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ABSTRACT. The Tukey depth (Tukey 1975) of a point p with respect to a finite set S of points is the
minimum number of elements of S contained in any closed halfspace that contains p. Algorithms for
computing the Tukey depth of a point in various dimensions are considered. The running times of these
algorithms depend on the value of the output, making them suited to situations, such as outlier removal,
where the value of the output is typically small.

1 Introduction

Let S be a set of n points in Rd. The Tukey depth, or halfspace depth of a point p ∈ Rd with respect to S
can be defined in several equivalent ways [24]:

depth(p, S) = min{|h ∩ S| : h is a closed halfspace containing p} (1)

= min{|h ∩ S| : h is a closed halfspace with p on its boundary} (2)

= min{|S′| : p is outside the convex hull of S \ S′} (3)

Algorithms for computing the point p ∈ Rd of maximum Tukey depth have a rich history [11,
10, 3] that has recently culminated in Chan’s O(n log n + nd−1) expected time algorithm. A point of
maximum Tukey depth serves as a d-dimensional generalization of the (1-dimensional) median and
performs well as a robust estimate of the “center” of S [19, 20, 23].

In this paper we consider the simpler problem of computing the Tukey depth of a given point p
with respect to a set S. Our algorithms have running times that are dependent on the value, k, of the
output. These algorithms are thus particularly well-suited to problems such as outlier-removal where the
goal is to identify points of small depth since they run quickly when the depth of p is small. Specifically,
we present the following results:

1. A simple O(n + k log k) time algorithm for points in R2 (Section 2). The most complicated data
structure used in this algorithm is a binary heap.

2. An O(n + (n− k) log(n− k)) time algorithm to find the largest clique in an interval graph, where
k is the size of the clique found (Section 3). This problem is related to the Tukey depth problem in
R2.

3. An O(n log n+k2 log n) time algorithm for points in R3 and an O(n+k11/4n1/4 logO(1) n) time algo-
rithm for points in R4 (Section 4). These algorithms rely on results of Chan on linear programming
with violated constraints [4] which in turn rely on sophisticated range searching data structures
[12, 18] and/or dynamic convex hull data structures [2].
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Figure 1: Computing the quantity depth1(p, S).

4. A simple O(dk LP(n, d − 1)) time algorithm for points in Rd, where LP(n, d) denotes the time
required to determine the feasibility of a linear program having n constraints and d variables
(Section 5). Not surprisingly, this algorithm is also based on linear programming with violated
constraints and is obtained by presenting a fixed-parameter tractable algorithm for a parameteri-
zation of the NP-hard MAXIMUMFEASIBLESUBSYSTEM problem.

For the remainder of this paper we use the following notations: For points p, q ∈ Rd, pi denotes
the ith coordinate of p, ‖p‖ = (

∑d
i=1 p2

i )
1/2, and p · q =

∑d
i=1 piqi. The unit sphere in Rd+1 is denoted

by Sd = {p ∈ Rd+1 : ‖p‖ = 1}. The top side of this sphere is denoted by Sd
+ = {p ∈ Sd : pd+1 > 0},

the bottom side is denoted by Sd
− = {p ∈ Sd : pd+1 < 0} and the equator is denoted by Sd

0 = {p ∈ Sd :
pd+1 = 0} .

2 An Algorithm for Points in R2

In this section we give a simple O(n + k log k) time algorithm to compute the Tukey depth of a point
p ∈ R2 with respect to a set S of n points in R2. We first note that an O(n log n) time sort-and-scan
algorithm is easily obtained by sorting the points of S radially about p and then scanning the resulting
sorted list using two pointers [11]. The main idea behind our algorithm to is to reduce the problem to a
kernel of size O(k) on which we can apply this sort-and-scan algorithm.

The algorithm begins by partitioning R2 into 4 quadrants around p that, in counterclockwise
order, we denote by Q0, . . . , Q3. The algorithm then simultaneously begins computing the 4 quantities
depth0(p, S), . . . ,depth3(p, S) where

depthi(p, S) = min{|h ∩ S| : h is a closed halfspace containing Qi} . (4)

Clearly, depth(p, S) = min{depthi(p, S) : 0 ≤ i ≤ 3} since any closed halfspace containing p contains
at least one of the four quadrants. In the remainder of this section we will describe how to compute
ki = depthi(p, S) in O(n + ki log ki) time. Since the computation can stop once depthi(p, S) has been
computed for the index i that minimizes (4), running the computation of k0, . . . , k3 in parallel yields an
O(n + k log k) time algorithm, where k = depth(p, S).

Let Si = S ∩Qi. To compute depthi(p, S) we create two binary heaps Hi−1 and Hi+1 that store
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the elements of Si−1, respectively Si+1, in clockwise, respectively, counterclockwise, order around p.1

Creating these two heaps takes O(n) time using the standard bottom-up algorithm to construct a binary
heap [7, Chapter 6]. Next we extract elements one at a time from each of Hi−1 and Hi+1 until either
(a) one of the heaps is empty or (b) we extract two elements q from Hi−1 and r from Hi+1 such that
the angle 6 qpr > π. Suppose we have extracted ` elements each from Hi−1 and Hi+1 when this occurs.
Then it is easy to verify that

|Si|+ `− 1 ≤ depthi(p, S) ≤ |Si|+ 2`− 1 .

Next, we continue to extract as many elements as possible from each of Hi−1 and Hi+1 up to a
maximum of an additional ` − 1 elements each. The total time required to extract these at most 4` − 2
elements from the two heaps is O(` log n). By sorting and scanning all the elements extracted from the
heaps plus the elements of Si we can then compute depthi(p, S) in an additional

O((|Si|+ `) log n) = O(ki log n)

time. This yields an a total running time of

O(n + ki log n) = O(n + ki log ki) ,

as required. This completes the proof of:

Theorem 1. The Tukey depth of a point p with respect to a set S of n points in R2 can be computed in
O(n + k log k) time, where k is the value of the output.

3 An Algorithm for MAX-CLIQUE in Interval Graphs

The problem of computing Tukey depth in R2 can be viewed as a problem on a set of circular arcs. By (2),
computing the Tukey depth of p is equivalent to finding a unit normal vector v such that the halfspace
with p on its boundary and having inner normal v contains as few points of S as possible. Note that the
set of unit normals in R2 is homeomorphic to the unit circle S1 and that each point q ∈ S defines an open
circular arc of S1 such that all choices of v in this circular arc yield a halfspace that does not contain
q. Thus, the Tukey depth problem reduces to the problem of finding a vector v that is contained in the
largest number of circular arcs. The partitioning into 4 quadrants used in the algorithm of Theorem 1
works because all the circular arcs are actually half circles.

An obvious generalization of the Tukey depth problem is that of, given a set of n circular arcs
of S1, finding a point p ∈ S1 contained in the largest number of arcs. This problem is easily solved in
O(n log n) time by the sort-and-scan algorithm. Unfortunately, it is not possible to obtain an algorithm
whose running time depends on the number k of arcs containing p or even on the number (n−k) of arcs
not containing p. This is because the decision problem of testing whether a set of n arcs covers S1 has
an Ω(n log n) lower-bound [1]. This problem is equivalent, by taking the complement of each arc, to the
problem of finding the point contained in the maximum number of arcs. In particular, the original set of
arcs do not cover S1 if and only if there is a point p contained in every complementary arc.

Since we can not hope to solve the problem for circular arcs of S1, we settle for the next best
thing. Let I be a set of real intervals. Here we describe an O(n+(n−k) log(n−k)) time algorithm to find

1Here and in the remainder of this section Si is treated implictly as Si mod 4.
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a point p ∈ R that is contained in the largest number of intervals in I. Here k is the number of intervals
in I that contain p. Let p1, . . . , p2n denote the 2n endpoints of the intervals in I, in increasing order. For
convenience we use the convention that pi = −∞ for i ≤ 0 and pi = +∞ for i > 2n. Together, the
following two observations imply that all the points contained in many intervals are clustered together.

Lemma 1. Let q ∈ [pi, pi+1] be a point contained in k intervals of I. Then, for any 0 ≤ r ≤ n, every point
q′ ∈ [pi−r, pi+r+1] is contained in at least k − r intervals of I.

Proof. Without loss of generality, assume that q′ ∈ [q, pi+r+1]. There are at most r endpoints of intervals
in I contained in the interval [q, q′]. Therefore there are at most r intervals that contain q but not q′.

Lemma 2. Let q ∈ [pi, pi+1] be a point contained in k intervals of I. Then, for any n − k ≤ r ≤ n, every
point q′ /∈ [pi−r, pi+r+1] is contained in at most 2n− k − r arcs of C.

Proof. Without loss of generality, assume that q′ > pi+r+1. Then, as we walk from q to q′ we encounter
at least r endpoints of intervals in I. At most n− k of these endpoints are left endpoints of intervals and
at least r − (n− k) of these are right endpoints. Thus, the number of intervals that contain q′ is at most

k + (n− k)− (r − (n− k)) = 2n− k − r ,

as required.

At a high level our algorithm is fairly simple. Suppose we are given a value k and only wish to
find a value p ∈ R contained in at least k intervals of I. We begin by taking a regular sample s1, . . . , s2t

of p1, . . . , p2n so that any interval [si, si+1] between two consecutive sample points contains at most n/t
points of p1, . . . , p2n. We then compute, for each sample point si the number of intervals in I that contain
si. By Lemma 1, if there exists any point p ∈ R contained in k intervals of I then the two sample points
sj and sj+1 on either side of p are high depth samples that are each contained in at least k−n/t intervals
of I. Furthermore, by Lemma 2, the only high depth samples are contained in the interval [pi−r, pi+r]
for r = 2(n− k) + n/t.

If we choose t =
√

n then r = O(n − k +
√

n). Thus, by computing an interval [pa, pb] that
contains all high depth samples we can find the point p contained in the largest number of intervals of
C by applying the standard sort-and-scan algorithm on the O(n− k +

√
n) endpoints of the intervals of

C that fall in the interval [pa, pb]. The running time of the sort-and-scan algorithm is O(m log m) where
m is the number of points to be scanned. In this case m = O(n− k +

√
n) for a running time of

O((n− k +
√

n) log(n− k +
√

n)) = O(n + (n− k) log(n− k)) ,

as required.

In implementating the above ideas, several issues arise:

1. The value of k is not known in advance. However, we do not need the exactly value of k and the
value of k can be estimated to within an additive error of

√
n by computing, for each sample point

si, the number of intervals of I that contain si (see Issue 3, below) and using the maximum of
these values as an estimate for k.
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2. We can not obtain a perfectly regular sample s1, . . . , s2
√

n of p1, . . . , p2n in O(n) time. However,
we do not require a perfectly regular sample. By taking a random sample of size c

√
n log n for an

appropriate constant c we obtain a set of samples s1, . . . , sc
√

n log n such that, with high probability,
no interval [si, si+1] contains more than

√
n endpoints of intervals of I [16].

3. We can not compute, in O(n) time, for each sample point si, the number of intervals of I that
contain si. However, random sampling helps again here. Let d(si) denote the number of elements
of I that contain si. By taking a random sample I ′ ⊆ I, |I ′| =

√
n we can determine for each si a

number di such that, with high probability,

d(si)−O(n4/5) ≤ di ≤ d(si) + O(n4/5) .

By storing the
√

n elements of I ′ in an interval tree [17] and then querying this interval tree with
the c

√
n log n sample elements the numbers d1, . . . , dc

√
n log n can be computed in O(

√
n log2 n)

time.

None of the above issues have any significant effect on the running time of the overall algorithm,
which is still dominated by the final sort-and-scan step on a problem of size O(n − k +

√
n). The

correctness of the resulting output depends on the success of the random sampling steps described in
points 2 and 3, above. However, Lemma 2 implies that this final sort-and-scan step allows us to check
the correctness of the output and restart the algorithm from scratch if necessary. This yields:

Theorem 2. There exists a randomized algorithm that, given a set I of n real intervals, finds a value p ∈ R
contained in the largest number of intervals of I and that runs in O(n + (n− k) log(n− k)) expected time.

4 Algorithms for Points in R3 and R4

The previous section showed how the problem of computing the Tukey depth of a point in R2 is equiva-
lent to the problem of finding a point contained in the largest number of halfcircles on the unit circle S1.
A similar statement is true in Rd: Each point q ∈ S defines an open halfsphere q∗ = {v ∈ Sd−1 : v ·q < 0}.
That is, all vectors in q∗ are the inner normals of hyperplanes that contain p but do not contain q. Thus,
the problem of determining the Tukey depth of p reduces to the problem of finding the point contained
in the largest number of halfspheres in S∗ = {q∗ : q ∈ S}.

We observe that this problem can be solved by solving three problems in Rd−1. Each open
halfsphere q∗ ∈ S∗ is the intersection of an open halfspace q# with Sd−1. Consider the intersection of q#

with the hyperplane H+ = {(x1, . . . , xd) : xd = 1}. By central projection, there is a 1-1 correspondence
between points in S

d−1
+ and H+ and this projection has the property that r ∈ Sd−1

+ is in q∗ if and only
if the projection of r is in q# ∩ H+. Thus, finding the point in S

d−1
+ contained in the largest number

of halfspheres is equivalent to finding a point in H+ contained in the largest number of halfspaces. A
similar statement holds regarding S

d−1
− using the hyperplane H− = {(x1, . . . , xd) : xd = −1}. Finally,

finding the point in Sd−1
0 contained in the smallest number of halfspheres is a (d− 1)-dimensional Tukey

depth problem.

The above discussion shows that computing the Tukey depth of a point in Rd reduces to one
Tukey depth problem in Rd−1 and two instances of the problem MAXIMUMFEASIBLESUBSYSTEM in Rd−1:
Given set K of n halfspaces in Rd−1, find the subset K ′ of K of minimum cardinality such that ∩(K \K ′)
is non-empty. The current best results for MAXIMUMFEASIBLESUBSYSTEM in small dimensions are due
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to Chan [4]. Using two instances of his algorithm for MAXIMUMFEASIBLESUBSYSTEM in R2, respectively,
R3, and running them in parallel gives:

Theorem 3. The Tukey depth of a point p with respect to a set S of n points in R3 can be computed in
O(n log n + k2 log n) time, where k is the value of the output.

Theorem 4. The Tukey depth of a point p with respect to a set S of n points in R4 can be computed in
O(n log n + k11/4n1/4 logO(1) n) time, where k is the value of the output.

5 An Algorithm for Points in Rd

Finally, we consider the general case of point sets in Rd. In the previous section we showed that comput-
ing the Tukey depth of a point p with respect to a set S of n points in Rd can be reduced to two instances
of MAXIMUMFEASIBLESUBSYSTEM in Rd−1 and one Tukey depth computation in Rd−1. In this section we
give a fixed-parameter tractable [8] algorithm for MAXIMUMFEASIBLESUBSYSTEM.

The algorithm uses linear programming as a subroutine in the following way: Given a collection
K of halfspaces in Rd−1, an algorithm for linear programming can be used to either

1. Determine a point p ∈ ∩K if such a point exists or,

2. report a subset B ⊆ K, |B| ≤ d, such that ∩B = ∅.

The set B reported in the latter case is called a basic infeasible subsystem. Standard combinatorial
algorithms for linear programming, including algorithms for linear programming in small dimensions [6,
9, 13, 14, 21, 22] as well as the simplex method (c.f., [5]), can easily be made to report a basic infeasible
subsystem. A method of finding basic infeasible subsystems from interior point linear-programming
methods is described in Appendix A.

Let BIS(K) denote a routine that outputs a basic infeasible subsystem of K if K is infeasible, and
that outputs the empty set otherwise. The following algorithm solves the MAXIMUMFEASIBLESUBSYSTEM

decision problem:

MFS(K, k)
1: {? determine if there exists K ′ ⊆ K, |K ′| ≤ k, such that ∩(K \K ′) 6= ∅ ?}
2: B ← BIS(K)
3: if B = ∅ then
4: return true
5: if k = 0 then
6: return false
7: for each h ∈ B do
8: if MFS(K \ {h}, k − 1) = true then
9: return true

10: return false

Correctness of the above algorithm is easily established by induction on the value of k. The
running time of the algorithm is given by the recurrence

T (n, k) ≤ LP(n, d− 1) + dT (n− 1, k − 1) ,
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where LP(n, d) denotes the running time of an algorithm for solving a linear programming with n
constraints and d variables. This recurrence readily resolves to O(dk LP(n, d− 1)).

Using this as a subroutine for Tukey depth computation we obtain an algorithm whose running
time is given by the recurrence

S(n, d, k) ≤ O(dk LP(n, d− 1)) + S(n, d− 1, k)

which resolves to O((d+1)k LP(n, d−1)). Running this algorithm for k = 0, 1, 2, . . . completes the proof
of:

Theorem 5. The Tukey depth of a point p with respect to a set S of n points in Rd can be computed in
O((d + 1)k LP(n, d− 1)) time, where k is the value of the output and LP(n, d) is the time to solve a linear
program with n constraints and d variables.
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A Computing a Basic Infeasible Subsystem

For any matrix M , let MJ denote the set of rows indexed by J . Given a system of linear inequalities
Mx ≥ b, M ∈ Rm×d, a basic infeasible subsystem is a subset of {1 . . .m} such that the system MIx ≥ bI

is infeasible, and |I| ≤ d + 1. We consider the standard first stage simplex problem (see e.g. [5], p. 39).
Let e denote the m-vector of all ones, c the length d + 1 binary vector with exactly one one in the last
position and let A = [Me]. We can write the first stage LP for our system as

min cT x = xd+1

subject to (P)

Ax ≥ b
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In the case of an infeasible system, the optimal value of this LP will be strictly positive. The dual LP of
(P) is

max bT y

subject to (D)

yA = c

y ≥ 0

In what follows, we generally follow the notation of [15], except that we interchange the definitions of
the primal and dual LPs. Define a basic partition (or just basis) (β, η) as a partition of the row indices of
A such that Aβ is nonsingular. For each basic partition, we define a primal basic solution

x∗ = A−1
β bβ

and a dual basic solution
y∗ = cA−1

β

We say that a basis is primal feasible (resp. dual feasible) if x∗ is feasible for (P) (respectively y∗ is feasible
for (D)). It is a standard result of linear programming duality that a basis which is both primal and dual
feasible defines a pair (x∗, y∗) of optimal solutions to the primal and dual LP’s; such a partition is called
an optimal basis partition.

In general LP algorithms (either directly in the case of Simplex type algorithms, or via postpro-
cessing using e.g. [15, 25]) provide an optimal basis partition (β, η). Consider the relaxed LP

min cT x

subject to (R)

Aβx ≤ bβ

It is easy to verify that an optimal basis partition for (P) is also primal and dual feasible for (R). This
implies that the system Mβ ≥ bβ is infeasible, and provides a a basic infeasible system.
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