Realizability Problems for Convex Polytopes (and Relatives)

or

Excursions in coordinate-free convex geometry

David Bremner

T.U. München / U. New Brunswick

Overview

1. Polytopes and Linear Programming
2. Constructing Polytopes with Long Paths
3. Abstract Point Configurations 1: Chirotopes
4. Searching For Chirotopes
5. Abstract Point Conf. 2: Hyperline Sequences
6. Conclusions

1. Polytopes and Linear Programming

Linear Programming

minimize $c \cdot x$
 Such that

$$
A x \leq b
$$

- $P=\{x \mid A x \leq b\}$ is called a (convex) polyhedron
- Bounded polyhedra are called (convex) polytopes.

Polytopes

- Face: \cap with supporting hyperplane
- $\operatorname{conv}(X)=\{\lambda X \mid$ $\left.\lambda \geq 0, \sum_{i} \lambda_{i}=1\right\}$.
- $P=$ conv (vertices $(P))$

The Simplex Method

simplex path

$$
\text { diameter } \equiv \max _{(u, v)} d(u, v)
$$

The Hirsch Conjecture

Conjecture (Hirsch, 1957)
Any polytope defined by n inequalities in d dimensions has diameter at most $n-d$.

Theorem (Kalai, 1992)
Any polytope defined by n inequalities in d dimensions has diameter at most

$$
2(2 d)^{\log _{2}(n)} .
$$

2. From Paths to Polytopes

The Grand Program

Idea For each combinatorially distinct long path, try to build a polytope out of it.
Problem One path pretty much looks like the next.

Polarity: Paths to Path Complexes

- polar: $P^{*}=\operatorname{conv}\{y \mid \forall x \in P, y \cdot x \leq 1\}$
- vertices \leftrightarrow facets, inclusion inverted.

Path Complexes

Simplicial Complex Family of d-subsets of $\{1 \ldots n\}$ Path Complex Simplicial complex whose dual graph is a path.

r

Enumerating Path Complexes [BBнK]

Non Revisiting Paths

label sequence: 12131

- Each pivot introduces a new vertex.
- Label first facet in order of departure. Labels follow pivots.

Label Sequences

Directed Paths Label sequences $\left\langle s_{j}\right\rangle$ such that

- $s_{j} \neq s_{j-1}$, and
- If $a<b, a$ occurs before b.

End Disjoint Paths (Restricted Growth Functions)

$$
\begin{aligned}
\max _{j} s_{j} & =d \\
t(d, l) & \equiv \text { \#e.d.d. }(d, l) \text {-paths, } \\
t(d, l) & =\left\{\begin{array}{l}
l-1 \\
d-1
\end{array}\right\}
\end{aligned}
$$

Symmetric Paths

- symmetric \equiv same label seq. from both ends.
- \#unlabelled paths $=(t(d, l)+s(d, l)) / 2$

Revisiting Paths

- Model revisits by identifying pairs of vertices
- Characterization of 0 and 1 revisit paths in [BBHK]

3. Chirotopes: Abstract Point Configurations

Searching for polytopes

- Nominally, an n-vertex d-polytope is a point in $\mathbb{R}^{n d}$.

Searching for polytopes

- Nominally, an n-vertex d-polytope is a point in $\mathbb{R}^{n d}$.
- Space is big.

Searching for polytopes

- Nominally, an n-vertex d-polytope is a point in $\mathbb{R}^{n d}$.
- Space is big.
- The pieces corresponding to a polytope are not nice:

Searching for polytopes

- Nominally, an n-vertex d-polytope is a point in $\mathbb{R}^{n d}$.
- Space is big.
- The pieces corresponding to a polytope are not nice:

The realization spaces of polytopes are equivalent to the solutions of arbitrary sets of polynomial inequalities
(Richter-Gebert,Mnëv).

Encoding Point Sets

basis $\equiv B \subset \mathbb{R}^{(d+1) \times d}$

$$
\chi(B)=\operatorname{sign} \operatorname{det}\left[\begin{array}{c}
1 \\
B \\
\vdots \\
1
\end{array}\right]
$$

Idea: Which side of the hyperplane defined by $\left\{b_{1} \ldots b_{d}\right\}$ is b_{d+1} on.

$$
\chi(B)=+1=\mathrm{ccw}
$$

(Realizable) Chirotopes

The chirotope χ of $P \subset \mathbb{R}^{d}$ is the map

$$
\begin{aligned}
B \in P^{d+1} & \rightarrow \chi(B) \in\{0, \pm 1\} \\
{\left[i_{1}, i_{2}, \ldots, i_{d+1}\right] } & \equiv \chi\left(\left\{p_{i_{1}}, \ldots p_{i_{d+1}}\right\}\right)
\end{aligned}
$$

${ }_{0} p_{1}$
${ }_{0} p_{2}$
$[1,3,4]=+1$
$[2,3,4]=-1$

Alternating Sign Maps

Given $N=\{1 \ldots n\}$, a rank $r=d+1$,
$\chi: N^{r} \rightarrow\{-1,0,+1\}$ is
alternating if
$\left[b_{1} \ldots i \ldots j \ldots b_{r}\right]=-1 \cdot\left[b_{1} \ldots j \ldots i \ldots b_{r}\right]$
(determinant w.r.t. row swap).
uniform if $\forall B \chi(B) \neq 0$.
(Non-degeneracy)

(Combinatorial) Chirotopes

A uniform alternating sign map χ is a (uniform) chirotope if

$$
\begin{aligned}
\forall \lambda \in N^{r-2}, \forall\{a, b, c, d\} & \subset N \backslash \lambda, \\
\{+1,-1\} \subset & \{[\lambda a b] \cdot[\lambda c d], \\
- & {[\lambda a c] \cdot[\lambda b d], } \\
& {[\lambda a d] \cdot[\lambda b c]\} }
\end{aligned}
$$

(3-term Plücker-Graßmann Identity)

Matroid Polytopes

Given a uniform chirotope (N, χ) :

- $F \subset N^{d}$ is a facet if $\forall\{j, k\} \subset N \backslash F$,
$\left[\begin{array}{ll}F & j\end{array}\right]=\left[\begin{array}{ll}F & k\end{array}\right.$.
- (N, χ) is a matroid polytope if $\forall x \in N$, x is contained in some facet.

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 2
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 2 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right]
\end{aligned}
$$

Matroid Polytope Completion

Partial Chirotope A map $\chi(B): N^{r} \rightarrow\{-1,+1, ?\}$
Matroid Polytope Completion
Given: A partial chirotope (N, χ), and some subset \mathcal{F} of the facets.
Question: Is there a chirotope (N, χ^{*}) consistent with χ such that each $F \in \mathcal{F}$ is a facet of χ^{*}.

Complications

Geodesic Embedding Given $s, t \in \mathcal{F}$, add constraint $d(s, t)=k$.
MPC is NP-Hard in rank 3 with $\mathcal{F}=\emptyset$.
Tschirnitz CCCG2001
Realizability is also NP-Hard (Richter-Gebert 1995, Mnëv). Non-realizable instances for $d=3, n=10$ and $d=4, n=9$

4. Direct Approaches to Chirotope Completion

Approach I: Backtracking

- oms: Backtracking algorithm to find "satisfying" basis signs

1. Choose a sign
2. Find the consequences
3. (Maybe) recurse

Approach I: Backtracking

- oms: Backtracking algorithm to find "satisfying" basis signs

1. Choose a sign
2. Find the consequences
3. (Maybe) recurse

- 3 sets of constraints: Plücker, boundary, distance

Approach I: Backtracking

- oms: Backtracking algorithm to find "satisfying" basis signs

1. Choose a sign
2. Find the consequences
3. (Maybe) recurse

- 3 sets of constraints: Plücker, boundary, distance
- Analogous to Davis-Putnam SAT Procedure
- Singleton clause \equiv forced variable

Backtracking Tree

Forcing Variables

$$
\begin{array}{rlr}
\{-1,+1\} & \subset\left\{x_{1} \cdot x_{2},-\left(x_{3} \cdot x_{4}\right), x_{5} \cdot x_{6}\right\} & \text { (Plücker) } \\
x_{1}=x_{2}=x_{3} \cdots=x_{n-d} & \text { (On Boundary) } \\
\{-1,+1\} \subset\left\{x_{1}, x_{2}, \ldots x_{n-d}\right\} & \text { (Off Boundary) } \\
\neg \mathcal{F}[i] \vee \neg \mathcal{F}[j] \vee \neg \mathcal{F}[k] \ldots & \text { (Diameter) }
\end{array}
$$

Keeping your distance

Pivot Graph

- Maintain fringed shortest path tree(s)
- Forbid short cuts

Approach II: (0, 1)-LP

Plücker Take convex hull of valid $(0,1)$ points in \mathbb{R}^{6}. Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1}}$.

For $d=4, n=11$, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

Approach II: (0, 1)-LP

Plücker Take convex hull of valid $(0,1)$ points in \mathbb{R}^{6}. Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1} \text {. }}$

On Boundary Equalities are easy.
Off Boundary $1 \leq \sum x_{i} \leq n-d-1$

For $d=4, n=11$, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

Approach II: (0, 1)-LP

Plücker Take convex hull of valid $(0,1)$ points in \mathbb{R}^{6}. Lift 16 inequalities to $\mathbb{R}^{\binom{n}{d+1}}$.

On Boundary Equalities are easy.
Off Boundary $1 \leq \sum x_{i} \leq n-d-1$
Diameter Forbid all possible short paths.

- Enumerate paths in pivot graph.
- Generate 2 inequalities for each path.

For $d=4, n=11$, roughly 160000 inequalities in 410 binary variables, 10 nonzeros per row.

oms vs. cplex (I)

$(4,9,5)$ example 1

oms vs. cplex (II)

$(4,9,5)$ example 2

oms vs. cplex (III)

Cyclic Polytopes

5. Incremental Construction: Hyperline Sequences

Sweeping Around a Hyperline

- Sweep hyperplane around $d-1$ points.
- Record the (cyclic) order points are reached.

$$
\operatorname{hls}(1)=(-6,-4,+7,-5,+2,+3)
$$

Hyperline Sequences

- $N=\{1 \ldots n\}$.
- A hyperline sequence of $\lambda \in N^{d-1}$,

$$
\operatorname{hls}(\lambda)=\left(\sigma_{1} \mu_{1} \sigma_{2} \mu_{2} \ldots \sigma_{n-d+1} \mu_{n-d+1}\right)
$$

Where

$$
\begin{aligned}
& \sigma \in\{+1,-1\}^{n-d+1} \\
& \mu \in \text { permutations }(N \backslash \lambda)
\end{aligned}
$$

Hyperline Configurations

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to hls(λ)

Hyperline Configurations

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to hls(λ)
- A hyperline configuration encodes a chirotope as follows

$$
j<k \Leftrightarrow\left[\lambda_{i} \sigma_{i j} \mu_{i j} \sigma_{i k} \mu_{i k}\right]=+
$$

Hyperline Configurations

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to hls(λ)
- A hyperline configuration encodes a chirotope as follows

$$
j<k \quad \Leftrightarrow \quad\left[\lambda_{i} \sigma_{i j} \mu_{i j} \sigma_{i k} \mu_{i k}\right]=+
$$

- Plücker equations are implicit.

Hyperline Configurations

- hyperline configuration \equiv map from $\lambda \in N^{d-1}$ to hls (λ)
- A hyperline configuration encodes a chirotope as follows

$$
j<k \quad \Leftrightarrow \quad\left[\lambda_{i} \sigma_{i j} \mu_{i j} \sigma_{i k} \mu_{i k}\right]=+
$$

- Plücker equations are implicit.
- Incremental algorithm (with backtracking) due to Bokowski and Guedes de Oliviera tests for flat embedding.

Sign Alternation

Proposition

A hyperline is on the boundary if and only if it has a non-alternating sign sequence.

Incremental Construction

choose gap, update intervals, check constr., recurse

Hyperline versus Chirotope Search

Hyperline search algorithm, modified version of [BGdO], uses alternation test.
completing $(4,9,5)$ paths

6. Concluding Remarks

Conclusions

- So far, no presented approach can solve $(4,11)$ examples from only a path.
- Given most of the boundary, moderate sized problems can be tackled.
- Memory is the main limitation.
- Specialized backtracking solver seems competitive with (a) commercial ILP solver and incremental construction.

Remarks: Background

- Working directly with boundary harder?:
- No algorithm to recognize spheres. (Noviko, 1960).
- Computational Experience of Holt.

Remarks: Background

- Working directly with boundary harder?:
- No algorithm to recognize spheres. (Noviko, 1960).
- Computational Experience of Holt.
- Simplicial polytopes \subset UMP \subset simplicial spheres

Remarks: Background

- Working directly with boundary harder?:
- No algorithm to recognize spheres. (Noviko, 1960).
- Computational Experience of Holt.
- Simplicial polytopes \subset UMP \subset simplicial spheres
- Hirsch conjecture is false for spheres $(d=12$, Manni)

Remarks: Background

- Working directly with boundary harder?:
- No algorithm to recognize spheres. (Noviko, 1960).
- Computational Experience of Holt.
- Simplicial polytopes \subset UMP \subset simplicial spheres
- Hirsch conjecture is false for spheres $(d=12$, Manni)
- Both hyperline configurations and chirotopes are axiomatizations of oriented matroids

Remarks: Software

- Web test-drive available via anonpbs http://lids.cs.unb.ca/online
- oms has been parallelized using Marzetta's ZRAM toolkit. Speedup is about 85\%. Further improvements possible

