Realizability Problems for Convex Polytopes (and Relatives)

or

Excursions in coordinate-free convex geometry

David Bremner

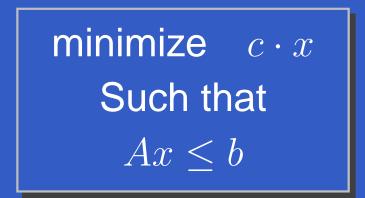
T.U. München / U. New Brunswick

Overview

- 1. Polytopes and Linear Programming
- 2. Constructing Polytopes with Long Paths
- 3. Abstract Point Configurations 1: Chirotopes
- 4. Searching For Chirotopes
- 5. Abstract Point Conf. 2: Hyperline Sequences
- 6. Conclusions

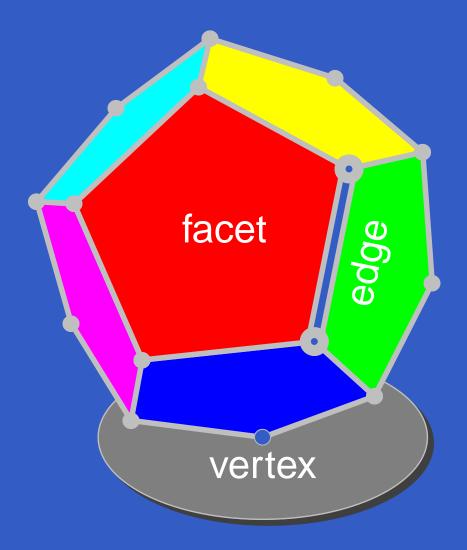
1. Polytopes and Linear Programming

Linear Programming



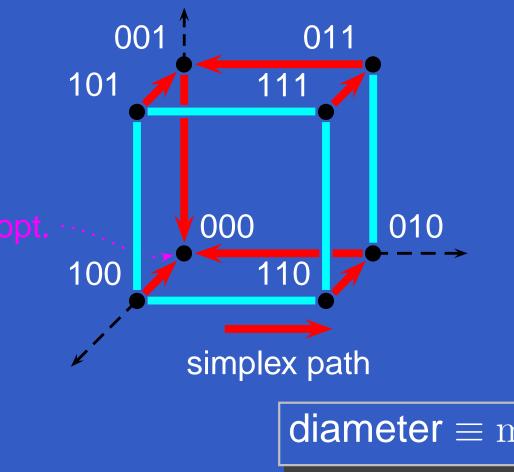
- $P = \{ x \mid Ax \le b \}$ is called a (convex) polyhedron
- Bounded polyhedra are called (convex) polytopes.

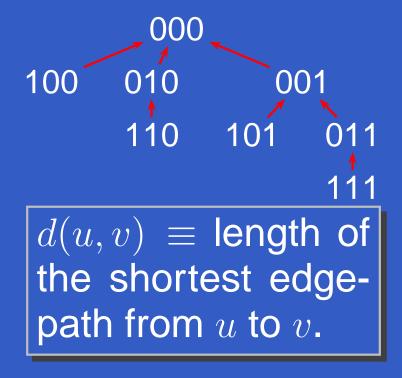
Polytopes



Face: ∩ with supporting hyperplane
conv(X) = { λX | λ ≥ 0, ∑_i λ_i = 1 }.
P = conv(vertices(P))

The Simplex Method





diameter $\equiv \max_{(u,v)} d(u,v)$

The Hirsch Conjecture

Conjecture (Hirsch, 1957) Any polytope defined by n inequalities in ddimensions has diameter at most n - d. Theorem (Kalai, 1992) Any polytope defined by n inequalities in ddimensions has diameter at most

 $\left|2(2d)^{\log_2(n)}
ight|$.

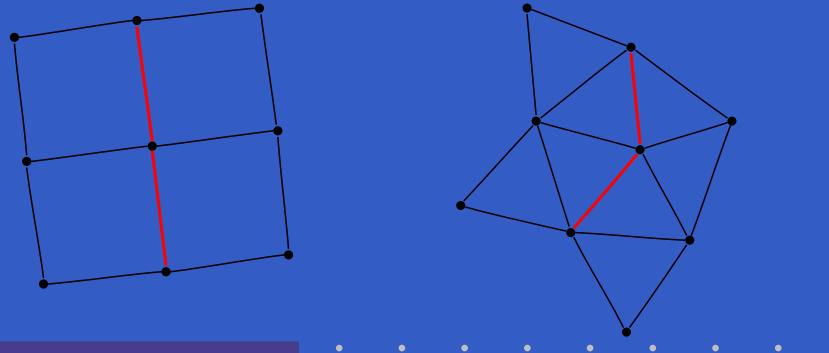
•					
•	•				
•	•				

2. From Paths to Polytopes

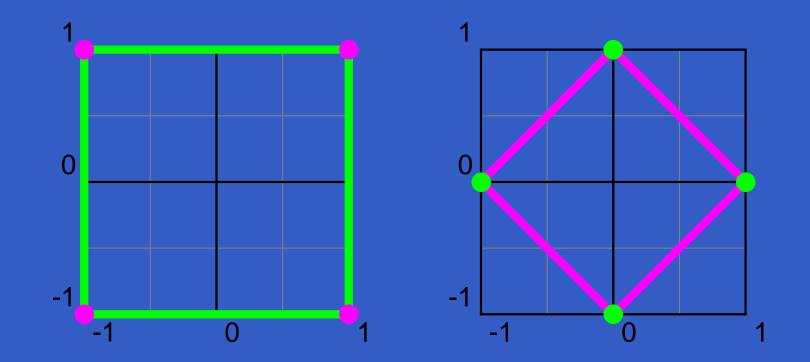
JGA 2002 - p. 8/38

The Grand Program

Idea For each *combinatorially distinct* long path, try to build a polytope out of it.Problem One path pretty much looks like the next.



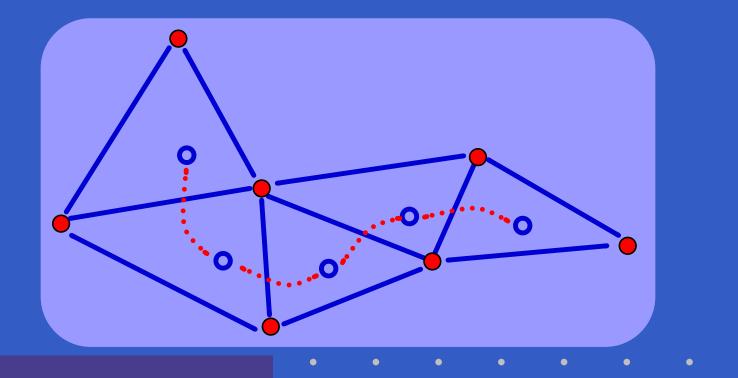
Polarity: Paths to Path Complexes



polar: P* = conv{ y | ∀x ∈ P, y ⋅ x ≤ 1 }
vertices ↔ facets, inclusion inverted.

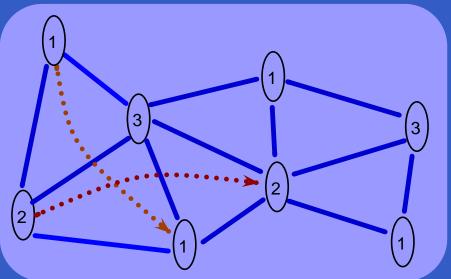
Path Complexes

Simplicial Complex Family of *d*-subsets of $\{1 \dots n\}$ Path Complex Simplicial complex whose dual graph is a path.



Enumerating Path Complexes [BBHK]

Non Revisiting Paths



label sequence: 12131

 Each pivot introduces a new vertex.

Label first facet in order of departure.
Labels follow pivots.

Label Sequences

Directed Paths Label sequences ⟨ s_j ⟩ such that
s_j ≠ s_{j-1}, and
If a < b, a occurs before b.

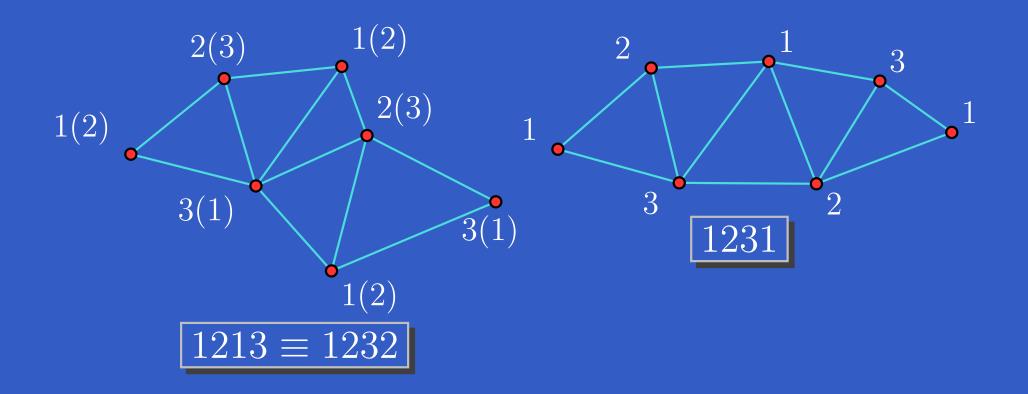
End Disjoint Paths (Restricted Growth Functions)

$$\max_{j} s_{j} = d.$$

$$t(d, l) \equiv \#\text{e.d.d.} (d, l)\text{-paths}$$

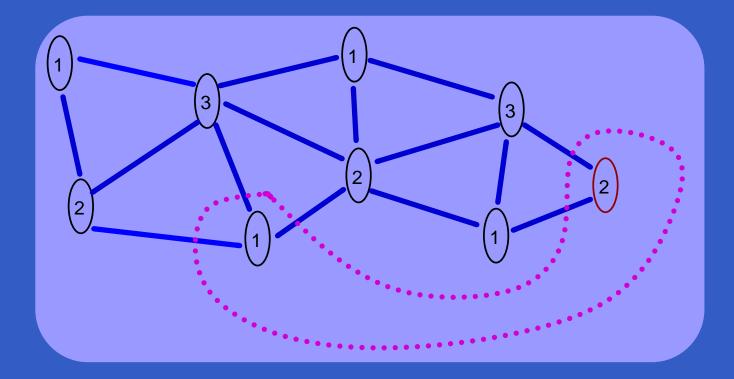
$$t(d, l) = \begin{cases} l-1\\ d-1 \end{cases}$$

Symmetric Paths



symmetric = same label seq. from both ends.
#unlabelled paths = (t(d, l) + s(d, l))/2

Revisiting Paths



Model *revisits* by identifying pairs of vertices
Characterization of 0 and 1 revisit paths in [BBHK]

•				
•				
•				

3. Chirotopes: Abstract Point Configurations

• Nominally, an *n*-vertex *d*-polytope is a point in \mathbb{R}^{nd} .

JGA 2002 - p. 17/38

- Nominally, an *n*-vertex *d*-polytope is a point in \mathbb{R}^{nd} .
- Space is big.

- Nominally, an *n*-vertex *d*-polytope is a point in \mathbb{R}^{nd} .
- Space is big.
- The pieces corresponding to a polytope are not nice:

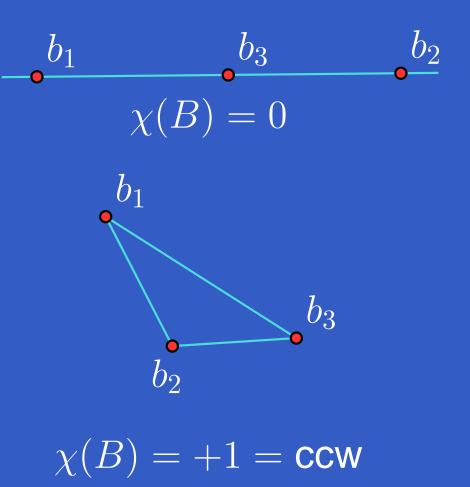
- Nominally, an *n*-vertex *d*-polytope is a point in \mathbb{R}^{nd} .
- Space is big.
- The pieces corresponding to a polytope are not nice:

The realization spaces of polytopes are equivalent to the solutions of arbitrary sets of polynomial inequalities (Richter-Gebert,Mnëv).

Encoding Point Sets

basis $\equiv B \subset \mathbb{R}^{(d+1) \times d}$ $\chi(B) = \operatorname{sign} \det \begin{bmatrix} B & 1 \\ 0 & 1 \\ 1 \end{bmatrix}$

Idea: Which side of the hyperplane defined by $\{b_1 \dots b_d\}$ is b_{d+1} on.



(Realizable) Chirotopes

The chirotope χ of $P \subset \mathbb{R}^d$ is the map $B \in P^{d+1} \to \chi(B) \in \{0, \pm 1\}$ $[i_1, i_2, \dots, i_{d+1}] \equiv \chi(\{p_{i_1}, \dots, p_{i_{d+1}}\})$

 $p_{1} \qquad [1,2,3] = -1 \\ [1,2,4] = -1 \\ [1,2,4] = -1 \\ [1,3,4] = +1 \\ [2,3,4] = -1 \\ [2,3,4] = -1 \\ \end{tabular}$

 p_3

Alternating Sign Maps

Given $N = \{1 ... n\}$, a rank r = d + 1, $\chi : N^r \rightarrow \{-1, 0, +1\}$ is

alternating if

 $[b_1 \dots i \dots j \dots b_r] = -1 \cdot [b_1 \dots j \dots i \dots b_r]$ (determinant w.r.t. row swap).

uniform if $\forall B \ \chi(B) \neq 0$. (Non-degeneracy)

(Combinatorial) Chirotopes

A uniform alternating sign map χ is a (uniform) *chirotope* if

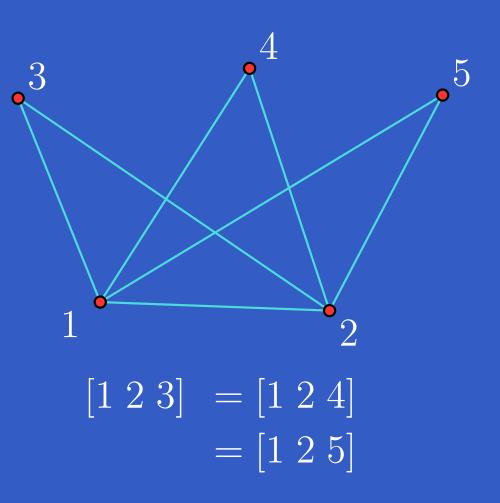
$$\begin{aligned} \forall \lambda \in N^{r-2}, \forall \{ a, b, c, d \} \subset N \setminus \lambda, \\ \{ +1, -1 \} \subset \{ [\lambda \ a \ b] \cdot [\lambda \ c \ d], \\ -[\lambda \ a \ c] \cdot [\lambda \ b \ d], \\ [\lambda \ a \ d] \cdot [\lambda \ b \ c] \end{aligned}$$

(3-term Plücker-Graßmann Identity)

Matroid Polytopes

Given a uniform chirotope (N, χ) :

- $F \subset N^d$ is a facet if $\forall \{j, k\} \subset N \setminus F$, $[F \ j] = [F \ k]$.
- (N, χ) is a matroid polytope if $\forall x \in N$, x is contained in some facet.



Matroid Polytope Completion

Partial Chirotope A map $\chi(B) : N^r \to \{-1, +1, ?\}$ Matroid Polytope Completion Given: A partial chirotope (N, χ) , and some subset \mathcal{F} of the facets. Question: Is there a chirotope (N, χ^*) consistent with χ such that each $F \in \mathcal{F}$ is a facet of χ^* .

Complications

Geodesic Embedding Given $s, t \in \mathcal{F}$, add constraint d(s, t) = k.

MPC is NP-Hard in rank 3 with $\mathcal{F} = \emptyset$. Tschirnitz CCCG2001

Realizability is also NP-Hard (Richter-Gebert 1995, Mnëv). Non-realizable instances for d = 3, n = 10 and d = 4, n = 9

• •

4. Direct Approaches to Chirotope Completion

Approach I: Backtracking

oms: Backtracking algorithm to find "satisfying" basis signs
1. Choose a sign
2. Find the consequences
3. (Maybe) recurse

Approach I: Backtracking

 oms: Backtracking algorithm to find "satisfying" basis signs

- 1. Choose a sign
- 2. Find the consequences
- 3. (Maybe) recurse

 3 sets of constraints: Plücker, boundary, distance

Approach I: Backtracking

- oms: Backtracking algorithm to find "satisfying" basis signs
 - 1. Choose a sign
 - 2. Find the consequences
 - 3. (Maybe) recurse
- 3 sets of constraints: Plücker, boundary, distance
- Analogous to Davis-Putnam SAT Procedure
 Singleton clause = forced variable

• • •

Backtracking Tree

$$\chi = +000...0$$

$$(\chi_{1} \leftarrow -1) \Rightarrow$$

$$\chi_{3} = 1$$

$$\chi = ++-0...0$$

$$\chi_{9} = 1$$

$$\chi_{0} = -1$$

$$\chi = +-++...+$$

$$\chi_{0} = -1$$

$$\chi_{0} = -1$$

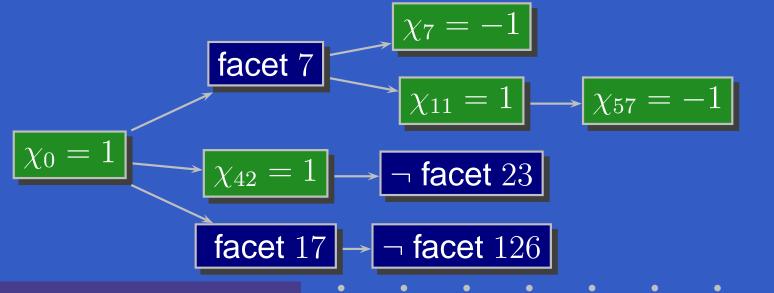
Forcing Variables

$$\{ -1, +1 \} \subset \{ x_1 \cdot x_2, -(x_3 \cdot x_4), x_5 \cdot x_6 \}$$
(Plücker)

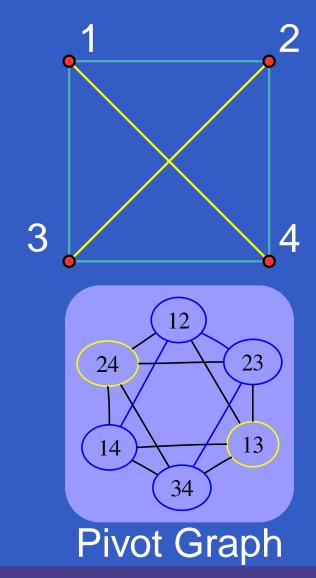
$$x_1 = x_2 = x_3 \cdots = x_{n-d}$$
(On Boundary)

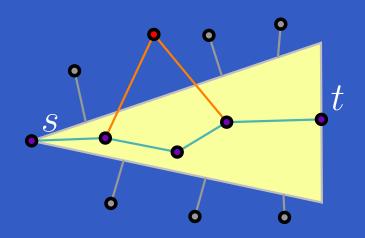
$$\{ -1, +1 \} \subset \{ x_1, x_2, \dots x_{n-d} \}$$
(Off Boundary)

$$\neg \mathcal{F}[i] \lor \neg \mathcal{F}[j] \lor \neg \mathcal{F}[k] \dots$$
(Diameter)



Keeping your distance





 Maintain *fringed* shortest path tree(s)

Forbid short cuts

Approach II: (0, 1)-LP

Plücker Take convex hull of valid (0, 1) points in \mathbb{R}^6 . Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1}}$.

For d = 4, n = 11, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

Approach II: (0, 1)-LP

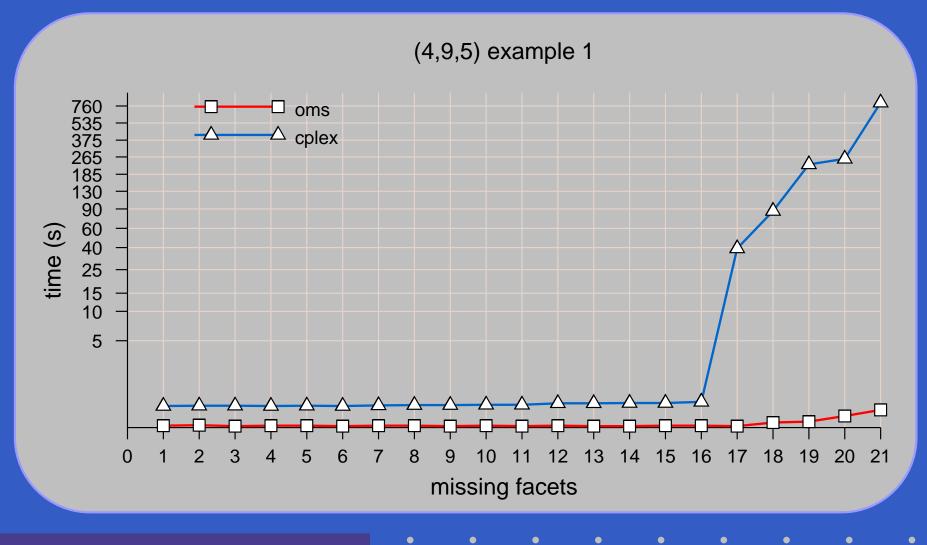
Plücker Take convex hull of valid (0, 1) points in \mathbb{R}^6 . Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1}}$. On Boundary Equalities are easy. Off Boundary $1 \leq \sum x_i \leq n - d - 1$

For d = 4, n = 11, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

Approach II: (0, 1)-LP

Plücker Take convex hull of valid (0, 1) points in \mathbb{R}^6 . Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1}}$. On Boundary Equalities are easy. Off Boundary $1 \leq \sum x_i \leq n - d - 1$ **Diameter** Forbid all *possible* short paths. Enumerate paths in pivot graph. Generate 2 inequalities for each path. For d = 4, n = 11, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

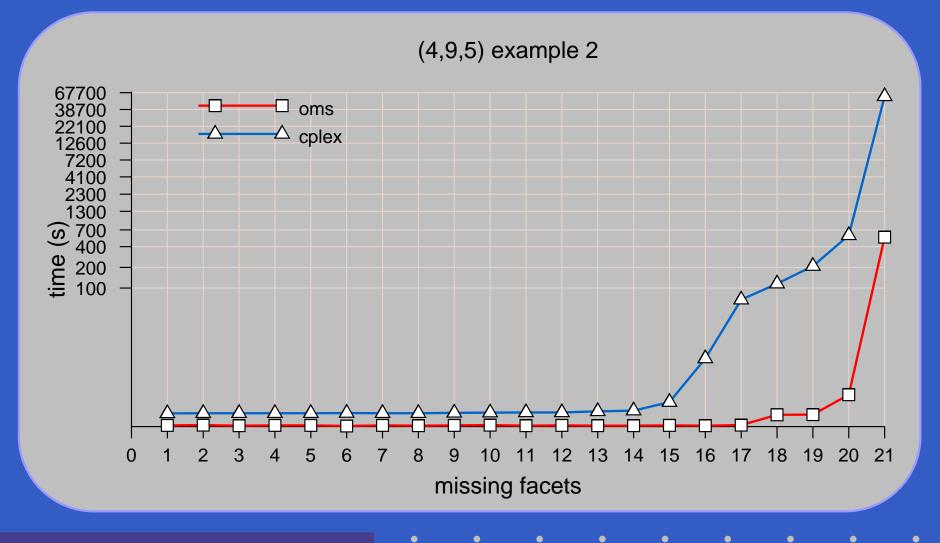
oms vs. cplex (I)



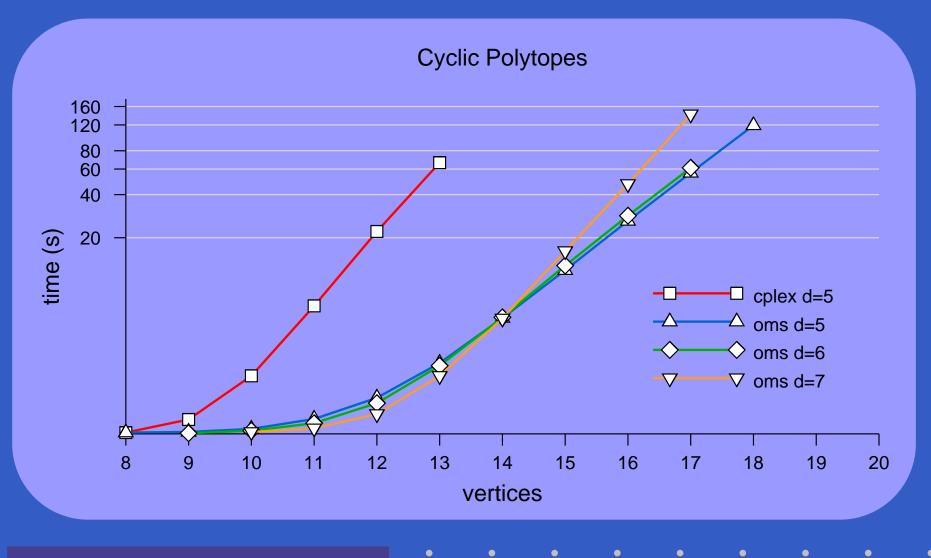
 $<\uparrow>$

JGA 2002 – p. 31/38

oms vs. cplex (II)



oms vs. cplex (III)

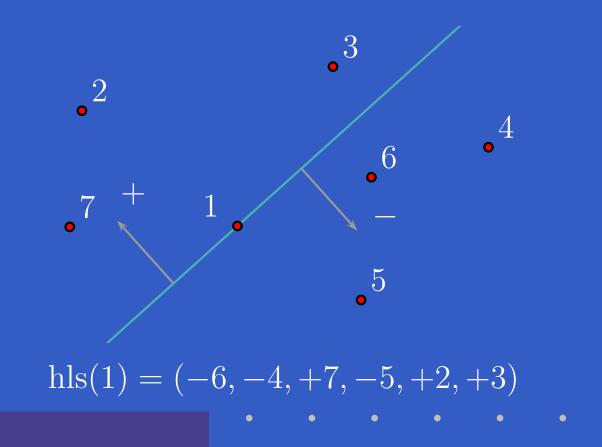


•				
•				
•				

5. Incremental Construction: Hyperline Sequences

Sweeping Around a Hyperline

- Sweep hyperplane around d-1 points.
- Record the (cyclic) order points are reached.



Hyperline Sequences

•
$$N = \{1 \dots n\}$$
.

• A hyperline sequence of $\lambda \in N^{d-1}$,

 $hls(\lambda) = (\sigma_1 \mu_1 \ \sigma_2 \mu_2 \ \dots \ \sigma_{n-d+1} \mu_{n-d+1})$

Where

 $\sigma \in \{+1, -1\}^{n-d+1}$ $\mu \in \operatorname{permutations}(N \setminus \lambda)$

• hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to $hls(\lambda)$

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to $hls(\lambda)$
- A hyperline configuration *encodes* a chirotope as follows

$$j < k \quad \Leftrightarrow \quad [\lambda_i \ \sigma_{ij} \mu_{ij} \ \sigma_{ik} \mu_{ik}] = +$$

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to $hls(\lambda)$
- A hyperline configuration *encodes* a chirotope as follows

$$j < k \quad \Leftrightarrow \quad [\lambda_i \ \sigma_{ij}\mu_{ij} \ \sigma_{ik}\mu_{ik}] = +$$

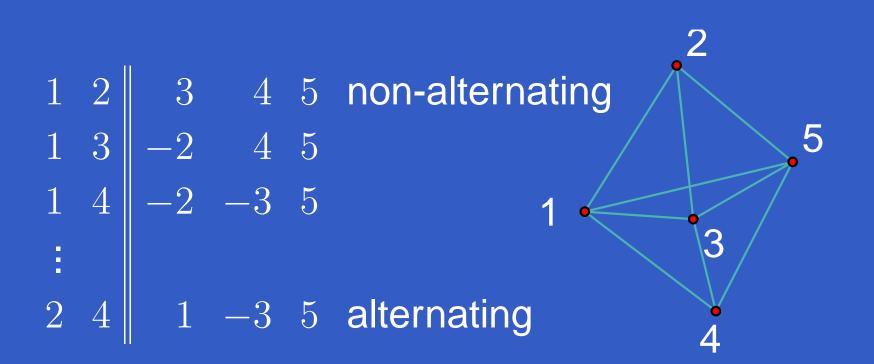
Plücker equations are implicit.

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to $hls(\lambda)$
- A hyperline configuration *encodes* a chirotope as follows

$$j < k \quad \Leftrightarrow \quad [\lambda_i \ \sigma_{ij}\mu_{ij} \ \sigma_{ik}\mu_{ik}] = +$$

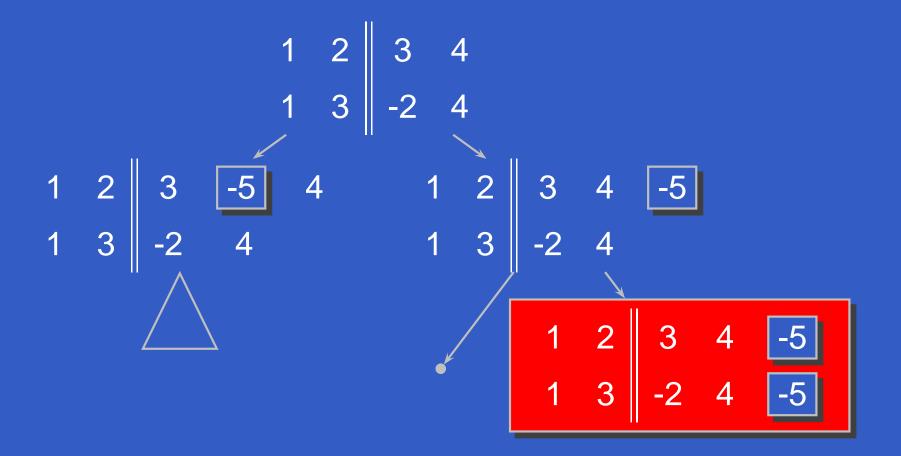
- Plücker equations are implicit.
- Incremental algorithm (with backtracking) due to Bokowski and Guedes de Oliviera tests for flat embedding.

Sign Alternation



Proposition *A hyperline is on the boundary if and only if it has a non-alternating sign sequence.*

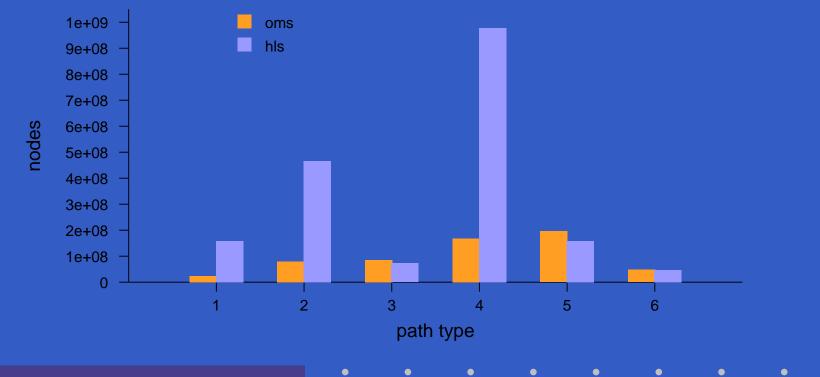
Incremental Construction



choose gap, update intervals, check constr., recurse

Hyperline versus Chirotope Search

Hyperline search algorithm, modified version of [BGdO], uses alternation test.



completing (4,9,5) paths

•				
•				
•				

6. Concluding Remarks

Conclusions

- So far, no presented approach can solve (4,11) examples from only a path.
- Given most of the boundary, moderate sized problems can be tackled.
- Memory is the main limitation.
- Specialized backtracking solver seems competitive with (a) commercial ILP solver and incremental construction.

- Working directly with boundary harder?:
 - No algorithm to recognize spheres. (Noviko, 1960).
 - Computational Experience of Holt.

- Working directly with boundary harder?:
 - No algorithm to recognize spheres. (Noviko, 1960).
 - Computational Experience of Holt.
- Simplicial polytopes
 CUMP
 C simplicial spheres

- Working directly with boundary harder?:
 - No algorithm to recognize spheres. (Noviko, 1960).
 - Computational Experience of Holt.
- Simplicial polytopes
 CUMP
 C simplicial spheres
- Hirsch conjecture is false for spheres (d = 12, Manni)

- Working directly with boundary harder?:
 - No algorithm to recognize spheres. (Noviko, 1960).
 - Computational Experience of Holt.
- Simplicial polytopes
 CUMP
 C simplicial spheres
- Hirsch conjecture is false for spheres (d = 12, Manni)
- Both hyperline configurations and chirotopes are axiomatizations of *oriented matroids*

Remarks: Software

- Web test-drive available via anonpbs http://lids.cs.unb.ca/online
- oms has been parallelized using Marzetta's ZRAM toolkit. Speedup is about 85%. Further improvements possible