nonetheless, we show that o(n2)
algorithms are possible.

Our results. In the standard real RAM model, we give subquadratic algorithms
for the `1, `2, and `∞ necklace alignment problems, and for the (min,+) and
(median,+) convolution problems, using techniques of Chan [6]. Despite the
roughly logarithmic factor improvements for `1 and `∞, these results do not use
word-level bit tricks of word-RAM fame.

1. O(n lg n)-time algorithm on the real RAM for `2 necklace alignment (Sec-
tion 2).

2. O(n2/ lg n)-time algorithm on the real RAM for `∞ necklace alignment and
(min,+) convolution (Section 3).

3. O(n2(lg lg n)2/ lg n)-time algorithm on the real RAM for `1 necklace align-
ment and (median,+) convolution (Section 4).

In the nonuniform linear decision tree model, we give faster algorithms for the
`1 and `∞ necklace alignment problems, using techniques of Fredman [19,20]:

4. O(n
√

n)-time algorithm in the nonuniform linear decision tree model for `∞
necklace alignment and (min,+) convolution (Section 3).

5. O(n
√

n lg n)-time algorithm in the nonuniform linear decision tree model for
`1 necklace alignment and (median,+) convolution (Section 4).

(Although we state our results here in terms of (min,+) and (median,+) convo-
lution, our results discuss − instead of + for synergy with necklace alignment.)



Fig. 2. An X + Y matrix. Each polygonal line denotes an antidiagonal of the
matrix, with a point at coordinates (x, y) denoting the value x + y for x ∈ X
and y ∈ Y . An × denotes the maximum element in each antidiagonal.

2 `2 Necklace Alignment and (+, ·) Convolution

In this section, we show how `2 necklace alignment reduces to standard convo-
lution, leading to an O(n lg n)-time algorithm.

Theorem 1. The `2 necklace alignment problem can be solved in O(n lg n) time
on a real RAM.

Proof. The objective
∑n−1

i=0

(
xi − y(i+s) mod n + c

)2 expands algebraically to

n−1∑
i=0

(
x2

i +2cxi + c2
)

+
n−1∑
i=0

(
y2
(i+s) mod n− 2cy(i+s) mod n

)
− 2

n−1∑
i=0

xiy(i+s) mod n

=

[
n−1∑
i=0

(
x2

i + y2
i

)
+ 2c

n−1∑
i=0

(xi − yi) + nc2

]
− 2

n−1∑
i=0

xiy(i+s) mod n.

The first term depends solely on the inputs and the variable c, while the second
term depends solely on the inputs and the variable s. Thus the two terms can be
optimized separately. The first term can be optimized in O(n) time by solving
for when the derivative, which is linear in c, is zero. The second term can be



computed, for each s ∈ {0, 1, . . . , n−1}, in O(n lg n) time using (+, ·) convolution
(and therefore optimized in the same time). Specifically, define the vectors

x′ = 〈x0, x1, . . . , xn−1; 0, 0, . . . , 0︸ ︷︷ ︸
n

〉; y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n + s′)th entry of the convolution x′ ∗y′ is∑n+s′

i=0 x′iy
′
n+s′−i =

∑n−1
i=0 xiy(i−s′−1) mod n, which is the desired entry if we let

s′ = n − 1 − s. We can compute the entire convolution in O(n lg n) time using
the Fast Fourier Transform. 2

3 `∞ Necklace Alignment and (min, +) Convolution

First we show the relation between `∞ necklace alignment and (min,+) convo-
lution. We need the following basic fact:

Fact 2. For any vector z = 〈z0, z1, . . . , zn−1〉, the minimum value of
maxn−1

i=0 |zi + c| is 1
2

(
maxn−1

i=0 zi −minn−1
i=0 zi

)
, which is achieved when c =

− 1
2

(
minn−1

i=0 zi + maxn−1
i=0 zi

)
.

Instead of using (min,+) convolution directly, we use two equivalent forms,
(min,−) and (max,−) convolution:

Theorem 3. The `∞ necklace alignment problem can be reduced in O(n) time
to one (min,−) convolution and one (max,−) convolution.

Proof. For two necklaces x and y, we apply the (min,−) convolution to the
following vectors:

x′ = 〈x0, x1, . . . , xn−1;∞, . . . ,∞︸ ︷︷ ︸
n

〉; y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n + s′)th entry of x′
−∗

mın
y′ is minn+s′

i=0 (x′i −
y′n+s′−i) = minn−1

i=0 (xi − y(i−s′−1) mod n), which is minn−1
i=0 (xi − y(i+s) mod n) if

we let s′ = n − 1 − s. By symmetry, we can compute the (max,−) convolution

x′′
−∗

max
y′, where x′′ has −∞’s in place of ∞’s, and use it to compute maxn−1

i=0 (xi−
y(i+s) mod n) for each s ∈ {0, 1, . . . , n − 1}. Applying Fact 2, we can therefore
minimize maxn−1

i=0 |xi − y(i+s) mod n + c| over c, for each s ∈ {0, 1, . . . , n− 1}. By
brute force, we can minimize over s as well using O(n) additional comparisons
and time. 2

For our nonuniform linear decision tree results, we use the main theorem of
Fredman’s work on sorting X + Y :

Theorem 4. [19] For any fixed set Γ of permutations of N elements, there is
a comparison tree of depth O(N + lg |Γ |) that sorts any sequence whose rank
permutation belongs to Γ .



Theorem 5. The (min,−) convolution of two vectors of length n can be com-
puted in O(n

√
n) time in the nonuniform linear decision tree model.

Proof. Let x and y denote the two vectors of length n, and let x
−∗

mın
y denote

their (min,−) convolution, whose kth entry is mink
i=0 (xi − yk−i).

First we sort the set D = {xi−xj , yi−yj : |i− j| ≤ d} of pairwise differences
between nearby xi’s and nearby yi’s, where d ≤ n is a value to be determined
later. This set D has N = O(nd) elements. The possible sorted orders of D
correspond to cells in the arrangement of hyperplanes in R2n induced by all

(
N
2

)
possible comparisons between elements in the set, and this hyperplane arrange-
ment has O(N4n) cells. By Theorem 4, there is a comparison tree sorting D of
depth O(N + n lg N) = O(nd + n lg n).

The comparisons we make to sort D enable us to compare xi − yk−i versus
xj −yk−j for free, provided |i− j| ≤ d, because xi−yk−i < xj −yk−j precisely if
xi − xj < yk−i − yk−j . Thus, in particular, we can compute Mk(λ) = min{xi −
yk−i : i = λ, λ + 1, . . . ,min{λ + d, n} − 1} for free (using the outcomes of the
comparisons we have already made).

We can rewrite the kth entry mink
i=0(xi − yk−i) of x

−∗
mın

y as

min{Mk(0),Mk(d),Mk(2d), . . . ,Mk(dk/ded)}, and thus we can compute it in
O(k/d) = O(n/d) comparisons between differences. Therefore all n entries can
be computed in O(nd + n lg n + n2/d) total time.

This asymptotic running time is minimized when nd = Θ(n2/d), i.e., when
d2 = Θ(n). Substituting d =

√
n, we obtain a running time of O(n

√
n) in the

nonuniform linear decision tree model. 2

Combining Theorems 3 and 5, we obtain the following result:

Corollary 6. The `∞ necklace alignment problem can be solved in O(n
√

n) time
in the nonuniform linear decision tree model.

Our results on the real RAM use the following geometric lemma from Chan’s
work on all-pairs shortest paths:

Lemma 7. [6, Lemma 2.1] Given n points p1, p2, . . . , pn in d dimensions, each
colored either red or blue, we can find the P pairs (pi, pj) for which pi is red, pj

is blue, and pi dominates pj (i.e., for all k, the kth coordinate of pi is at least
the kth coordinate of pj), in 2O(d)n1+ε + O(P ) time for arbitrarily small ε > 0.

Theorem 8. The (min,−) convolution of two vectors of length n can be com-
puted in O(n2/ lg n) time on a real RAM.

Proof. Let x and y denote the two vectors of length n, and let x
−∗

max
y denote

their (max,−) convolution. (Symmetrically, we can compute the (min,−) con-
volution.) For each δ ∈ {0, 1, . . . , d− 1}, for each i ∈ {0, d, 2d, . . . , bn/dcd}, and
for each j ∈ {0, 1, . . . , n− 1}, we define the d-dimensional points

pδ,i =(xi+δ − xi, xi+δ − xi+1, . . . , xi+δ − xi+d−1),
qδ,j =(yj−δ − yi, yj−δ − yi−1, . . . , yj−δ − yj−d−1).



(To handle boundary cases, define xi = ∞ and yj = −∞ for indices i, j outside
[0, n − 1].) For each δ ∈ {0, 1, . . . , d − 1}, we apply Lemma 7 to the set of red
points {pδ,i : i = 0, d, 2d, . . . , bn/dcd} and the set of blue points {qδ,j : j =
0, 1, . . . , n− 1}, to obtain all dominating pairs (pδ,i, qδ,j).

Point pδ,i dominates qδ,j precisely if xi+δ − xi+δ′ ≥ yj−δ − yj−δ′ for all
δ′ ∈ {0, 1, . . . , d − 1} (ignoring the indices outside [0, n − 1]). By re-arranging
terms, this condition is equivalent to xi+δ − yj−δ ≥ xi+δ′ − yj−δ′ for all δ′ ∈
{0, 1, . . . , d − 1}. If we substitute j = k − i, we obtain that (pδ,i, qδ,k−i) is a
dominating pair precisely if xi+δ−yk−i−δ = maxd−1

δ′=1(xi+δ′ −yk−i−δ′). Thus, the
set of dominating pairs gives us the maximum Mk(i) = max{xi − yk−i, xi+1 −
yk−i+1, . . . , xmin{i+d,n}−1 − ymin{k−i+d,n}−1} for each i divisible by d and for
each k. Also, there can be at most O(n2/d) such pairs for all i, j, δ, because there
are O(n/d) choices for i and O(n) choices for j, and if (pδ,i, qδ,j) is a dominating
pair, then (pδ′,i, qδ′,j) cannot be a dominating pair for any δ′ 6= δ. (Here we
assume that the max is achieved uniquely, which can be arranged by standard
perturbation techniques or by breaking ties consistently [6].) Hence, the running
time of the d executions of Lemma 7 is d2O(d)n1+ε + O(n2/d) time, which is
O(n2/ lg n) if we choose d = α lg n for a sufficiently small constant α > 0. We can

rewrite the kth entry maxk
i=0(xi−yk−i) of x

−∗
max

y as max{Mk(0),Mk(d),Mk(2d),

. . . , Mk(dk/ded)}, and thus we can compute it in O(k/d) = O(n/d) time. Thus
all n entries can be computed in O(n2/d) = O(n2/ lg n) time on a real RAM. 2

Combining Theorems 3 and 8, we obtain the following result:

Corollary 9. The `∞ necklace alignment problem can be solved in O(n2/ lg n)
time on a real RAM.

This approach likely cannot be improved beyond O(n2/ lg n). Such an im-
provement would require an improvement to Lemma 7, which would in turn im-
prove the fastest known algorithm for all-pairs shortest paths in dense graphs,
the O(n3/ lg n)-time algorithm of [6].

4 `1 Necklace Alignment and (median, +) Convolution

First we show the relation between `1 necklace alignment and (median,+) con-
volution. We need the following basic fact:

Fact 10. For any vector z = 〈z0, z1, . . . , zn−1〉,
∑n−1

i=0 |zi +c| is minimized when
c = −mediann−1

i=0 zi.

Instead of using (median,+) convolution directly, we use the equivalent form,
(median,−) convolution:

Theorem 11. The `1 necklace alignment problem can be reduced in O(n) time
to one (median,−) convolution.



Proof. For two necklaces x and y, we apply the (median,−) convolution to the
following vectors, as in the proof of Theorem 3:

x′ = 〈x0, x0, x1, x1, . . . , xn−1, xn−1;∞,−∞,∞,−∞, . . . ,∞,−∞︸ ︷︷ ︸
2n

〉,

y′ = 〈yn−1, yn−1, yn−2, yn−2, . . . , y0, y0; yn−1, yn−1, yn−2, yn−2, . . . , y0, y0〉.

Then, for s′ ∈ {0, 1, . . . , n − 1}, the 2(n + s′) + 1st entry of x′
−∗

med
y′ is

median2(n+s′)+1
i=0 (x′i − y′2(n+s′)+1−i) = mediann−1

i=0 (xi − y(i−s′−1) mod n), which
is mediann−1

i=0 (xi − y(i+s) mod n) if we let s′ = n − 1 − s. Applying Fact 10,
we can therefore minimize mediann−1

i=0 |xi − y(i+s) mod n + c| over c, for each
s ∈ {0, 1, . . . , n − 1}. By brute force, we can minimize over s as well using
O(n) additional comparisons and time. 2

Our results for (median,−) convolution use the following result of Frederick-
son and Johnson:

Theorem 12. [18] The median element of the union of k sorted lists, each of
length n, can be computed in O(k lg n) time and comparisons.

We begin with our results for the nonuniform linear decision tree model:

Theorem 13. The (median,−) convolution of two vectors of length n can be
computed in O(n

√
n lg n) time in the nonuniform linear decision tree model.

Proof. As in the proof of Theorem 6, we sort the set D = {xi − xj , yi − yj :
|i − j| ≤ d} of pairwise differences between nearby xi’s and nearby yi’s, where
d ≤ n is a value to be determined later. By Theorem 4, this step requires
O(nd + n lg n) comparisons between differences. These comparisons enable us
to compare xi − yk−i versus xj − yk−j for free, provided |i − j| ≤ d, because
xi − yk−i < xj − yk−j precisely if xi − xj < yk−i − yk−j . In particular, we
can sort each list Lk(λ) = 〈xi − yk−i : i = λ, λ + 1, . . . ,min{λ + d, n} − 1〉 for
free. By Theorem 12, we can compute the median of Lk(0) ∪ Lk(d) ∪ Lk(2d) ∪
· · · ∪ Lk(dk/ded), i.e., mediank

i=0(xi − yk−i), in O((k/d) lg d) = O((n/d) lg d)
comparisons. Also, in the same asymptotic number of comparisons, we can binary
search to find where the median fits in each of the Lk(λ) lists, and therefore which
differences are smaller and which differences are larger than the median. This
median is the kth entry of x

−∗
med

y. Therefore, we can compute all n entries of

x
−∗

med
y in O(nd+n lg n+(n2/d) lg d) comparisons. This asymptotic running time

is minimized when nd = Θ((n2/d) lg d), i.e., when d2/ lg d = Θ(n). Substituting
d =

√
n lg n, we obtain a running time of O(n

√
n lg n) in the nonuniform linear

decision tree model. 2

Combining Theorems 11 and 13, we obtain the following result:



Corollary 14. The `1 necklace alignment problem can be solved in O(n
√

n lg n)
time in the nonuniform linear decision tree model.

Now we turn to the analogous results for the real RAM:

Theorem 15. The (median,−) convolution of two vectors of length n can be
computed in O(n2(lg lg n)2/ lg n) time on a real RAM.

Proof. Let x and y denote the two vectors of length n, and let x
−∗

med
y denote

their (median,−) convolution. For each permutation π on the set {0, 1, . . . , d−1},
for each i ∈ {0, d, 2d, . . . , bn/dcd}, and for each j ∈ {0, 1, . . . , n − 1}, we define
the (d− 1)-dimensional points

pπ,i =(xi+π(0) − xi+π(1), xi+π(1) − xi+π(2), . . . , xi+π(d−2) − xi+π(d−1)),
qπ,j =(yj−π(0) − yj−π(1), yj−π(1) − yj−π(2), . . . , yj−π(d−2) − yj−π(d−1)),

(To handle boundary cases, define xi = ∞ and yj = −∞ for indices i, j outside
[0, n − 1].) For each permutation π, we apply Lemma 7 to the set of red points
{pπ,i : i = 0, d, 2d, . . . , bn/dcd} and the set of blue points {qπ,j : j = 0, 1, . . . , n−
1}, to obtain all dominating pairs (pπ,i, qπ,j).

Point pπ,i dominates qπ,j precisely if xi+π(δ)−xi+π(δ+1) ≥ yj−π(δ)−yj−π(δ+1)

for all δ ∈ {0, 1, . . . , d − 2} (ignoring the indices outside [0, n − 1]). By re-
arranging terms, this condition is equivalent to xi+π(δ) − yj−π(δ) ≥ xi+π(δ+1) −
yj−π(δ+1) for all δ ∈ {0, 1, . . . , d − 2}, i.e., π is a sorting permutation of
〈xi − yj , xi+1 − yj−1, . . . , xi+d−1 − yj−d+1〉. If we substitute j = k− i, we obtain
that (pπ,i, qπ,k−i) is a dominating pair precisely if π is a sorting permutation of
the list Lk(i) = 〈xi − yk−i, xi+1 − yk−i+1, . . . , xmin{i+d,n}−1 − ymin{k−i+d,n}−1〉.
Thus, the set of dominating pairs gives us the sorted order of Lk(i) for each i di-
visible by d and for each k. Also, there can be at most O(n2/d) total dominating
pairs (pπ,i, qπ,j) over all i, j, π, because there are O(n/d) choices for i and O(n)
choices for j, and if (pπ,i, qπ,j) is a dominating pair, then (pπ′,i, qπ′,j) cannot be
a dominating pair for any permutation π′ 6= π. (Here we assume that the sorted
order is unique, which can be arranged by standard perturbation techniques
or by breaking ties consistently [6].) Hence, the running time of the d! execu-
tions of Lemma 7 is d! 2O(d)n1+ε + O(n2/d) time, which is O(n2 lg lg n/ lg n) if
we choose d = α lg n/ lg lg n for a sufficiently small constant α > 0. By Theo-
rem 12, we can compute the median of Lk(0)∪Lk(d)∪Lk(2d)∪· · ·∪Lk(dk/ded),
i.e., mediank

i=0(xi − yk−i), in O((k/d) lg d) = O((n/d) lg d) comparisons. Also,
in the same asymptotic number of comparisons, we can binary search to find
where the median fits in each of the Lk(λ) lists, and therefore which differ-
ences are smaller and which differences are larger than the median. This me-
dian is the kth entry of x

−∗
med

y. Therefore all n entries can be computed in

O(n2(lg d)/d) = O(n2(lg lg n)2/ lg n) time on a real RAM. 2

Combining Theorems 11 and 15, we obtain the following result:

Corollary 16. The `1 necklace alignment problem can be solved in
O(n2(lg lg n)2/ lg n) time on a real RAM.



As before, this approach likely cannot be improved beyond O(n2/ lg n), be-
cause such an improvement would require an improvement to Lemma 7, which
would in turn improve the fastest known algorithm for all-pairs shortest paths in
dense graphs [6]. In contrast to (median,+) convolution, (mean,+) convolution
is trivial to compute in linear time.

5 Conclusion
The convolution problems we consider here have connections to many classic
problems, and it would be interesting to explore whether the structural infor-
mation extracted by our algorithms could be used to devise faster algorithms
for these classic problems. For example, does the antidiagonal information of the
X + Y matrix lead to a o(n2 lg n)-time algorithm for sorting X + Y ? We be-
lieve that any further improvements to our convolution algorithms would require
progress and/or have interesting implications on all-pairs shortest paths [6].

Our (min,−)-convolution algorithms give subquadratic algorithms for poly-
hedral 3SUM : given three lists, A = 〈a0, a1, . . . , an−1〉, B = 〈b0, b1, . . . , bn−1〉,
and C = 〈c0, c1, . . . , c2n−2〉, such that ai + bj ≤ ci+j for all 0 ≤ i, j < n, decide
whether ai + bj = ci+j for any 0 ≤ i, j < n. This problem is a special case of
3SUM, and this special case has an Ω(n2) lower bound in the 3-linear decision
tree model [15]. Our results solve polyhedral 3SUM in O(n2/ lg n) time in the
4-linear decision tree model, and in O(n

√
n) time in the nonuniform 4-linear

decision tree model, solving an open problem of Erickson [13]. Can these algo-
rithms be extended to solve 3SUM in subquadratic time in the (nonuniform)
decision tree model?
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