
Diss. ETH No. 12699

ZRAM:

A Library of Parallel Search Algorithms

and Its Use in Enumeration and

Combinatorial Optimization

Dissertation

submitted to the

Swiss Federal Institute of Technology

Zurich

for the degree of

Doctor of Technical Sciences

presented by

Ambros Marzetta

Dipl. Informatik-Ing. ETH
born on April 8th, 1968
citizen of Basel BS

Accepted on the recommendation of
Prof. Dr. J�urg Nievergelt, examiner
Prof. Dr. Komei Fukuda, coexaminer

1998

http://www.ethz.ch/

Contents

Abstract vii

Kurzfassung ix

Acknowledgments xi

1 Project Overview 1
1.1 Goals . 1
1.2 Principal Findings . 1
1.3 Structure of This Thesis . 3

2 The N-Queens Example on ZRAM 5
2.1 Data Types . 5
2.2 Procedures . 7
2.3 Initialization . 9
2.4 Main Program . 10

3 Background: Search and Parallel Computing 13
3.1 Search Algorithms . 13

3.1.1 Classi�cation . 14
3.1.2 Forward Search . 14
3.1.3 Backward Search . 16
3.1.4 Combination of Backward and Forward Search 17
3.1.5 Heuristic Search . 17

3.2 Models and Tools . 21
3.3 Software Libraries . 23
3.4 Performance Measures . 25
3.5 Hardware . 26

4 Design of ZRAM 29
4.1 Requirements for a Parallel Search Workbench 29

4.1.1 Generality and Flexibility 29

i

ii CONTENTS

4.1.2 Simplicity . 30
4.1.3 Usability . 30
4.1.4 E�ciency . 31
4.1.5 Portability . 31

4.2 Architecture of ZRAM . 32
4.2.1 Three Interfaces and Four Layers 32
4.2.2 Extensibility . 34
4.2.3 Skeletons and Upcalls 34

4.3 Data Types . 35
4.3.1 Compression of Nodes 37
4.3.2 Incremental Storage 38

5 Virtual Machine and Common Services 39
5.1 Requirements for a Virtual Machine 39
5.2 Services Provided . 40
5.3 Interface . 42

5.3.1 Virtual Front End . 42
5.3.2 Horizontal Communication: Message Passing with Ter-

mination Detection . 43
5.3.3 General Load Balancing and Checkpointing 44
5.3.4 Special Load Balancing: The Speculative Priority Queue 46

5.4 Implementation . 47
5.4.1 Termination Detection 48
5.4.2 Load Balancing . 48
5.4.3 Checkpointing . 48
5.4.4 Speculative Priority Queue 49

5.5 Host-System Layer . 51

6 Search Engines 53
6.1 Backtrack . 55

6.1.1 Interface . 55
6.1.2 Implementation . 56

6.2 Branch-And-Bound . 56
6.2.1 Interface . 57
6.2.2 Implementation . 62

6.3 Reverse Search . 63
6.3.1 Interface . 64
6.3.2 Implementation . 68

6.4 Tree-Size Estimator . 71
6.4.1 Interface . 71
6.4.2 Implementation . 72

CONTENTS iii

7 ZRAM in Action 75
7.1 Convex Hull and Vertex Enumeration in Polyhedra 75
7.2 Quadratic Assignment Problem 78
7.3 Vertex Cover . 80
7.4 Connected Induced Subgraphs 82
7.5 Polyominoes . 84
7.6 Euclidean Spanning Trees . 84
7.7 Other Applications . 85

8 Conclusions 91
8.1 Lessons Learned . 91
8.2 Directions for Future Research 92

iv CONTENTS

List of Figures

2.1 The 40 solutions of the 7-queens problem. 6
2.2 Call graph of the n-queens application. 8

3.1 The four classes of forward-search algorithms. 15

4.1 The ZRAM architecture. 32
4.2 Relative size of the three application-independent layers. . . . 34

5.1 ZRAM's process model. 41
5.2 Execution of a ZRAM program in time. 42
5.3 Call graph of load balancing and checkpointing. 45

6.1 Call graph of a branch-and-bound application. 54
6.2 Implementation of the parallel backtrack engine. 57
6.3 Call graph of a reverse-search application. 65
6.4 Mapping the reverse-search operations onto the virtual machine. 69
6.5 Mapping the reverse-search data onto the virtual machine. . . 70

7.1 Speedup for vertex enumeration of c7-3 on the Intel Paragon. 76
7.2 A minimal vertex cover of a graph. 80
7.3 A lower bound for the minimum vertex cover. 82
7.4 Connected induced subgraphs of a seven-vertex graph. 83
7.5 The 12 pentominoes. 85
7.6 The 35 hexominoes. 86
7.7 Mapping of polyominoes to connected induced subgraphs. . . . 86
7.8 Number of polyominoes and sequential execution time. 87
7.9 The 77 Euclidean spanning trees of a �ve-point set. 87
7.10 The 15-puzzle. 88
7.11 The cells of a two-dimensional arrangement. 89
7.12 Isoe�ciency for cell enumeration. 90

v

vi LIST OF FIGURES

Abstract

ZRAM is a software library which renders the power of parallel computers
usable for combinatorial optimization and enumeration. It provides a set
of parallel search engines for branch-and-bound, reverse search, backtrack-
ing and tree-size estimation. These search engines hide the complexity of
parallelism from the application programmer.

ZRAM contains the �rst parallel implementation of the reverse-search al-
gorithm and the �rst parallel branch-and-bound engine that can be restarted
at checkpoints. It is the �rst search library containing a tree-size estimation
tool, which proved to be valuable in allocating the limited CPU resources to
the most promising problem instances. The combination of these elements,
together with the e�ciency of the implementation, allowed us to solve large
enumeration and combinatorial optimization problems. These benchmarks
include quadratic assignment instances which were previously unsolved and
the enumeration of the vertices of complex high-dimensional polytopes.

ZRAM has proved its exibility during the development of a wide range of
applications (e.g., quadratic assignment problem, vertex and facet enumer-
ation, hyperplane arrangements, 15-puzzle, Euclidean spanning trees, con-
nected induced subgraphs). Some of its users had little or no experience
in parallel programming and got access to parallel computers only through
ZRAM.

The work on ZRAM has clari�ed what properties we require of a parallel
search library and demonstrates that a four-layered structure (applications,
search engines, common services, host systems) is a suitable architecture.

vii

viii ABSTRACT

Kurzfassung

ZRAM ist eine Programmbibliothek, welche die Leistung paralleler Rechner
dem Gebiet der kombinatorischen Optimierungs- und Aufz�ahlungsalgorith-
men zug�anglich macht. Es enth�alt eine Sammlung paralleler Suchmaschinen
f�ur Branch-and-Bound, Reverse-Search und Backtracking sowie einWerkzeug
zur Gr�ossenabsch�atzung von Suchb�aumen. Die Schnittstelle der Bibliothek
verbirgt die Komplexit�at der Parallelisierung vor dem Programmierer.

ZRAM enth�alt die erste parallele Implementierung des Reverse-Search-
Algorithmus und die erste parallele Branch-and-Bound-Maschine, die man
unterbrechen und neu starten kann. Es enth�alt auch als erste Bibliothek
paralleler Suchalgorithmen ein Werkzeug, das die Gr�osse von Suchb�aumen
absch�atzt. Dieses Werkzeug dient dazu, die beschr�ankten Ressourcen an
Rechenzeit den erfolgversprechendsten Berechnungen zuzuteilen. Die Kom-
bination dieser Elemente und deren e�ziente Implementierung erm�oglichten
es uns, grosse kombinatorische Optimierungs- und Aufz�ahlungsprobleme zu
l�osen. Darunter sind bisher ungel�oste Instanzen des quadratischen Zuord-
nungsproblems und die Aufz�ahlung der Ecken hochdimensionaler Polyeder.

Die Flexibilit�at von ZRAM zeigt sich im breiten Spektrum der Anwen-
dungen (u.a. quadratisches Zuordnungsproblem, Aufz�ahlung von Ecken und
Facetten eines Polyeders, Arrangements von Hyperebenen, 15-Puzzle, eukli-
dische Spannb�aume, zusammenh�angende Teilgraphen). Einige seiner Anwen-
der hatten wenig oder gar keine Erfahrung mit parallelem Programmieren
und bekamen erst dank ZRAM Zugang zu Parallelrechnern.

Anhand von ZRAM haben wir gezeigt, was f�ur Anforderungen an eine
Bibliothek paralleler Suchalgorithmen zu stellen sind und dass eine Struk-
turierung in die vier Schichten Anwendung, Suchmaschinen, virtuelle Ma-
schine und Systemanpassung sinnvoll ist.

ix

x KURZFASSUNG

Acknowledgments

I sincerely thank the many people who assisted me in creating ZRAM and
those who taught me valuable skills.

J�urg Nievergelt, my advisor, taught me to present scienti�c work e�ec-
tively, insisting that I deliver my message clearly, in written work as well as
in presentations. He left me complete freedom in my research and provided
me with enough computing power for my projects.

Komei Fukuda, my coexaminer, sparked my interest in polyhedra and in
reverse search algorithms. His wide range of knowledge and willingness to
share it led to interesting research problems.

Adrian Br�ungger was the �rst user of ZRAM, implementing the 15-puzzle,
QAP, and TSP applications. The �rst user is always the one who su�ers
the most from bugs and de�ciencies in the code. We had many technical
discussions which greatly inuenced the design of ZRAM.

Nora Sleumer used ZRAM to compute hyperplane arrangements, sug-
gested various improvements to the library, and, having read the �rst frag-
ments of my manuscript, showed me how to improve my writing English.

Three further users of ZRAM who gave me important feedback and mo-
tivation are Frank Ammeter, Gerard Kindervater and Danuta Sosnowska.

David Avis and Jens Clausen gave permission to use, modify and paral-
lelize their programs for the vertex enumeration and quadratic assignment
problems, respectively, and in this way laid the ground work for the two most
prominent applications of ZRAM.

I have always enjoyed working in the pleasant environment of our research
group: Michele De Lorenzi taught me to distinguish good movies from bad
ones. Ralph Gasser showed me how to apply search algorithms to games
with incomplete information. Thomas Lincke often questioned my technical
assertions, forcing me to rethink them. Fabian M�aser regularly reminded
me that combinatorial game theory is an interesting topic. Martin M�uller
gave me the helpful advice of an experienced researcher in many situations.
Matthias M�uller, the expert for computability theory, had enough patience
to help me in preparing for important Jass matches. Peter Schorn persuaded

xi

xii ACKNOWLEDGMENTS

me to join the Studienkommission, where I learnt a lot about bureaucracy.
Christoph Wirth, the Macintosh expert, initiated our commercial project
St�ock Wyys Stich.

Finally, I thank my family and all my other friends for their support.

Chapter 1

Project Overview

1.1 Goals

Search algorithms are a ubiquitous topic in computer science. They are the
only method for the solution of most combinatorial optimization problems,
serve for the enumeration of geometric objects, and are applied in arti�cial
intelligence and game theory. They are an ideal base of a parallel software
library because they are prevalent in diverse �elds of computer science, be-
cause they need huge amounts of computing power, and because application-
independent paradigms can be identi�ed. These facts led us to de�ne the
following three goals for the ZRAM project:

� Developing a library of parallel search algorithms which can be used
easily and successfully even by people who have no parallel program-
ming experience.

� Ensuring portability of the library so that its lifetime exceeds that of
parallel computer hardware.

� Demonstrating (by solving benchmark problems) that programs using
our library are reasonably e�cient compared to direct special-purpose
implementations of similar algorithms.

1.2 Principal Findings

With ZRAM, we have implemented a software package containing among a
variety of search algorithms the �rst parallel implementation of the reverse-
search paradigm. During the development of the library and the experiments

1

2 CHAPTER 1. PROJECT OVERVIEW

with various applications we could assert and substantiate the following the-
ses:

� Automatic parallelization|that is, e�ciently running a program writ-
ten for a sequential computer on a parallel machine|is practicable in
restricted cases, namely for combinatorial search algorithms. People
who want to solve combinatorial problems without having learnt par-
allel programming are best served by a library which hides all parallel
algorithms, rather than a general-purpose parallel language (which is
di�cult to learn) or a parallelizing compiler (which does not handle
combinatorial search algorithms e�ectively).

� Large, search-intensive computations are well suited to parallel execu-
tion and produce good speedup. As the computation{communication
ratio is high, neither a shared memory nor a �ne-tuned load-balancing
algorithm are necessary.

� In typical search applications the overhead created by the use of a li-
brary is negligible. Two ZRAM applications solved problem instances
that had never been solved before: We enumerated the vertices of
three large polytopes and solved nine previously unsolved benchmark
instances of the quadratic assignment problem.

In particular, the following questions are of interest, and have been answered:

� How can we structure a library of parallel search algorithms to enhance
clarity and usability of the code? What layers are necessary and what
functions belong to which layer? How do interfaces to general parallel
tree search engines look?

� What components, beside the search engines and the load-balancing
code, must a library of search algorithms have? The quadratic assign-
ment program has shown that a tree-size estimation tool and the possi-
bility of restarting partial computations (checkpointing) are necessary
tools for the solution of large problem instances.

� How much time does an inexperienced user need to learn the ZRAM
interfaces and to develop a parallel program on top of it? Observation
of the �rst few users of the library has shown that between one and
three days are enough to produce a �rst parallel implementation on
top of ZRAM. In comparison, an implementation of the load-balancing
code from scratch would take months.

1.3. STRUCTURE OF THIS THESIS 3

1.3 Structure of This Thesis

After an example of a complete ZRAM application (the n-queens program in
Chapter 2), we give the necessary background on search algorithms as well as
on models, tools and libraries in parallel computing (Chapter 3). Continuing,
we explain the design and architecture of our library (Chapter 4). Then we
describe the three main layers of ZRAM bottom-up: the virtual machine
and common services in Chapter 5, the search-engine layer in Chapter 6, and
�nally the applications in Chapter 7.

4 CHAPTER 1. PROJECT OVERVIEW

Chapter 2

The N-Queens Example on

ZRAM

The best way of introducing the programmer's interface to a software library
is giving a small application as an example. For its simplicity, we have chosen
a backtracking algorithm for the n-queens problem: Place n queens on a
chessboard of size n� n such that every row, column and diagonal contains
at most one queen. Our program has to enumerate all solutions for a given n.
It does not eliminate symmetric solutions, as such a symmetry check would
not help us in describing the interface, but decrease the legibility of the code.
The program is written in ANSI C. Figure 2.1 shows the 40 solutions of the
7-queens problem.

Wanting to avoid variable-sized data types for this introduction, we de�ne
the maximum size of the board as MaxN:

#define MaxN 35

2.1 Data Types

Every ZRAM application (backtrack, branch and bound or reverse search)
de�nes two data types, namely the global data and the node of the search
tree. ZRAM expects both data types to be structs with a �xed header
(Z_NODE_HEADER). The header contains information which is necessary for
copying the data and for its encapsulation into messages sent among pro-
cessors. It is initialized by the function z_NewNode, which is used instead of
malloc for allocating variables of these types.

The global data consists only of the number of queens to place (the integer
n). It is initialized once before the search engine is started and not modi�ed
during the search:

5

6 CHAPTER 2. THE N-QUEENS EXAMPLE ON ZRAM

Figure 2.1: The 40 solutions of the 7-queens problem. The small C program in
this chapter computes them in parallel.

typedef struct nq_Global { /* global data */

Z_NODE_HEADER;

int n; /* must be > 0 */

} nq_Global, *nq_GlobalP;

As the backtracking algorithm proceeds by placing queens into successive
columns from left to right, a search-tree node is de�ned by d, the number
of queens already placed (in the range 0 through n) and an array p of their
positions. The sets of the occupied rows and diagonals are redundant and
stored for e�ciency:

typedef struct nq_Node { /* node of the search tree */

Z_NODE_HEADER;

int d; /* 0 <= d <= n */

int p[MaxN]; /* p[0..d-1] are in use */

int row_occupied[MaxN],

diag1_occupied[2*MaxN],

diag2_occupied[2*MaxN];

} nq_Node, *nq_NodeP;

2.2. PROCEDURES 7

2.2 Procedures

We begin by showing the procedure nq_Print, which can output any node
of the search tree, but is called by nq_BranchInPlace only for boards which
have all n queens placed (i.e., nodes with d = n).

static void nq_Print(nq_GlobalP global, nq_NodeP node)

{

int i;

for (i=0;i<node->d;i++) printf("%3ld", (long)node->p[i]);

printf("\n");

} /* nq_Print */

Now we are ready to understand the core of the program, the procedure
nq_BranchInPlace. This procedure is called by ZRAM's parallel search
engine (Figure 2.2). It is the procedure which increments d, tries to place the
next queen in all positions of column d, and calls itself recursively. Only here,
in the recursive call, the ZRAM version di�ers from the ordinary program
shown in textbooks. Instead of calling itself directly, the procedure calls
the library procedure whatToDo and gives the control to the parallel search
engine. whatToDo does any one of calling nq_BranchInPlace recursively,
sending the node to another processor immediately, storing the node for later
evaluation and load balancing, or saving it in a disk �le (checkpointing). The
user does not see which of these possibilities is chosen by the search engine.

boolean nq_BranchInPlace(nq_GlobalP global, nq_NodeP node,

z_bt_DoProc whatToDo, void *ref)

{

int col, row, *p;

col = node->d;

p = &node->p[col];

node->d++;

for (row = global->n-1; row>=0; --row)

if (! node->row_occupied[row] &&

! node->diag1_occupied[MaxN + col + row] &&

! node->diag2_occupied[MaxN - col + row]) {

*p = row;

if (node->d == global->n)

nq_Print(global, node);

8 CHAPTER 2. THE N-QUEENS EXAMPLE ON ZRAM

else {

node->row_occupied[row] = 1;

node->diag1_occupied[MaxN + col + row]++;

node->diag2_occupied[MaxN - col + row]++;

whatToDo((z_NodeP) node, ref);

node->row_occupied[row] = 0;

node->diag1_occupied[MaxN + col + row]--;

node->diag2_occupied[MaxN - col + row]--;

}

}

node->d--;

return 0;

} /* nq_BranchInPlace */

Applications

Search engines

N-Queens
Main Program

mmain
nq_BranchInPlace

z_bt_Enumerate

N-Queens
initproc

ZRAM Runtime System Service modules

Figure 2.2: Call graph of the n-queens application with respect to ZRAM's layered
structure. In the current chapter, we show the code of the application layer and
how it interfaces with the lower layers.

A ZRAM backtracking application is completely speci�ed by the proce-
dure BranchInPlace. A reverse-search application speci�es its search tree by
means of an adjacency oracle and a local search function, whereas a branch-
and-bound application de�nes a branching procedure, which divides a prob-
lem into subproblems, and a comparison function, which compares the lower
bounds of two tree nodes.

2.3. INITIALIZATION 9

2.3 Initialization

Every ZRAM application de�nes a procedure initproc which is executed by
every processor of the parallel computer before the main program is started
(see Figure 2.2). This procedure has four tasks:

1. Initialize the ZRAM modules which are used by the program. The n-
queens program initializes the backtracking module by calling z_bt2_-
Init.

2. De�ne the application-speci�c data types (nq_Global and nq_Node) to
the system by calling z_InstallClass. The result of this operation
is stored in nq_GlobalTag and nq_NodeTag and later used for data
allocation by z_NewNode.

3. De�ne the application-speci�c procedures (nq_BranchInPlace) to the
system by storing their address in a struct of type z_bt_ProcSetT and
calling z_InstallProcSet. The result of this operation is later used
in the call to the parallel search engine.

4. Do application-speci�c initializations. The n-queens program contains
none of them.

static int nq_GlobalTag, nq_NodeTag;

static z_bt_ProcSetT nq_procset;

static int nq_procsetnum;

void initproc(void)

{

/* This function is called once on every processor. */

z_bt2_Init(); /* Initialize the search engine module */

nq_GlobalTag = z_InstallClass(nq_Global, 0, 0, 0);

nq_NodeTag = z_InstallClass(nq_Node, 0, 0, 0);

nq_procset.bt_BranchInPlace = (z_bt_BranchProc)nq_BranchInPlace;

nq_procsetnum = z_InstallProcSet((z_ProcSetP) &nq_procset);

} /* initproc */

Other search libraries simplify the initialization, but lose exibility, by re-
quiring �xed names for the data types and procedures. When their approach

10 CHAPTER 2. THE N-QUEENS EXAMPLE ON ZRAM

is used, the information given by initproc is found by the linker automati-
cally. However, they lose the possibility of using more than one search engine
with di�erent sets of application-speci�c procedures in the same program (see
Sec. 4.2.3).

2.4 Main Program

The main program of a ZRAM application has the name mmain (the identi�er
main is already used by ZRAM itself and cannot be used again). ZRAM
starts the application such that mmain is executed by one processor after
initproc has been executed by all processors. The main program allocates
and initializes the global data and the root of the search tree (an empty
chessboard), and calls the parallel backtrack engine z_bt_EnumerateDFExp

(see Figure 2.2).

int mmain(int argc, char **argv, char **envp)

{

nq_GlobalP global;

nq_NodeP root;

int i;

global = (nq_GlobalP) z_NewNode(nq_GlobalTag,

sizeof(nq_Global));

if (!global) exit(1);

global->n = atoi(argv[1]);

if (global->n < 1 || global->n > MaxN) return Usage(argv[0]);

root = (nq_NodeP) z_NewNode(nq_NodeTag, sizeof(nq_Node));

root->d = 0;

for (i = 0; i < global->n; i++) root->row_occupied[i] = 0;

for (i = 0; i < 2*MaxN; i++)

root->diag1_occupied[i] = root->diag2_occupied[i] = 0;

z_bt_EnumerateDFExp(nq_procsetnum, (z_bt_GlobalP) global,

(z_NodeP)root, 0);

return 0;

} /* mmain */

That's enough for the introduction. The presented code, linked together with
ZRAM's backtrack engine, su�ces to enumerate the n-queens con�gurations

2.4. MAIN PROGRAM 11

in parallel. In Section 6.1.1 we will show how a backtrack computation can
be checkpointed and restarted.

12 CHAPTER 2. THE N-QUEENS EXAMPLE ON ZRAM

Chapter 3

Background: Search and

Parallel Computing

3.1 Search Algorithms

Computer science and operations research use the word search with various
meanings. Four of them are:

� Searching a document in a collection of documents (information re-
trieval). This kind of search has become very common through the
growth of the World Wide Web.

� Searching a record with a given key in a data base, such as a name
in a phone directory or a word in a German{English dictionary. The
importance of this problem has led Knuth to devote a full chapter of
The Art of Computer Programming [40] to it.

� Searching a target in a continuous or discrete space [62]. Given are a
probability distribution for the target's position in the space and a de-
tection function that relates e�ort applied in a region to the probability
of detecting the target given that it is in that region. The problem is to
�nd an allocation of e�ort to space that maximizes the probability of
detecting the target subject to a given constraint on e�ort. A typical
application is searching a lost submarine in the ocean.

� Searching elements with given properties in graphs. In general, these
graphs are not stored explicitly in memory, but implicitly given by a
rule for computing neighbors of a point. Often, an objective function
to be minimized or maximized is de�ned on the points of the graph (as
in combinatorial optimization or in two-player games), or all elements

13

14 CHAPTER 3. BACKGROUND

have to be enumerated (as in computing the vertices of a polyhedron
given by its facets). This kind of search is investigated in the present
dissertation. It has a huge number of applications ranging from the
more than 300 NP-complete problems listed by Garey and Johnson
[27] to strategy games (e.g., Chess or Go) and enumeration problems
in geometry.

Sometimes, we call the graph being searched a state space and its vertices
states or nodes. In combinatorial optimization, where a problem is decom-
posed into subproblems, the states correspond to the subproblems.

3.1.1 Classi�cation

Graph search algorithms can be classi�ed by the characteristic of search com-
pleteness [28]. It makes a big di�erence whether an approximate solution is
satisfactory or we need a provably optimal one. Approximate (near-optimal)
solutions are found by heuristic search algorithms (e.g., simulated annealing
or GRASP), which search a random subset of the state space and thereby
sacri�ce accuracy for speed (Sec. 3.1.5). Exact (optimal) solutions are found
by exhaustive search algorithms (e.g., backtracking) which either search the
complete state space or cut o� subspaces that provably do not contain solu-
tions.

Exhaustive search algorithms are classi�ed further by search direction.
Forward search (Sec. 3.1.2) starts from states with unknown value and tries
to �nd their values. In contrast, backward search (Sec. 3.1.3)|not to be
confused with reverse search|starts from states whose value is known and
propagates this information to unknown states. Combinations of forward
and backward search are possible (Sec. 3.1.4).

3.1.2 Forward Search

Forward search is the most important class of exhaustive search techniques,
and so far, all of ZRAM's search engines belong to it. It often �nds exact
results to NP-complete problems e�ciently, although we cannot prove this
to be true in general. When we look at the di�culty of parallelizing forward-
search algorithms, we can group them|depending on the amount of global
information used|into four classes of increasing di�culty level (Fig. 3.1).

1. The most basic form of forward search is the well-known backtrack-
ing, where a �xed search tree, of which some leaves are de�ned to be
solutions, is traversed in depth-�rst order. If all solutions are to be

3.1. SEARCH ALGORITHMS 15

1 2 3 4

Figure 3.1: The four classes of forward search algorithms: 1. Independent subtrees.
2. Cuto�s. 3. Cycles. 4. More global information.

enumerated, the whole tree must be traversed and the ordering of the
subtrees is irrelevant. If only one solution is to be found, a good subtree
ordering heuristic can accelerate the algorithm.

Independence of subtrees is the property which identi�es this class
and facilitates parallelization. The reverse-search paradigm shares this
property. In a parallel implementation of the other three classes, the
dependencies among subtrees can lead to search overhead.

2. Our second class introduces a dependence among the subtrees, but still
forbids cycles in the state space. In optimization and game trees, an
objective function assigns every solution a value, and we do not only
want to �nd any solution, but the one which has the lowest value.
Both branch-and-bound and the alpha-beta algorithm cut o� subtrees
depending on the best solution currently known (upper bound). A
good search order (move ordering heuristic) is important to �nd good
solutions quickly and to cut o� subtrees as large as possible. This fact
complicates the parallelization (of alpha-beta even more than branch-
and-bound) because the parallel evaluation reduces the total search
order to a partial one and because the programmer has to ensure that
all processors know the value of the (global) current best solution.

3. Whereas the �rst two classes of algorithms work on trees, many state
spaces are graphs containing cycles. A search algorithm for such general
graphs has (1) to ensure that it does not get into an endless loop and
(2) to identify identical states for e�ciency. To this end, it saves the
value of some or all states in a transposition table or hash table (for an
application to optimization, see [17]). A global hash table poses even
greater challenges to the parallelization than a global upper bound, and
there are few good results in this area [66].

16 CHAPTER 3. BACKGROUND

4. Certain parallel search algorithms need even more global information
than an upper bound and a hash table. For instance, Applegate's paral-
lel branch-and-cut algorithm for the traveling salesman problem main-
tains a global cutting-plane cache. He reports that the algorithm has
low communication overhead because it spends much time in comput-
ing linear programs and cut-�nding heuristics for every subproblem.
The branch-and-cut library ABACUS [64] might be a good starting
point for designing a general parallel library of such algorithms.

An important issue in every parallel search algorithm is dynamic load bal-
ancing, as subtrees di�er in size by orders of magnitude, a fact which makes
it impossible to distribute the workload evenly when the computation starts.

Many experiments in parallel branch-and-bound have been made (see [18,
30] for an overview). Most of them concentrate on particular applications or
on various load balancing mechanisms. The need for general-purpose parallel
search algorithm libraries, though, was recognized as early as 1987 [25], and
several libraries have been implemented (Table 3.1). Most of them are spe-
cialized to branch-and-bound. With ZRAM, we aim at a broader application
range and in particular at long computations. As far as we know, ZRAM is
the �rst parallel search library to include reverse search and checkpointing.
It includes search engines belonging to the �rst two classes of forward-search
algorithms.

Name Topic Authors

| Branch and bound McKeown et al. (East Anglia) [46]
| Branch and bound Kuck et al. (Karlsruhe) [41]
BOB Branch and bound Cung et al. (Versailles) [5]
DIB Backtracking Finkel and Manber [25]
PPBB Branch and bound Tsch�oke and Polzer (Paderborn) [67]
PUBB Branch and bound Shinano (Tokyo) [57, 56]
PIGSeL Depth-�rst search Sanders (Karlsruhe) [55]
ZRAM Tree-search algorithms Marzetta (ETH Z�urich)

Table 3.1: Parallel search libraries.

3.1.3 Backward Search

In certain search problems, it is preferable to begin the computation not in
a state with unknown value, but rather in the goal states whose values are

3.1. SEARCH ALGORITHMS 17

known. This technique, which is called backward search or retrograde analy-
sis, simpli�es the detection of identical subtrees which is often necessary in
forward search algorithms. It trades space in exchange for a lower execution
time.

For problems which exhibit a symmetry between start state and goal state
(e.g., Rubik's Cube), the distinction between forward and backward search
is impossible.

Backward search has been applied to various games or their endgames
(Chess, Checkers, Awari, Nine Men's Morris) and to parts of the 15-Puzzle
state space. Gasser [28] has implemented a general workbench (the Search-
Bench) for sequential retrograde analysis, gives references to parallel back-
ward search results and suggests that retrograde analysis is easier to paral-
lelize than forward search because a parallel forward search algorithm may
be forced to expand states that a sequential algorithm might prune.

3.1.4 Combination of Backward and Forward Search

Some authors have successfully combined the advantages of forward and
backward search. Gasser [28] solved Nine Men's Morris by such a combi-
nation. He �rst computed the values of about one-half of the positions in
the game by backward search and then determined the value of the initial
position by alpha-beta (forward) search. He also implemented a branch-and-
bound algorithm for the 15-Puzzle which uses a database of relaxed subprob-
lems computed by backward search as lower bounds. A similar strategy let
us solve the nug25 instance of the quadratic assignment problem in par-
allel [10]. Some authors have made experiments with parallel bidirectional
search applied to the 15-Puzzle [47, 65].

3.1.5 Heuristic Search

As all known algorithms for the exact solution of NP-complete optimization
problems in the worst case use exponential time, and practical problems most
often are much larger than those that can be solved in a reasonable amount
of time, people have invented techniques which trade solution quality for the
time needed to �nd solutions. These techniques are called heuristic methods,
metaheuristics or local search|the terminology is not uniform [42, 52, 1]. In
general, they visit a random subset of the state space and return the best
solution encountered without a guarantee for its quality. The more time avail-
able, the more states can be searched and the higher should be the quality
of the solution. Although most authors base their work on mystic analogies

18 CHAPTER 3. BACKGROUND

to physical and biological processes and prefer practical experiments to theo-
retical reasoning, they all report good results. However, none of the heuristic
methods can prove anything about the quality of the solutions found. In this
section, we classify the main heuristic search methods and investigate what
has been done for their parallelization [49].

Heuristic search algorithms interpret the feasible solutions of an optimiza-
tion problem as the vertices of a graph (state space) by de�ning an adjacency
relation (neighbors of a state).1 The adjacency relation should satisfy the fol-
lowing three requirements:

� The state space should be connected. Otherwise, we won't �nd good
solutions if we start the search in the wrong component.

� Neighboring solutions should have correlated objective functions. Al-
though this is a vague requirement, we can understand it intuitively.
The algorithms walk along the edges of the graph from good solutions
to better solutions. If the objective functions of adjacent states were
totally independent, we could as well dispense with adjacency and just
generate completely random states.

� There should be few local optima which are not global optima because
the main challenge for heuristic algorithms is avoiding to get stuck in
a local optimum. Ideally all local optima should be globally optimal.2

Heuristic search methods are cheaper to implement than branch-and-bound
algorithms. For both approaches the implementation of a skeleton doesn't
pose major problems. In exhaustive search, however, the bounding functions
can be rather complex (e.g., 1-tree for the TSP or polyhedral methods for
other problems), whereas programs for heuristic methods essentially consist
only of a neighborhood function.

We classify heuristic search methods into the following classes:

1. Simulated Annealing
Simulated annealing is a simple technique which tries to avoid local
optima. It uses a terminology borrowed from physics. The objective
function of a state is called its energy, and the main parameter of the
algorithm is called temperature. The algorithm does a random walk on
the state space. Beginning in a starting state, it repeatedly selects a
random neighbor, computes the energy di�erence of the old and the

1We use the terms solution and state interchangeably in this section.
2The Simplex algorithm (although it is not a heuristic search algorithm) shows us that

even this strong requirement is not a su�cient condition for polynomial complexity.

3.1. SEARCH ALGORITHMS 19

new state, and accepts the new state depending on the result of the
comparison. A new state of lower energy is always accepted. A new
state of higher energy is accepted with a probability P depending on
the energy di�erence

P = e��E=T :

It follows that at high temperatures every new state is accepted; at low
temperatures a new state is accepted only if this operation decreases
the energy. The algorithm starts with a high temperature and pro-
ceeds according to a cooling schedule until the temperature is so low
that the random walk stops at a local minimum. The choice of the
cooling schedule has a high inuence on the convergence properties of
the algorithm and its e�ciency.

Parallelization of simulated annealing is di�cult because a random walk
is an inherently sequential process. One approach (speculative compu-
tation) follows several possible paths in parallel while the energy of the
�rst new state is evaluated. If the new state is accepted, the paths
which do not include it are discarded. If it is not accepted, the other
paths (which include the state) are discarded. The achievable speedup
is low; it depends on the acceptance rate of new states, which itself
depends on the temperature. If the principle of having a single ran-
dom walk is given up and the parallel algorithm is no longer required
to compute exactly the same path as sequential simulated annealing,
higher speedups are possible [21]. However, the physical analogy sug-
gests that it is more pro�table to slowly grow one good crystal instead
of quickly cooling ten bad ones.

Another (application-dependent) approach partitions the data of orig-
inal problem and tries to anneal the parts in parallel [35].

2. Tabu Search
Tabu search [31] is another kind of random walk. It tries to avoid
becoming stuck in a local optimum by keeping a tabu list of states or
directions which have been visited and must be avoided in the near
future. In every step it moves from a state to the best neighbor which
is not in the tabu list.

If the neighborhood of a state is big enough and the computation
of values slow enough, we can parallelize tabu search by distribut-
ing the neighbors onto the available processors [49]. Another, less
communication-intensive, type of parallelization lets every processor
compute its own path through the space.

20 CHAPTER 3. BACKGROUND

3. Methods Based on Biological Evolution
Unlike the techniques introduced above, evolution-like methods (e.g.,
genetic algorithms, evolution strategies, evolutionary programming) do
not work on a single solution of the optimization problem, but rather on
a collection (a set with multiple elements) of them, which is called pop-
ulation. They simulate a biological model based on the three principles
of crossover, mutation and survival of the �ttest:

� Pairs of population members generate o�spring whose genetic in-
formation consists of a random combination of the parents' chro-
mosomes. For the implementation of this idea, we need a crossover
operator which generates children which resemble both parents,
that is, which can combine good parts of both. De�ning a good
crossover operator is much more di�cult than de�ning a good
neighborhood for simulated annealing or tabu search. Whereas it
is easy to imagine a crossover of two covers in the vertex cover
problem, it is di�cult to �nd a reasonable crossover of two trav-
eling salesman tours.

� To avoid premature convergence of the algorithm and to preserve
population diversity, a random mutation operator is necessary.
This operator corresponds to the neighborhood of the other meth-
ods.

� By crossover and mutation, new solutions are generated. A se-
lection step selects the �ttest of them, while the rest is removed
from the population. The �tness is de�ned by the value of the
objective function.

A straightforward parallelization of genetic algorithms [43] distributes
the population onto the processors (subpopulations) and computes the
crossover and mutation operations, as well as the �tness values in par-
allel. For the selection of the �ttest individuals, synchronization is
necessary. In the island model, the subpopulations evolve separately
on islands, and synchronization is reduced to migration phases. In-
dividuals either migrate from any island to any other, or only among
neighboring islands. The latter approach avoids global synchronization.
The isolation of the islands can lead to higher population diversity and
better results compared to a single population. Some authors attribute
this e�ect to the parallel computer instead of the model and call it
superlinear speedup (instead of implementing the island model sequen-
tially).

3.2. MODELS AND TOOLS 21

4. Greedy Randomized Adaptive Search Procedure (GRASP)
GRASP consists of two phases: a construction phase and a local search
phase. In the construction phase, an initial reasonable solution is con-
structed at random, and this solution is taken as a starting point for
�nding a local optimum in the second phase. These two phases are
repeated; the best solution found is kept and gives the �nal result. As
the iterations of this loop are completely independent, GRASP is easily
parallelized [49].

5. Other Methods
A wealth of other heuristic methods has been invented (e.g., neural
networks, threshold algorithms, dynamic hill climbing). In addition to
that, almost any technique of the above can be combinedwith any other
to form hybrid methods. Most of them have not yet been parallelized.

An extensive bibliography on heuristic search methods can be found in [42].
There is a wealth of articles describing the good results achieved by applying
some method to some problem, but only few authors compare the e�ciency
of di�erent methods.

Although ZRAM does not yet contain parallel search engines for heuristic
algorithms, Frank Ammeter has implemented a parallel GRASP algorithm
for the vehicle routing problem on top of the ZRAM load balancer, proving
that ZRAM is suited for the inclusion of parallel heuristic search. In fact,
such search engines might be a valuable addition to the library.

3.2 Models and Tools

Parallel computing has introduced a whole bunch of new issues into computer
science. These issues range from theoretical questions (what algorithms are
parallelizable and to what extent?) to practical problems (what is a good user
interface for a parallel debugger?). Many branches of computer science ad-
dress these issues. In this section, we summarize what has been done to assist
both theoreticians and software developers. We further show where ZRAM
�ts in this context and which of the available tools helped in ZRAM's devel-
opment. It turns out that theoreticians use only machine models, whereas
software developers apply a wide range of tools.

To discuss theoretical questions, we need models of parallel computers. A
machine model abstracts of real machines and tries to capture their essential
characteristics. As sequential models, the Turing machine and the random
access machine (RAM) are widely used. The most important characteristic
of a parallel machine, its ability to perform several operations in parallel, has

22 CHAPTER 3. BACKGROUND

been captured in the PRAM model, which resembles a RAM, but executes
several operations in parallel in every time step. It is well suited for the
design of parallel algorithms, but its shared memory does not model the
communication costs of real parallel computers.

Another approach was made by Hoare with his communicating sequential
processes (CSP) model, which applies to message-passing algorithms and
emphasizes their correctness rather than their e�ciency [34].

To overcome the de�ciencies of the PRAM, the community has developed
models such as the bulk-synchronous parallel (BSP) and the LogP model [19].
They both have a distributed memory where processors communicate by
point-to-point messages. The LogP model speci�es the performance charac-
teristics of the interconnection network, but does not describe the structure
of the network. Its name comes from the four parameters that describe the
machine: L (latency), o (overhead per message), g (gap, which is the time
per transferred data unit or the reciprocal of the bandwidth), and P (number
of processor{memory modules). Many other models have been published. It
has even been said that \the number of parallel computer models exceeds
the number of di�erent parallel computer architectures that have been either
proposed or built" [54].

During the development of ZRAM, we got to the conclusion that all these
models are much more important for theoretical reasoning than for software
development; they are necessary for proving theorems on the complexity
of algorithms, but neglect the constant factors which are so important in
practice|who develops programs on the Turing machine?

Much research has been carried out on parallel programming languages.
The researchers in this �eld strive to de�ne high-level notations which help
the programmer in developing correct and e�cient parallel programs. They
often restrict the class of algorithms which can be expressed, take the control
over the generated code away from the programmer and move the respon-
sibility to the compiler|the analogy to sequential high-level languages is
obvious.

Most of these languages have been implemented on very few machines,
and many of them are unsuitable for the irregular parallel search algorithms
which are of interest to us. To ensure portability, we have chosen to imple-
ment ZRAM in ANSI C rather than in a parallel programming language, for
C is the only programming language available on all the computers we used.

Parallelizing compilers have attracted a lot of interest, mainly because
there are millions of lines of old Fortran code around and people hope to
parallelize this code without rewriting it manually. These compilers are able
to distribute data which is stored in arrays onto the local memories and to

3.3. SOFTWARE LIBRARIES 23

distribute regular computations onto processors, generating the necessary
data movement operations automatically. In some cases, the programmer
has to help the compiler by inserting compiler directives into the code, but
this approach is still cheaper than rewriting whole programs. Parallelizing
compilers are less general than their proponents claim them to be. They
are good for old programs with a regular structure which can be parallelized
in a straightforward way. For irregular algorithms, however, human insight
can|in our opinion|not be replaced by a compiler; these algorithms should
rather be provided to other users in the form of libraries, as we provide search
algorithms in the ZRAM library.

A wealth of other tools is supposed to help in the development of parallel
programs. Most important for the development of ZRAM was MPI (Message
Passing Interface) [33], a library of point-to-point and collective communi-
cation which is available on a broad range of parallel computers. A similar
library is PVM (Parallel Virtual Machine) [29]. In the future, we expect
other libraries to appear which provide more complex functions.

As a direct assistance to the programming process, there exist parallel
debuggers and performance monitors. Performance monitors show, often
graphically, where in a computation processors are idle (waiting for mes-
sages) and resources are wasted. In the development of ZRAM, we used the
performance-monitoring software PARAGRAPH.

3.3 Software Libraries

In the modern world of computer science, much manpower (and money) is
wasted by people duplicating programs. This can happen when they ignore
that another implementation exists, when they have no access to the other
implementation, or when they do have a copy of the source code, but it is
badly structured, mixed with other parts of the application, or has the wrong
interfaces.

A library is the principal tool for reusing code. When a library is built, a
complicated task is solved once, but the solution is used several times. The
users of a library, who use it as a black box, save time by not having to
acquire particular knowledge about the �eld, and by avoiding to implement,
test and maintain the code themselves.

There is the prejudice of library code being less e�cient than special-
purpose code. In practice, this is rarely a problem: The savings in program-
mer time far outweigh the cost of the additional execution time. Measure-
ments with ZRAM have shown that the execution time typically increases
only by a few percent over optimized code (see Section 7.7).

24 CHAPTER 3. BACKGROUND

Libraries exist in many �elds of computer science, such as computational
geometry (e.g., GeoBench, CGAL, LEDA), graphical user interfaces (e.g., X
Windows), data bases, linear algebra (e.g., BLAS, LINPACK), optimization
(e.g., CPLEX, ABACUS) and parallel programming (e.g., PVM,MPI). These
�elds have three characteristics in common:

1. There is a large number of applications which can use the library. It
would be unreasonable to develop a library for which only one applica-
tion exists.

2. The algorithms hidden in the library are complex enough that a pro-
grammer who uses the library really saves time. The time for learning
the interface must be smaller than the time necessary the implement
the algorithms.

3. There is some consensus on what algorithms and data structures should
be in the library, and the interfaces are reasonably standardized.

The �eld of parallel search algorithms certainly ful�lls the �rst two criteria.
First, there are many applications waiting for the power of parallel com-
puters. Second, parallel programming is still a di�cult task, as in parallel
programs arise various issues unknown in sequential programming (e.g., non-
determinism, deadlock, load balancing, termination detection). The third
criterion (standardization of interfaces) is usually achieved only after several
libraries have been implemented and compared. Parallel search algorithms
are in this phase now: There are several libraries to compare (see Figure 3.1).

Experience shows that every library must �nd the right compromise be-
tween generality and specialization. If a library is too general, its interface
becomes large and di�cult to use, and its implementation unmanageable
and di�cult to maintain. If a library is too specialized, potential users will
be forced to implement another variant of the code themselves. PPBB puts
the main weight on load-balancing algorithms, BOB on data structures for
branch and bound. ZRAM is more general in the diversity of the imple-
mented algorithms. It shows that di�erent parallel search algorithms have
enough common parts to justify their being in the same library. On the other
hand, ZRAM is specialized to message-passing computers. It uses another,
lower-level library (MPI), which ensures portability even to shared-memory
computers.

3.4. PERFORMANCE MEASURES 25

3.4 Performance Measures

To evaluate the performance of sequential programs, we measure execution
time and memory usage as a function of the input size. Parallel computing
introduces the number of processors as an additional independent variable,
making it impossible to present the behavior of an algorithm completely in
the two-dimensional graph of a function t = f(n). Instead of that, we de�ne
the following performance metrics as abstractions of the complete data:

� Speedup
(Real) speedup for a �xed input is de�ned as the execution time of the
fastest sequential algorithm divided by the execution time of a par-
allel algorithm, computed as a function of the number of processors.
It answers the question: \How much faster is my program with more
processors?" This measure does not depend on the absolute speed of
the computer; it depends only on the ratio of communication to com-
putation speed, the program, and the chosen input. In practice, the
fastest sequential algorithm is often replaced by the parallel algorithm
executed on only one processor (relative speedup). Speedup is called
ideal or linear if it is equal to the number of processors and superlinear
if it is higher.

Although speedup often is easily measured, some di�culties are asso-
ciated with the concept:

1. The fastest sequential algorithm is often unknown or expensive to
implement.

2. Speedup depends on the input (size). Good speedup for a given
input does not imply that a di�erent input gives the same speedup.

3. Speedup doesn't say much about absolute execution time.

4. Measuring speedup is impossible for an input which is too large
to be processed on a single processor.

5. Speedup typically favors slow computations (code that is ine�-
cient when run on a single processor) over fast ones.

6. In areas such as heuristic search, the goal of parallelization is
often improving the quality of the approximate solution rather
than shortening the execution time.

� E�ciency
E�ciency is de�ned as the ratio of speedup and the number of pro-
cessors. It answers the question: \What percentage of the parallel
computer is being used productively?"

26 CHAPTER 3. BACKGROUND

� Isoe�ciency
Isoe�ciency (sometimes called scalability) is de�ned as the rate at
which workload must increase relative to the rate at which the number
of processors increases so that the e�ciency of the parallel system re-
mains the same. It answers the question: \How much larger problems
can I solve with more processors?" Whereas it overcomes some of the
di�culties of speedup, measuring isoe�ciency implies �nding an input
resulting in a given e�ciency on a given number of processors. In par-
ticular for irregular search algorithms, this task is almost impossible.

An overview of these and other performance metrics together with their mer-
its and problems can be found in [54]. Time measurements on a parallel
computer have a larger variance than measurements of sequential programs
because of the inherent nondeterminism and the high complexity of a paral-
lel operating system, which both a�ect the execution time in unpredictable
ways. We show speedup and isoe�ciency measurements in Chapter 7.

3.5 Hardware

A given program does not run on every computer, even if it is called portable.
On certain systems it runs, but it runs ine�ciently. A library designer there-
fore has to decide early in the development process which computer architec-
tures the software will support. To this end, we give a short classi�cation of
parallel machines and explain the design decisions which a�ect the portability
of ZRAM:

1. Control Mechanism
With respect to the number of control units, parallel machines are clas-
si�ed either as SIMD (single instruction multiple data) or MIMD (mul-
tiple instruction multiple data). A SIMDmachine has many arithmetic-
logic units (ALU), but only one control unit. In every time step, all
ALUs execute the same instruction. In a MIMD machine, in contrast,
which has as many control units as ALUs, all processors work indepen-
dently. SIMD machines were invented in order to save the cost of the
control units, as in a parallel program often all processors execute the
same algorithm, but on di�erent data. Today, mostly MIMD machines
are built from standard microprocessors for economic reasons: Special-
purpose ALUs can never be produced in the same number of pieces
as a standard microprocessor. ZRAM has been designed for MIMD
computers.

3.5. HARDWARE 27

2. Memory Architecture
An architecture where every processor has its own (local) memory
and cannot access the other memories directly is called a distributed-
memory or message-passing architecture because the processors com-
municate by passing messages. The contrary is a shared-memory archi-
tecture where all processors access the same (global) memory. There
are various intermediate forms such as the Intel Paragon MP where
the processors are grouped into pairs which share their memory, but
communicate with the other pairs by sending messages. Another inter-
mediate form is virtual shared memory (also called distributed shared
memory), where the operating system simulates shared memory on top
of distributed-memory hardware by fetching memory pages from an-
other processor when a page fault occurs. ZRAM has been written
for message-passing machines for two reasons. First, we think that
a distributed-memory architecture is best suited for massively paral-
lel machines. Second, most shared-memory machines provide some
message-passing library, but a program written for shared-memory
rarely runs on distributed-memory machines.

3. Topology
The designer of a distributed-memory machine has to choose a method
of connecting the processors. In small machines, all processors can
be attached to a single bus. In larger machines, point-to-point links
are more common. The graph of these links often takes the form of
a grid (Paragon), torus or hypercube (Cenju-3). ZRAM ignores the
topology of the machine because dependence on the topology decreases
portability and because our applications are so coarse-grained that the
topology has little e�ect on the performance.

4. Number of Processors
The size of parallel machines varies greatly: By de�nition, a parallel
computer has at least two processors, but so-called massively parallel
machines with up to 65536 processors have been built (e.g., the Con-
nection Machine CM-2). These four orders of magnitude are not only a
quantitative change, they also induce a qualitative change in program-
ming methods. ZRAM has been used with up to 150 processors.

5. Communication Speed
The performance of sequential computers is measured in instructions
per second (or oating-point operations per second, depending on the
focus of the user). Parallelism adds another dimension, namely the
speed of communication. Often, a linear dependence between message

28 CHAPTER 3. BACKGROUND

length and communication time is assumed. In this model, the com-
munication speed is de�ned by two parameters:

� latency: the time taken by an empty message (measured in sec-
onds)

� bandwidth: the additional data transferred per time unit (mea-
sured in bytes per second)

A derived quantity is the ratio of communication to computation speed.
It is de�ned as the time to communicate a standard message (e.g., one
oating-point number) divided by the time for one computation oper-
ation (e.g., one oating-point multiplication). Depending on this ratio,
a machine is suitable for either coarse-grain or �ne-grain parallelism.
Examples can be found in [53].

ZRAM has been used on a Paragon, a Cenju-3, a GigaBooster, a Sun Ultra,
and workstation networks.

Chapter 4

Design of ZRAM

We now draw the general picture of ZRAM and so prepare the ground for
the three subsequent chapters (Chapters 5{7) where the di�erent layers are
presented separately. We �rst state our requirements for a parallel search li-
brary and develop the principles which guided the design of ZRAM (Sec. 4.1).
Then we present the architecture of ZRAM as well as the design decisions of
interest and discuss all issues which are common to several layers of ZRAM
(Sec. 4.2).

4.1 Requirements for a Parallel SearchWork-

bench

We have identi�ed �ve requirements for a parallel search workbench: gener-
ality, simplicity, usability, e�ciency, and portability. In the following para-
graphs, we illustrate these requirements, show the conicts among them,
explain their inuence onto ZRAM's design, and show how we can judge
whether ZRAM has attained the stated goals.

4.1.1 Generality and Flexibility

A library must have a certain generality and exibility to be useful. However,
this goal conicts with the aim for e�ciency and simplicity, and ZRAM is
the result of our endeavor to �nd a balance between these objectives. A
more general alternative to our library of parallel search algorithms might
have been a library of parallel graph algorithms or of parallel combinatorial
algorithms. A less general alternative would have been a library of parallel
branch-and-bound algorithms such as BOB.

29

30 CHAPTER 4. DESIGN OF ZRAM

An impression of ZRAM's exibility is given in Chapter 7, where we
present its broad range of applications.

4.1.2 Simplicity

Simplicity is not a design goal for itself, but it helps to achieve usability,
e�ciency and portability. Moreover, it leads to reliable, easily testable code.
We have made ZRAM as simple as possible while providing a system of
practical use.

4.1.3 Usability

Software which is di�cult to use wastes the time of its users, makes them
angry, leads to high support expenses, or is not used at all. Because of these
facts we made usability a design goal for ZRAM. A measure for usability is
the time which users must invest until they have a productive result [48].

Usability conicts with the goal of generality. Systems that want to be
general tend to have procedures with long parameter lists and many options
that must be understood before the system can be used productively. In this
conict, we have favored usability.

Three factors contribute the most to the usability of ZRAM:

Layered structure ZRAM has a layered structure with clear interfaces be-
tween layers (see Figure 4.1). The higher an interface is in this struc-
ture, the higher is its abstraction level. The programmer can choose
which interface to use. Whereas standard applications can be built on
the existing search engines, which hide the complexity of parallel pro-
gramming completely, programmers desiring more exibility can access
the virtual machine directly.

Simplicity The search engines are tailored to speci�c algorithms and pro-
vide only the necessary options.

Uniformity of interfaces The interfaces of all search engines have a uni-
form structure using the same two data types and similar application-
de�ned functions.

The people who used ZRAM to parallelize their own applications have con-
�rmed that it is user-friendly (Sec. 7.7). They all learnt to use it within one
to three days. This is a good result, all the more because half of them had
no prior experience with parallel computing at all.

4.1. REQUIREMENTS FOR A PARALLEL SEARCH WORKBENCH 31

4.1.4 E�ciency

There is only one reason for using parallel computers: speed. Why should we
use parallel computers unless to get a result quicker than with a sequential
computer? Hence, a parallel search library must be e�cient.

We can show the e�ciency of a library either by comparing it to other
software, or by solving large benchmark problems. The direct comparison
approach is cumbersome, as we would have to procure comparable software
and to provide similar conditions to both competitors. This method can
imply porting the software to a new computer and implementing the same
application on top of both libraries|a huge and boring task.

We have chosen the second approach and solved large instances of prob-
lems which are interesting for themselves and which could not be solved
before. These results are described in Chapter 7.

4.1.5 Portability

Portability is a standard design requirement in software development. It is
compulsory if software is to outlast a rapidly changing environment. Whereas
there is a high degree of standardization in sequential computing, parallel
computing is still dominated by a wide range of incompatible systems with
a short lifetime. The ZRAM project was begun on a Transputer card in a
Macintosh. Neither this Transputer card nor our second parallel computer,
MUSIC with its MUSIC operating system have survived until today. The
project would have been impossible unless portability was one of the main
goals since the beginning.

One design choice a�ected by the strive for portability is the programming
language used. The only language available on all the systems we have used
is ANSI C. C++ might have led to better-structured code, but good code is
useless if there is no compiler available to compile it.

Software cannot be portable to every conceivable system. Early in the
design process, the designer has to restrict the range of systems considered.
For ZRAMwith its coarse-grained algorithms, we have decided to concentrate
on message-passing MIMD computers and to exclude SIMD machines. The
decision for message-passing is no real restriction because messages can be
emulated on shared-memory machines. Furthermore, we achieve topology-
independence for a small penalty in e�ciency by simply disregarding the
communication topology of the particular machines.

The ZRAM architecture follows a usual approach toward portability. It
contains a thin host-system layer (see Section 5.5) in which almost all machine
dependencies are hidden.

32 CHAPTER 4. DESIGN OF ZRAM

4.2 Architecture of ZRAM

4.2.1 Three Interfaces and Four Layers

ZRAM's architecture is based on three interfaces that separate four layers of
software (Figure 4.1).

Applications

Search
engines

Service
modules

Host
systems

Workstation
network

MPI

Quadratic Assignment, Traveling Salesman, 15-Puzzle, Vertex
Enumeration, Euclidean Spanning Trees, ...

Intel
Paragon

NEC
Cenju-3MacGiga-

Booster

Branch
and

Bound

Reverse
Search Backtrack

Virtual front end, termination detection,
 dynamic load balancing, checkpointing

Tree Size
Estimation

Message passing (MPI-)

Virtual machine

Application interface

Figure 4.1: The ZRAM architecture. The programmer of the top layer is not
concerned with parallelism, as all parallel constructs are hidden in the lower three
layers. All layers except the bottom one are machine-independent.

� Message Passing Interface
This interface makes ZRAM portable by hiding all machine dependen-
cies of the host systems. Because it has been modeled on a subset
of the standard message passing interface MPI, we call it MPI�. It
retains the basic nonblocking point-to-point send and receive primi-
tives of MPI, but omits collective communication, communicators, etc.
MPI� has been implemented for parallel computers as diverse as the
Intel Paragon, NEC Cenju-3, ETH GigaBooster, and workstation net-
works using MPI. A single workstation or a Macintosh is treated as a
parallel computer which has only one processor.

� Virtual Machine
A layer of service modules enhances the message passing interface with

4.2. ARCHITECTURE OF ZRAM 33

functions common to many parallel programs, in particular to the
search engines: dynamic load balancing, checkpointing, termination
detection and a (virtual) front-end processor.

� Application Interface
Most important for typical users of ZRAM is the application interface,
as they will program directly on top of this interface, which has two
functions: It separates the problem-speci�c parts of a program from
the problem-independent parts, and it con�nes the explicit parallelism
in the layers below. A library of search engines that run on top of
the virtual machine makes up the layer that implements this top-most
interface. Search algorithms (and the data structures they use) imple-
mented so far include backtrack, branch-and-bound, reverse search [4],
and a tree-size estimator based on sampling [39].

Could we work with fewer than three interfaces? No. The message passing
interface is necessary for portability, the application interface for application
independence, and without the virtual machine all search engines would have
to implement the common services themselves. The three interfaces divide
ZRAM into four layers, which determine the structure of this thesis. The
topmost three layers are described in separate chapters (the application layer
in Chapter 7, the search engines together with the application interface in
Chapter 6, the service modules together with the virtual machine interface
in Chapter 5), and the small host-system layer at the bottom is described in
Sec. 5.5.

That the machine-dependent host-system layer makes up only an eighth
of the ZRAM code (Figure 4.2) demonstrates that the goal of a portable
library has been achieved. The pie chart also shows that the virtual machine
interface divides the middle two layers into two equal-sized parts (2900 lines
each), the ratio which structures the code most e�ectively. The application
layer has been excluded from the calculation because its size varies with the
number of applications added, and because it has nothing to do with the size
relation of the lower three layers.

The interface structure of other search libraries is less sophisticated than
the one of ZRAM. Typically, the designers of these libraries had the objec-
tive of developing one or more branch-and-bound (BOB, PUBB) or load-
balancing (PPBB) engines which could be reused for several applications,
putting less emphasis on other search algorithms and on portability. In all
cases, this led to the de�nition of an application interface, but no (at least
no published) virtual machine interface.

34 CHAPTER 4. DESIGN OF ZRAM

AAA
AAA

A
AAAAAAA

AAA

Common
services

43%

Search
engines

45%

Host
system
12%

Figure 4.2: Relative size of the three application-independent layers of ZRAM. The
host-system layer has been kept as small as possible to ensure high portability.

4.2.2 Extensibility

ZRAM claims to be an extensible library. In what directions can it be ex-
tended? Probably not vertically by adding a �fth layer, but by extending
single layers horizontally. Typical ZRAM users extend it by adding new ap-
plications to the top layer. This task is easy because it requires only basic
knowledge of parallel computers.

The host-system layer covers the two most important groups of systems:
single-processor machines and MPI systems. The sequential machines are
perfect for developing and debugging new applications, and the MPI standard
is supported by most distributed-memory multiprocessors. Although many
shared-memory machines provide the same message-passing interface (MPI),
a new implementation of the host-system layer for shared memory is possible
and might be more e�cient.

The search-engine layer can be extended through the addition of more
search engines. Most interesting would be a parallel branch-and-cut engine
(see Sec. 8.2).

Extending the common services is possible, but should be demand-driven:
Potential improvements to the virtual machine will become apparent during
the implementation of further search engines.

4.2.3 Skeletons and Upcalls

ZRAM provides not only library functions, but also algorithm skeletons in
the form of search engines. The distinctive property here is that a skele-
ton calls application-speci�c functions programmed by the user, whereas a

4.3. DATA TYPES 35

library function calls only other library functions. When a skeleton calls an
application-speci�c function, which is implemented in a higher software layer
than the skeleton, this call is denoted as upcall.

For many areas (e.g., linear algebra) library functions are exible enough.
A general branch-and-bound system designed as a set of library functions
supplies the user with procedures for subproblem-pool management (e.g., in-
sert subproblem, get highest-priority subproblem). However, parallel search
algorithms clearly pro�t from the additional exibility of skeletons. A search
engine is most naturally expressed as a skeleton calling user-de�ned func-
tions.

When a programmer writes a C program and wants to use a library func-
tion, there usually exists a header �le, and the programmer knows the name
of the function being called. We have the same situation in ZRAM when
a procedure in a higher layer calls a lower-layer procedure (e.g., the call to
z_bt_Enumerate in Figure 2.2). In an upcall (e.g., the call to nq_BranchIn-
Place in Figure 2.2), the situation is di�erent. When the search engine is
written, the names of the branching functions which will be written in the
future are unknown.

The issue can be resolved if we de�ne a �xed name for all branching
functions, use this name in the search-engine code and have the linker bind
the correct procedure to the name. To our knowledge, all branch-and-bound
libraries use this simple and e�cient approach. However, this approach re-
stricts exibility: In a single statically linked program, the search engine
can be used for only one purpose; the program cannot have more than one
branching function, because at runtime the linker cannot change the function
called by the search engine.

ZRAM uses a di�erent, less simple but equally e�cient and more powerful
approach. A ZRAM application de�nes a procedure set, a data structure
containing pointers to the relevant procedures. It then assigns a number to
the procedure set by calling z_install_procset and supplies this number to
the search engine as a parameter. The additional level of indirection created
by assigning numbers to procedure sets is necessary because (procedure)
pointers are not valid across processors in a distributed-memory architecture.

The same approach is used at the virtual machine interface when the
common services call procedures pertaining to a search engine.

4.3 Data Types

A search tree always consists of nodes, which have a data type (in a program-
ming language that knows data types). Although the data in a tree node

36 CHAPTER 4. DESIGN OF ZRAM

depends on the application, the search-algorithm layer and the common ser-
vices make some assumptions about it. In this section we describe these
assumptions, how they would be enforced in an object-oriented language
and how we implemented them in C.

In an object-oriented language such as C++, the lower layer of the library
de�nes a base class, and the application de�nes a derived class. The library
would de�ne

class z_Node { // base class

long len; // length in bytes; used to pack the node

// into a message

// other data used by the search engine

};

and a traveling salesman application would de�ne

class tsp_Node: public z_Node { // derived from z_Node

// data describing a partial tour

};

As ZRAM is written in C, which is not an object-oriented language, we
need another method to de�ne the interface to the application. ZRAM uses
the same approach as other search libraries, namely the de�nition of header
�elds which must be included in every search tree node. Thus, the library
de�nes (in z base.h)

#define Z_NODE_HEADER uint32 len; \

uint16 tag; \

uint16 children; \

/* some more fields */

and the traveling salesman application de�nes

struct tsp_Node {

Z_NODE_HEADER; /* header fields defined in z_base.h */

/* data describing a partial tour */

};

The len and children �elds are used by the message-passing system to
pack nodes into a message. In other parallel search libraries, these �elds do
not exist; the user has to supply pack and unpack procedures for every data
type to make message passing possible. The task of writing these procedures

4.3. DATA TYPES 37

is straightforward but boring; they would be necessary if we decided to port
ZRAM to a heterogeneous system, but add only little exibility in our current
environment.

Moreover the header contains a tag �eld, which is used for debugging,
and room for pointers. The reverse-search engine uses these pointers to
maintain the ancestor cache (see Section 6.3.2). All objects must be allocated
by z_NewNode() rather than malloc() so that their headers are initialized
correctly.

In every ZRAM application, the user has to de�ne two data types, one
for the global data and one for the tree nodes. In this regard, ZRAM di�ers
from branch-and-bound libraries such as PUBB (three types) and BOB (two
types, but not the same ones as ZRAM). Both PUBB and BOB use di�erent
data structures for regular tree nodes and solution nodes. This distinction
can save memory because some information in the regular tree nodes may
be redundant if it is known that the node is a solution. One the other hand,
the small number of solution nodes that are generated during a computation
limits the achievable memory saving, and ZRAM permits the programmer
to use di�erent layouts for regular and solution nodes. BOB seems to work
without having a data type for the global variables.

4.3.1 Compression of Nodes

Search tree nodes often contain a huge amount of redundant information in
order to speed up a computation. In the vertex enumeration application
(Sec. 7.1), a full dictionary is stored (md multi-precision integers for a d-
dimensional polyhedron withm facets) althoughm bits designating the facets
in the current basis would give the full information. In the vertex cover
program (Sec. 7.3), the degree of every vertex of the remaining graph is
stored although one bit per vertex would su�ce.

Sometimes, it is desirable to have two representations of nodes, one which
allows for a fast computation by keeping redundant data and a memory-
e�cient one. The redundant representation would be used for most com-
putations, whereas the other (memory-e�cient) one would be used to keep
messages and checkpoint �les short, and to store nodes in the priority queue
of best-�rst branch-and-bound. The latter use is of particular importance,
as the range of problem instances that can be solved by a branch-and-bound
program is limited by the number of nodes which �t in the priority queue
(the size of which is determined by the available memory).

The current version of ZRAM does not support short and long represen-
tations of nodes, but this enhancement is simple to implement in such a way
that the user has only to provide a compress and an uncompress function.

38 CHAPTER 4. DESIGN OF ZRAM

4.3.2 Incremental Storage

A tree node in ZRAM, together with the global variables, always completely
de�nes a state of the search space. In applications such as the 15-Puzzle, an
alternative representation is possible. Instead of storing the full 4� 4-board,
we could store a pointer to the preceding state and the move (north, east,
south, west) which led to the current position. ZRAM does not contain any
provisions for such a data structure, and adding one would be a major task.

Chapter 5

Virtual Machine and Common

Services

The virtual machine interface is the core of ZRAM. It divides ZRAM into
two halves, de�ning the functions which are provided by the bottom half and
used by the top half. It is the most important interface, being used by every
search algorithm in the library. Only the virtual machine justi�es collecting
several search algorithms to form a single library. Without it, every search
engine could as well stand alone.

5.1 Requirements for a Virtual Machine

Hiding machine dependencies by de�ning a virtual machine is a time-honored
technique to achieve portability. A useful virtual machine must strike a
balance between two competing goals:

� High-Level Abstraction
A su�ciently high-level interface hides di�erences among various host
systems and facilitates program development.

� E�ciency
It must be possible to map the interface onto the target hosts with
little loss of e�ciency.

In our aim for a simple system, we have found that three functions are
essential for parallel searching:

� dynamic load balancing

� checkpointing

39

40 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

� termination detection

In addition, our virtual machine provides a virtual front end, message-passing
operations, as well as the two abstract data types priority queue and se-
quence.

5.2 Services Provided

ZRAM is designed for a message-passing model of parallel computation. The
abstraction level of the two most popular message-passing virtual machines,
PVM and MPI, is too low for our purposes. The ZRAM virtual machine
provides �ve additional functions:

1. Dynamic Load Balancing
In practice, the size and shape of a search tree is unknown at the be-
ginning of a computation. Thus it cannot be partitioned into subtrees
of equal size a priori. Therefore, a parallel search algorithm needs a
mechanism to redistribute the work among the processors during the
computation, when the sizes of subtrees become available and proces-
sors run out of work. As this issue is common to most tree search
algorithms, dynamic load balancing is implemented in the virtual ma-
chine. At present, ZRAM o�ers two distinct load-balancing disciplines,
a general one (relaxed queue, see Section 5.3.3) and one specialized to
best-�rst search (speculative priority queue, see Section 5.3.4).

2. Checkpointing
Our computations take days or weeks on a powerful parallel computer.
Because it is rarely possible to get that much processor time in one
chunk, a checkpointing facility is necessary (see Section 5.3.3). Check-
pointing means saving the state of a computation in external memory
so that the computation can be interrupted and resumed. The com-
bination of load balancing and checkpointing supports a dynamically
changing number of processors: Computations can be interrupted at a
checkpoint and continued later with a di�erent number of processors.

3. Distributed Termination Detection
Many distributed algorithms need some way of detecting the condition
when all subtasks spawned have terminated. ZRAM contains a stan-
dard algorithm for global termination detection (see Section 5.4.1).

4. (Virtual) Front-End Processor
Parallel programs often use a master process for managing sequential

5.2. SERVICES PROVIDED 41

tasks, such as initialization, reading input and making an initial distri-
bution of the work to other (slave) processors. Slaves execute a main
loop consisting of a receive operation, a computation, and sending re-
sults back to the master. Hiding this main loop inside the virtual
machine makes programs more readable. Hence ZRAM de�nes a front-
end process that executes the main program, and slave processes that
execute their receive{compute{send loop (Figure 5.1). Every call to a
search engine on the front end corresponds to one iteration of the loop
by the slaves (see Section 5.3.1). In contrast to a pure master{slave
model, the processing elements (slaves) may communicate with one an-
other during the compute phase by using MPI's point-to-point commu-
nication. We thus distinguish front-end communication and horizontal
communication (Figure 5.2). Some host systems include a designated
front-end processor, others do not. In the latter case, the front-end
process and one compute process are assigned to the same physical
processor.

P0 P1 P2 P3 P4 P5 P6

Communication network

FE

Figure 5.1: ZRAM's process model. In ZRAM, not all processors are equal. One
of them is distinguished as the virtual front end and serves for the sequential parts
of the computation. Computers such as the CM-2 or the MUSIC are based on this
model.

5. Implicit Receive Operation
Typical message-passing programs contain receive operations followed
by a switch statement on somemessage tag. This programming style is
analogous to a (non{object-oriented) procedure that executes a switch
on the type of its arguments, and has the same disadvantages (collecting
information which does not belong together, lack of extensibility). Our
virtual machine installs every message tag together with a message
handler procedure, and the handler is called implicitly when a message
is received (see Section 5.3.2).

42 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

time

FE

P0

P1

P2

P3

parallel computation

sequential computation

idle time

front-end communication

horizontal communication

Figure 5.2: Execution of a ZRAM program in time. The front end executes the
sequential parts of the computation and initiates a parallel job; that is, the main
program calls a search engine. In most of our applications, the sequential part
takes little time (seconds), whereas the parallel part can take weeks to complete.
The implementation maps the front end and P0 to the same processor.

5.3 Interface

In this section, we describe the virtual machine interface|that is, the main
functions building the interface between the search engine layer and the com-
mon service layer. We begin with the communication functions (separated
into front-end and horizontal communication), and continue with the load-
balancing interface. We omit the fairly standard interface to the two abstract
data types priority queue and sequence as well as various functions of minor
importance.

5.3.1 Virtual Front End

ZRAM distinguishes one processor as a virtual front end which executes the
sequential parts of the computation (the application-de�ned mmain() func-
tion), and it treats communication between the front end and the other pro-
cessors (front-end communication) di�erently from communication during
the parallel computation (horizontal communication, see Figure 5.2). Our
virtual machine provides three functions for the purpose of front-end com-

5.3. INTERFACE 43

munication. The �rst one, z_InstallJob, is to be called by the initialization
code of all processors, whereas the other two functions are called exclusively
on the front end.

z_JobNum z_InstallJob(const z_VoidProc job);

The initialization code (initproc()) calls z_InstallJob to associate a pro-
cedure with a number. The given procedure will later be executed on all
processors in parallel. It should begin by reading the input bu�er and end
by writing a result to the output bu�er.

void z_StartParallelJob(z_JobNum jobnum,

z_ResultProc resultProc);

The front end calls z_StartParallelJob() to initiate a parallel computa-
tion. It broadcasts the contents of the output bu�er, and then all processors
execute the procedure associated to jobnum. At the end of the parallel com-
putation, every processor sends a message to the front end, and this message
is read by resultProc().

void z_WaitWork(void);

z_WaitWork(), called on the front end, waits until the parallel computation
initiated by z_StartParallelJob() completes.

With hindsight, we can see that the separation of z_StartParallelJob()
and z_WaitWork() o�ers unnecessary exibility. Although this design makes
it possible that the front end computes something while the other processors
execute a parallel job, none of our applications pro�ts of that exibility|they
all call z_WaitWork() immediately after z_StartParallelJob().

5.3.2 Horizontal Communication: Message Passing with

Termination Detection

MPI is a complex communication library (its interface contains more than a
hundred routines); we use only a few of them. But it lacks two features which
are important for our applications. First, it does not provide a mechanism
to detect the termination of a distributed program. Second, it obstructs in-
formation hiding and modular software development. During the execution
of a branch-and-bound program, a processor can receive two kinds of mes-
sages: load-balancing messages and new upper bounds. Whereas we want to
process the former in the load balancer, the latter should be routed to the
search engine. If we use plain MPI, some point of our program code must
contain a complete list of the possible messages:

44 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

MPI_receive(message);

switch (message) {

case load_balancing:

...

case new_upper_bound:

...

}

ZRAM's virtual machine de�nes a tiny message-passing module which
resolves the two problems mentioned. Our module comprises the functions
listed in Table 5.1, as well as functions for writing objects of type z_Node to
the output bu�er and reading them from the input bu�er.

Function Description

z_Isend sends the output bu�er to another processor
z_Ibroadcast sends the output bu�er to all other processors

z_InstallMessage
de�nes a function to be called when a
message of a certain type is received

z_IdleWithHandler
waits until a message is received or until
all processors are idle

z_Poll tests whether a message is received

Table 5.1: Message-passing functions in ZRAM. All these functions interact with
the termination detection algorithm.

5.3.3 General Load Balancing and Checkpointing

ZRAM contains a general load-balancing and checkpointing module. This
module manages a global queue of work units. A work unit may be any
object describing the work to be done (for depth-�rst branch-and-bound, a
work unit is a subtree represented by its root node; for reverse search, it is an
interval of the depth-�rst traversal of the tree). We require the application
or the search engine (i.e., the module which uses the load-balancing and
checkpointing module) to de�ne the two operations Work and Split on work
units (Figure 5.3). Checkpointing amounts to saving the global queue of
work units to a �le.

Functions De�ned by the Application or Search Engine

void Work(z_lb_GlobalP global,

z_lb_WorkUnitP *workUnitH)

5.3. INTERFACE 45

Search engines

Service modules

z_rs_Enumerate rs_Split

Load Balancing
and Checkpointing

rs_Work

Figure 5.3: Call graph of load balancing and checkpointing. The reverse-search en-
gine de�nes the functions Work and Split. Work does the real work, whereas Split
splits work units so that a part of the work can be transferred to another processor.
After the search engine has inserted an initial work unit into the global queue, the
load-balancing and checkpointing module calls Work and Split as needed.

Work receives a work unit describing a task to be done. It executes a part of
the task and returns a new work unit describing the work which still remains
to be done.

void Split(z_lb_GlobalP global,

z_lb_WorkUnitP workUnit,

s_seqP workList)

Split receives a work unit describing a task to be done. It splits this task
into subtasks and inserts the resulting work units into the list workList. A
Split function which always simply inserts the work unit received into the
list (i.e., splits the task trivially into one subtask), leads to a correct result,
but prevents any load-balancing functionality.

Instead of providing Work and Split separately, the user can choose to
combine them into a single function WorkAndSplit. This option is useful if
splitting the work implies executing part of it.

void WorkAndSplit(z_lb_GlobalP global,

z_lb_WorkUnitP workUnit,

s_seqP workList)

WorkAndSplit executes a part of the work described by workUnit, splits the
rest into subtasks and inserts the resulting work units into the list workList.

Calls to the Virtual Machine

The application or the search engine starts the load-balancing and check-
pointing module by a call to z_lb_Work. An interrupted computation is
continued by a call to z_lb_RestartWork.

46 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

void z_lb_Work(z_ProcSetNum procsetnum,

z_lb_GlobalP global,

z_lb_WorkUnitP workUnit,

boolean sequential)

z_lb_Work broadcasts the global data in global to all the processors and
calls Work and Split repeatedly until all the work in workUnit is done.

void z_lb_RestartWork(z_ProcSetNum procsetnum,

z_lb_GlobalP global,

boolean sequential)

z_lb_RestartWork reads a checkpoint �le written by z_lb_Work and con-
tinues the interrupted computation at that point. global must be identical
to the global given to z_lb_Work when the checkpoint was written.

void z_lb_InstallCheckpointed(z_NodeP *nodeh)

By a call to z_lb_InstallCheckpointed, an application or a search engine
tells the system that the object pointed to by nodeh is to be written to
every checkpoint �le (in addition to the queue of work units, which is always
written). This feature, which can be used for every object that should be
checkpointed, is used by the branch-and-bound engine to make the current
upper bound a part of the stored data.

5.3.4 Special Load Balancing: The Speculative Prior-

ity Queue

We have implemented two variants of sequential and parallel branch-and-
bound engines: depth-�rst, and best-�rst. Depth-�rst, which requires a stack,
balances computational load by using the load-balancing module described
in Section 5.3.3. Best-�rst, which requires a priority queue, is approximated
by a search engine using a heuristic, speculative priority queue. In contrast
to a priority queue, which returns a global minimum, a speculative queue
returns a node close to minimum. It is a trade-o� between the communica-
tion overhead involved in �nding a global minimum and the search overhead
caused by the expansion of nonminimum nodes.

The speculative priority queue of ZRAM is an abstract data type provid-
ing the following operations:

z_spqP z_spq_NewSpeculativePriorityQueue(z_pq_CompProcP compare)

5.4. IMPLEMENTATION 47

void z_spq_FreeSpeculativePriorityQueue(z_spqP pq)

These two operations create and destroy speculative priority queues. They
must be called on all processors at the same time. The ordering on the queue
elements is de�ned by the comparison function given as a parameter when
the speculative priority queue is created.

void z_spq_Insert(z_spqP pq,

z_NodeP x)

This operation inserts an element x into the speculative priority queue.

z_NodeP z_spq_GetDeleteNearMinimum(z_spqP pq)

This operation retrieves an element near the minimum and deletes it in an
atomic operation. It returns NULL if the speculative queue is empty (this
test uses the termination detection algorithm). In order to decouple the
processors, we do not guarantee that the returned element is the minimum.
The test whether the queue is empty, however, is exact.

long z_spq_numLocalElements(z_spqP pq)

z_spq_numLocalElements returns the number of elements of pq which are
stored in local memory. Because of the dynamic load balancing, the value
returned may change between successive calls.

void z_spq_DeleteLocalAbove(z_spqP pq,

z_NodeP upperBound,

whatToDoProcP whatToDo)

z_spq_DeleteLocalAbove removes all elements of pqwhich are in local mem-
ory and greater than or equal to upperBound from the priority queue and
calls whatToDo for each of them. whatToDo must not access the priority
queue, but should for instance deallocate the elements.

5.4 Implementation

In this section, we present the most interesting observations in the imple-
mentation of the common services|that is, in the software layer between
the virtual machine interface and the MPI� interface. These observations
occur in the dynamic load-balancing algorithms and in the checkpointing
facility.

48 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

5.4.1 Termination Detection

ZRAM contains a standard algorithm [45] for global termination detection.
Every processor counts the messages it receives and the messages it sends. A
single token, which is sent around when processors are idle, keeps information
on the state of every processor and serves to compute the total number
of messages sent and received. When the processor which has the token
detects that all processors are idle and all messages sent have been received,
it broadcasts this information to all other processors.

5.4.2 Load Balancing

ZRAM's dynamic load-balancing mechanism (relaxed queue) is currently
used by all search engines except best-�rst branch-and-bound. Because cen-
tralized load balancing among many processors easily becomes a bottleneck,
ZRAM balances computational loads in a distributed manner. Although we
have implemented only one load-balancing algorithm, the algorithm could be
replaced without changing the interface.

From an abstract point of view, the virtual machine manages just one
(distributed) data structure: a global queue of work units. Every processor
repeatedly removes a work unit from the global queue, works on it, and
inserts zero or more new (smaller) work units into the queue. The algorithm
terminates when the virtual machine detects that the global queue is empty.

Viewed locally, every processor manages its own local queue of work units.
It can remove items from the queue and insert others. The coarse-grain paral-
lelism prevalent in search algorithms allows simple load-balancing heuristics
to be e�ective. Because a single node of the search tree almost always gener-
ates lots of new nodes, all processors are usually busy working o� the initial
node assigned to them. Only toward the very end of the computation, some
processors become idle. When the local queue of a processor becomes empty,
it sends an \I need work" message to some other randomly selected proces-
sor. If this second processor's local queue contains at least two elements, it
sends one of these back to the requesting processor. Otherwise the second
processor forwards the \I need work" message to a third processor. To keep
the algorithm simple, we have decided to select the third and all succeeding
processors in a round-robin fashion rather than randomly.

5.4.3 Checkpointing

Where is the ideal place to implement checkpointing? Data transfer between
internal and external memory resembles the transfer of data among proces-

5.4. IMPLEMENTATION 49

sors; in both cases, for instance, data structures are linearized. Writing data
to disk corresponds to sending a message, reading from disk corresponds to
receiving a message, and a disk �le corresponds to a message. For these
reasons, we have made ZRAM's checkpointing an integral part of the load-
balancing module.

At regular intervals (e.g., every hour), the virtual machine interrupts
the computation, brings the dynamic load-balancing algorithm into a known
state by synchronizing all processors, and saves the global queue of work
units to disk. It then saves other relevant data as de�ned by the application,
such as current bounds or the sum of the determinants in the computation
of polytope volumes. On machines supporting a signal facility, the operator
also can trigger checkpointing by sending a signal to the process group.

To restart the computation, the virtual machine �rst reads the global
data and broadcasts it to all processors. It then reads the queue of work
units and redistributes it onto the new set of processors. Finally it calls a
search engine function to read the other saved data.

To provide against the loss of all data which might occur if the machine
crashes while the checkpoint �les are written, ZRAM optionally makes a
back-up copy of the old �les before the new ones are written and identi�es
the �les with a generation number.

5.4.4 Speculative Priority Queue

The implementation of the speculative priority queue uses a local priority
queue on every processor and a load-balancing mechanism which exchanges
elements among these local queues. With the load-balancing mechanism, we
pursue two di�erent goals:

� We want to avoid processors becoming idle when their local queues
are empty although the global queue still contains elements. For this
purpose, the load-balancing mechanism tries to equalize the size of the
local queues by spreading size information and by transferring elements
to queues which have fewer elements than others.

� We want the function z_spq_GetDeleteNearMinimum always to return
elements near to the global minimum. For this purpose, the load-
balancing mechanism simply shu�es elements around.

The load-balancing mechanism generates two kinds of messages: node mes-
sages, which transfer elements and size information, and empty messages,
with which a processor signals that its local queue is empty. A processor

50 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

receiving a node message of a processor which owns fewer elements than it-
self responds by sending back another node message containing a number
of elements proportional to the size di�erence of the queues. A processor
receiving an empty message either responds with a node message, or for-
wards the empty message, or ignores it. These responses are not generated
immediately when the message is received, but only during the succeeding
z_spq_GetDeleteNearMinimum operation.

Almost all operations on the speculative priority queue are implemented
locally. z_spq_GetDeleteNearMinimum is the only operation which can ini-
tiate communication. It distinguishes two cases:

1. If the local priority queue is not empty, z_spq_GetDeleteNearMinimum
retrieves the minimal element and initiates a load-balancing operation;
that is, it sends the size of the local queue and some elements to another
processor, either spontaneously or in response to a message received
earlier.

2. If the local priority queue is empty, z_spq_GetDeleteNearMinimum
sends an empty message and waits until either a node message which
contains elements arrives or global termination is detected.

Because of the complexity of this algorithm, we summarize the three steps of
the correctness proof (indicating that z_spq_GetDeleteNearMinimum returns
an element when the global queue is not empty and correctly detects when
the global queue is empty):

1. The algorithm is partially correct (i.e., if it terminates, the result is
correct): An element which has been inserted into the global queue
can only be removed by z_spq_GetDeleteNearMinimum or z_spq_-

DeleteLocalAbove. The algorithm terminates only when all local
queues are empty and there are no messages sent but not yet received.

2. Deadlock is impossible: A processor waits for messages only when its
local queue is empty. If all processors wait, the algorithm terminates.

3. There is progress: It is impossible that all processors inde�nitely send
messages around rather than computing because a processor sends a
bounded number of messages only when one of two conditions is met:
(1) its queue is empty or (2) it has just removed an element from the
queue (and thus made progress).

5.5. HOST-SYSTEM LAYER 51

Our experiments with large search applications have shown that a more so-
phisticated and �ne-tuned load-balancing algorithm is not necessary. When
the search tree is large enough, any algorithm seems to be able to balance
the load su�ciently well.

5.5 Host-System Layer

At the bottom of ZRAM lies a thin host-system layer (see Figure 4.1). It
serves as a central place for gathering most of the machine-dependent code
to ensure the portability of the other three layers. It provides the basic
message-passing and time-measurement primitives in a machine-independent
form. The message-passing operations are organized in two groups:

Front-end communication The front end starts a job by a broadcast, and
after the completion of the job, it collects the result data.

Horizontal communication There are three functions for sending mes-
sages during the execution of a job (immediate send, immediate broad-
cast, and test whether the send has completed) and three functions for
receiving messages (immediate receive, test whether a message has been
received, and wait until a messages is received). There is no provision
for termination detection at this level.

Three instances of the host-system layer have been implemented:

mpi The mpi instance uses the MPI library [33]. It runs on workstation
networks, the NEC Cenju-3, the GigaBooster, and the Sun Ultra.

nx The nx instance uses the Intel NX library and runs exclusively on the
Paragon. It was the �rst implementation of the host-system layer and
has strongly inuenced the design of its interface.

seq This instance runs on single-processor machines such as the Macintosh
and Unix workstations. It simulates the communication between the
front end and a single processing element on one processor. Its hori-
zontal message-sending procedures must never be called, the message-
receiving procedures never return a message, and termination detection
is trivial.

Time measurement is a function which di�ers from computer to computer;
it is incompatible even among the various Unix dialects. ZRAM provides a
uni�ed interface through the following function:

52 CHAPTER 5. VIRTUAL MACHINE AND COMMON SERVICES

double z_Gtime(void)

z_Gtime returns a time value in seconds. On parallel computers, it measures
elapsed time (wall clock time) because we want to include idle time in the
measurement; on sequential systems, it returns the CPU time consumed by
the process because we do not want to include CPU time used on behalf of
other processes.

Chapter 6

Search Engines

The parts of ZRAM most visible to the user are its search engines. In this
chapter we show what they can be used for, how they are accessed, how they
are implemented, and we discuss the relevant design choices. We begin by
describing what all the search engines have in common, and then devote a
section to every search paradigm.

ZRAM's search engines are implementations of the three general-purpose
search paradigms backtrack, branch-and-bound, and reverse search. Other
algorithms (e.g., branch-and-cut, alpha-beta, GRASP), could be added. Be-
cause branch-and-bound is a general paradigm and admits many technical
variations, it is implemented by �ve distinct search engines.

The three paradigms backtrack, branch-and-bound, and reverse search all
solve problems by computations on trees. They di�er in the method used to
de�ne the tree, in the traversal of the tree (depth-�rst, best-�rst or variants
of them), and in the computations done during the traversal.

There is no explicit parallelism at the application interface level. All the
search engines share the same style of interface. The user of a search engine
has to

� de�ne the global data to be distributed among the processors

� de�ne a data type for the nodes of the search tree

� de�ne the problem-speci�c routines which are to be called by the search
engine (Figure 6.1)

Both the global data and the node are abstract data types for the search
engines; the engines access them only through application-de�ned operations.
The global data, which describes the problem instance, is initialized by the
main program and supplied to the search engine as a parameter. It is then

53

54 CHAPTER 6. SEARCH ENGINES

Applications

Search engines

QAP Main Program
mmain

qap_CompareProc

qap_IsSolution

z_BranchBoundDFExp

z_BranchBoundEstimate

QAP initproc

ZRAM Runtime System Service modules

qap_Branch

Figure 6.1: Call graph of a branch-and-bound application (Quadratic Assignment
Problem) with respect to ZRAM's layered structure. The application's main pro-
gram calls a search engine, and the search engine calls application-dependent func-
tions. The interfaces to the backtrack and reverse-search engines are similar.

broadcast to all processors. It cannot be modi�ed during the execution of
the search algorithm.

ZRAM's search engines automatically distribute the nodes of the search
tree among the processors. In contrast, the work to be done in a single node,
which is application-dependent, is not parallelized. This approach is e�cient
for search trees much larger than the number of processors, where coarse
granularity does not limit achievable speedup [9]. The tree-size estimator
calls the same problem-speci�c routines as the search engines.

The implementation of the search engines relies on ZRAM's virtual ma-
chine. Every engine either applies the load balancer by de�ning Work and
Split operations or uses the speculative priority queue. Whereas no paral-
lelism is visible to the application layer, the only explicit parallel operation
of the search layer is the broadcasting of upper bounds by the branch-and-
bound engines. The architecture is extensible to further search engines.

6.1. BACKTRACK 55

6.1 Backtrack

Backtracking is a form of exhaustive search used to �nd all solutions to a
problem. In contrast to branch-and-bound, no upper bound is saved to prune
subtrees. This restriction simpli�es the interface (no comparison between
nodes) and the implementation (no broadcasting of upper bounds). The
application has to provide only a branching procedure, and the search engine
takes care of the rest.

6.1.1 Interface

ZRAM requires a backtrack application to provide one application-de�ned
function, whereas it provides a choice of two search engines.

Application-De�ned Functions

A backtrack application de�nes a single function (see Section 2.2 for an ex-
ample):

boolean appl BranchInPlace(appl GlobalP global,

appl NodeP n,

z_bt_DoProc whatToDo,

void *ref)

BranchInPlace determines the children of n and calls whatToDo(n, ref)

once for every child. After the �nal call to whatToDo, it restores the infor-
mation in n. whatToDo can call BranchInPlace recursively or send a copy of
n to another processor for balancing the parallel load. BranchInPlace must
return 0 (nonzero values are reserved for future extensions).

Search-Engine Calls

There are two backtracking search engines. Both of them require as parame-
ters a pointer to the BranchInPlace function, the global data, and the root
of the search tree.

z_NodeP z_bt_EnumerateDepthFirst(z_ProcSetNum procsetnum,

z_bt_GlobalP global,

z_NodeP root)

This search engine enumerates the whole search tree sequentially by recursive
calls to BranchInPlace. It is optimized for execution on a single processor
and outperforms the other search engine in this case.

56 CHAPTER 6. SEARCH ENGINES

z_NodeP z_bt_EnumerateDFExp(z_ProcSetNum procsetnum,

z_bt_GlobalP global,

z_NodeP root,

boolean sequential)

z_bt_EnumerateDFExp is the parallel backtrack engine. If the parameter
sequential is 0, it executes in parallel; otherwise it executes sequentially.

Discussion

ZRAM provides a whatToDo procedure to the branching function, rather
than requiring the branching function to return a list of the subproblems
generated. We explain this design choice below in the discussion of the
branch-and-bound interface (Section. 6.2.1).

6.1.2 Implementation

z_bt_EnumerateDepthFirst is a simple, but extremely e�cient search en-
gine. Its whatToDo function simply calls BranchInPlace recursively.

z_bt_EnumerateDFExp uses the load balancer of ZRAM's virtual machine
(see Figure 6.2). It is a simpli�ed version of z_BranchBoundDFExp (see Sec-
tion 6.2.1): It does not store an upper bound and does not cut o� subtrees.

Discussion

When we compare the execution time of the two backtrack engines applied
to the n-queens problem with its short and e�cient branching function, it
turns out that z_bt_EnumerateDFExp running on one processor is three times
slower than z_bt_EnumerateDepthFirst. This overhead, which would be
less noticeable in an application which has a longer computation time per
node, is produced mainly by the memory management functions of the C li-
brary. Whereas z_bt_EnumerateDepthFirst neither allocates or deallocates
memory nor copies data, z_bt_EnumerateDFExp allocates a memory block for
every node of the search tree, copies the data generated by BranchInPlace,
and inserts the block into a list. It would be interesting to combine the
advantages of both engines.

6.2 Branch-And-Bound

Branch-and-bound is a standard tool of combinatorial optimization used to
minimize or maximize a given objective function over some state space. With-
out loss of generality, we describe the minimization case. A branching rule

6.2. BRANCH-AND-BOUND 57

Applications
N-Queens

Main Program
mmain

Search engines

Service modules

z_bt_EnumerateDFExp

Load Balancing
and CheckpointingZRAM Runtime System

nq_BranchInPlace

bt_WorkAndSplit

Figure 6.2: Implementation of the parallel backtrack engine. The search-engine
layer calls the load balancer of the layer below and provides it a WorkAndSplit

function. The WorkAndSplit function in turn calls the application-speci�c
BranchInPlace function and returns the list of the children to the virtual ma-
chine.

is used to recursively divide a space into subspaces, thus generating a search
tree. A relaxed version of the original problem, solved in each subspace,
yields a lower bound for the optimal solution. Whenever the lower bound
exceeds the currently known best solution, or an optimal solution of the sub-
problem is found, a cut-o� occurs. Among various traversal orders of the
search tree, best-�rst has the advantage that it generates the smallest search
trees possible, but it can only be used if enough memory is available.

6.2.1 Interface

Every branch-and-bound search engine in ZRAM needs three application-
dependent functions: a branching function, which splits a problem into sub-
problems and computes lower bounds; a solution test; and a function which
compares the lower bounds stored in two nodes.

All the de�nitions of this section can be found in the �le z bb.h. The �le
bb example.c contains a small example program which demonstrates the use
of the branch-and-bound interface.

58 CHAPTER 6. SEARCH ENGINES

Application-De�ned Functions

Every branch-and-bound application de�nes at least three functions: Com-

pare, IsSolution, and either Branch or BranchInPlace.

void appl Branch(appl GlobalP global,

appl NodeP n,

appl NodeP upperBound,

z_bb_DoProcP whatToDo,

void *ref)

Branch is the main function of a branch-and-bound application. It deter-
mines the children (subproblems) of n, allocates memory for them (by calling
z_NewNode), computes their lower bounds and calls whatToDo(child, ref)

for each of them. It can read the current best solution (upperBound), which
may be useful in deciding how much time to invest in the computation of
the lower bounds. It does not deallocate the memory for the children|this
is the responsibility of the search engine. Branch can be called recursively
by whatToDo.

void appl BranchInPlace(appl GlobalP global,

appl NodeP np,

appl NodeP upperBound,

z_bb_DoProcP whatToDo,

void *ref)

BranchInPlace is an alternative to Branch and more e�cient for depth-�rst
search. Instead of allocating memory for the children of a node, it overwrites
the parent node for each child and restores the parent after the �nal call
to whatToDo. The search engine never deallocates the memory for a child
computed by BranchInPlace. whatToDo can call BranchInPlace recursively
(depth-�rst), store a copy of the child in a priority queue (best-�rst) or send
the child to another processor (load balancing).

int appl CompareProc(appl NodeP x,

appl NodeP y)

This function compares the bounds stored in two nodes. It returns 1 if x > y,
0 if x = y, and �1 if x < y.

boolean appl IsSolution(appl NodeP n)

6.2. BRANCH-AND-BOUND 59

This function returns 1 if the subproblem described by n is a solution of the
original problem and 0 otherwise.

A branch-and-bound application may de�ne two optional functions: Upper-
Bound and ShortNodeString.

appl NodeP appl UpperBound(appl GlobalP global,

appl NodeP n)

UpperBound heuristically computes an upper bound for the solution of a
subproblem n. If the function is available, the search engine calls it before
the search algorithm is executed. In a depth-�rst search, a good upper bound
makes early cuto�s possible and keeps the search tree small.

char *appl ShortNodeString(appl NodeP n)

ShortNodeString returns a pointer to a statically allocated string describing
the node n. It is used by the search engine to generate debugging output.

Search-Engine Calls

ZRAM provides various branch-and-bound engines. There are three sequen-
tial engines (depth-�rst, best-�rst, and a combination thereof), and two par-
allel ones (parallel best-�rst, and parallel restartable depth-�rst). As pa-
rameters, they all expect a pointer to the application-de�ned functions in
procsetnum, the global data in global, the root of the search tree in root,
a ag noisy indicating whether debugging output is desired, and optionally
a feasible solution for cutting o� parts of the tree in initialUpperBound. If
initialUpperBound is NULL, but the UpperBound function is de�ned, all the
search engines call this function to compute a feasible solution.

Every search engine stops as soon as it has found one solution and proved
that it is optimal, returning this optimal solution, or it returns NULL if the
problem has no feasible solution.

z_NodeP z_BranchBoundDepthFirst(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP initialUpperBound,

int noisy)

This engine executes a sequential depth-�rst search, calling either Branch or
BranchInPlace recursively.

60 CHAPTER 6. SEARCH ENGINES

z_NodeP z_BranchBoundBestFirst(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP initialUpperBound,

int noisy)

This engine does a sequential best-�rst search, storing the nodes of the tree
in a priority queue. As long as the queue �ts into the available memory,
this strategy generates the smallest possible search trees. However, if there
is insu�cient memory for the priority queue, the program crashes.

z_NodeP z_BranchBoundMixedFirst(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP initialUpperBound,

int queueSize,

int noisy)

This engine combines the advantages of best-�rst and depth-�rst search. It
executes a best-�rst search as long as there are fewer than queueSize nodes
in the priority queue. When the queue attains a size of queueSize, a depth-
�rst search is made. This strategy takes advantage of best-�rst search as
long as possible, but avoids crashes of the program because of insu�cient
memory. queueSize must be set by the application such that the priority
queue and the deepest possible depth-�rst stack �t into the available memory
together.

z_NodeP z_BranchBoundParallel(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP initialUpperBound,

int queueSize,

boolean noisy)

z_BranchBoundParallel is the parallel version of the mixed-�rst engine.
Allocating a global speculative priority queue with queueSize elements per
processor, it searches best-�rst as long as it can insert elements into the queue,
and depth-�rst when the queue overows. This search engine should be used
whenever there is no good initial upper bound available and checkpointing
is not desired.

6.2. BRANCH-AND-BOUND 61

z_NodeP z_BranchBoundDFExp(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP initialUpperBound,

boolean noisy,

boolean sequential)

This procedure performs a depth-�rst search with checkpointing. If se-
quential is 1, the computation is done sequentially, if it is 0, the search
is done in parallel. This search engine should be used when a good upper
bound is known, or when checkpointing is desired.

z_NodeP z_RestartBranchBoundDFExp(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

boolean sequential)

This procedure restarts an interrupted branch-and-bound computation at
the checkpoint saved in the checkpoint �le. All three parameters must be
given identical values as in the original call to the search engine.

int z_bb_RedistributeDFExp(z_ProcSetNum procsetnum,

int n_in,

int n_out)

If we have started a parallel branch-and-bound computation on a given num-
ber of processors and want to continue it using more or fewer processors,
a checkpoint must be written and processed by z_bb_RedistributeDFExp.
This procedure reads the checkpoint �les created by n_in processors and
writes them back as if they were created by n_out processors. It prints the
statistical data collected and reinitializes it to zero. If the operation was
successful, z_bb_RedistributeDFExp returns zero. Otherwise it returns an
error number.

Discussion

There is an alternative to requiring an application-speci�c Compare proce-
dure: We could require that the node data type contains a value �eld of a
�xed type (e.g., double) which can be accessed by the search engine. Other
branch-and-bound libraries follow this approach. We claim that the ZRAM
approach is more exible, because there might be optimization problems over
a totally ordered set which cannot be mapped to double so easily, and be-
cause the application designer may want to evaluate a lower bound only when

62 CHAPTER 6. SEARCH ENGINES

it is needed in a comparison, and only to the precision necessary to determine
the outcome of the comparison.

Instead of providing a whatToDo procedure to the branching function,
other branch-and-bound libraries require that the branching function re-
turns a list of the subproblems generated. Either method can be emulated
by the other one. The method used in ZRAM has the advantage that a
memory-e�cient recursive depth-�rst search can be implemented which uses
only space linear in the depth of the tree, rather than the depth of the tree
multiplied by the branching factor. The same consideration applies to the
backtrack interface.

Why does z_bb_RedistributeDFExp exist only for branch-and-bound
and why is it not part of the virtual machine? A checkpoint consists of
two components, the work units (subproblems to be solved), and the current
upper bound of every processor (the upper bounds may di�er from one an-
other if the checkpoint is written after a processor �nds a new upper bound,
but before the corresponding broadcast). The former can be handled by the
virtual machine, but the latter are speci�c to branch-and-bound.

6.2.2 Implementation

A parallel branch-and-bound engine operating in distributed memory cannot
save an upper bound (best solution found so far) in a global variable as a
sequential engine does. In the two parallel engines (z_BranchBoundParallel
and z_BranchBoundDFExp), every processor maintains a local upper bound
(the best solution it currently knows). Whenever the local upper bound de-
creases, its new value is immediately broadcast to all other processors. When
a processor receives a message containing an upper bound, it compares the
bound in the message to the local one and keeps the stronger one. This strat-
egy ensures that eventually every processor knows the globally best solution.
If messages are delayed, weaker bounds are used, fewer subtrees cut o� and
more nodes evaluated than if they arrive quickly. Such delay generates search
overhead, but does not a�ect the correctness of the algorithm.

z_BranchBoundParallel approximates a best-�rst search by using the
speculative priority queue which is provided by the virtual machine. It re-
peatedly fetches one of the �rst elements of the queue (those with the best
lower bounds) and calls Branch or BranchInPlace. whatToDo, which is called
for every subproblem generated, selects the �rst applicable choice of the fol-
lowing list:

1. If the lower bound of the new subproblem is at least as high as (equal
to or worse than) the current upper bound, the subproblem is simply

6.3. REVERSE SEARCH 63

deallocated and forgotten.

2. If the new subproblem is a solution of the original problem, it replaces
the old upper bound, is stored and broadcast to all processors. All
queue elements whose lower bound is higher than the new upper bound
are removed.

3. Otherwise, the new subproblem is inserted into the speculative priority
queue.

z_BranchBoundParallel does not make checkpoints of the speculative pri-
ority queue. Because this queue tends to �ll up all the memory available, the
checkpoint �les would be extremely large.

z_BranchBoundDFExp uses the load balancer of the virtual machine. The
work units of the load balancer are the subproblems of the search engine.
The load balancer calls bb_WorkAndSplit which in turn calls Branch or
BranchInPlace (compare Figure 6.2). whatToDo, which is called for every
subproblem generated, selects the �rst applicable choice of the following list:

1. If the lower bound of the new subproblem is at least as high as the cur-
rent upper bound, the subproblem is simply deallocated and forgotten.

2. If the new subproblem is a solution of the original problem, it replaces
the old upper bound, is stored and broadcast to all processors. All
queue elements whose lower bound is higher than the new upper bound
are removed.

3. Otherwise, the new subproblem is appended to the end of the list of
work units maintained by the load balancer. Because the load balancer
always selects the last element of the list for evaluation, this strategy
amounts to a depth-�rst search.

The checkpointing facility, which is implemented in the load balancer, saves
not only the work units, but the current upper bound also.

6.3 Reverse Search

Reverse search [3, 4] is a memory-e�cient technique for traversing a graph
without marking visited vertices. Its time complexity is linear in the output
size and its space complexity does not depend on the output size.

Suppose we have a �nite connected graph G and an objective function to
be maximized over its vertices. A local search algorithm is a procedure for

64 CHAPTER 6. SEARCH ENGINES

moving from a vertex to an adjacent vertex whose objective function value
is larger. Obviously the local search algorithm �nds a local optimum. The
union of all paths de�ned by the local search algorithm is a partition of the
graph into trees rooted at the local optima.

Reverse search reverses this process. Suppose that a graph G is given in
the form of an adjacency oracle that returns all the neighbors of any given
vertex, and suppose that we know how to enumerate all the local optima.
Starting at each local optimum we can traverse every tree in a depth-�rst
manner, and thus enumerate all vertices of the graph.

6.3.1 Interface

ZRAM's reverse-search engine needs �ve application-dependent functions:
the local search function, the adjacency oracle, an equality test for vertices,
a root test, and the maximum degree in the graph.

ZRAM's reverse-search component is the �rst parallel implementation of
reverse-search. Its interface conforms exactly to the standard de�ned in [4].
An overview of it is given in Figure 6.3, and the formal de�nition can be found
in the �le z rs.h. The �le rs example.c contains a small example program
which demonstrates the use of the reverse-search interface by enumerating
the points of a �nite rectangular grid.

Application-De�ned Functions

A reverse-search application always de�nes the �ve mandatory functions F
(local search), AdjOracle (adjacency oracle), Equal (equality test), IsRoot
(root test) and Delta (bound for the number of adjacencies):

appl NodeP appl F(appl GlobalP global,

appl NodeP node)

This is the local search function [4]. Given any node of the search tree which
is not the root, this function computes its parent.

appl NodeP appl AdjOracle(appl GlobalP global,

appl NodeP v,

uint32 k)

The adjacency oracle de�nes the underlying graph structure. Given a node
v and a number k with 0 � k < �, it returns a node adjacent to v or NULL.

uint32 appl Delta(appl GlobalP global,

appl NodeP node)

6.3. REVERSE SEARCH 65

Applications

Search engines

EST
Main Program

mmain

est_F
EST

initproc

ZRAM Runtime System Service modules

est_AdjOracle

est_Delta

est_IsRoot

est_Equal

z_rs_Enumerate

Figure 6.3: Call graph of a reverse-search application (enumeration of Euclidean
spanning trees) with respect to ZRAM's layered structure. This application de�nes
only the �ve mandatory functions. Other applications (e.g., vertex enumeration)
de�ne further optional functions.

This function returns an upper bound on the degree of a given node.

boolean appl Equal(appl GlobalP global,

appl NodeP a,

appl NodeP b)

This function tests two nodes for equality. It returns 1 if they are equal and
0 if they are not.

appl IsRoot(appl GlobalP global,

appl NodeP node)

This function returns 1 if the given node is the root of the search tree and 0
if it is not.

The application may de�ne optional functions. Three of them (FindChild-
Number, Forward and NextChild) can enhance the e�ciency of the compu-
tation, and the fourth one (Result) is usually used to print the enumerated
objects.

66 CHAPTER 6. SEARCH ENGINES

uint32 appl FindChildNumber(appl GlobalP global,

appl NodeP child,

appl NodeP parent)

This is the inverse function to the adjacency oracle. It returns the �rst (and
unique) integer k such that AdjOracle(parent, k) = child. If it is de�ned,
it replaces the following code fragment:

for (k=0;; k++) {

other = AdjOracle(global, parent, k);

if (other) {

if (Equal(global, other, child)) break;

z_FreeNode(other);

}

} /* for */

z_FreeNode(other);

void appl Forward(appl GlobalP global,

appl NodeP *nodeH,

uint32 *k)

In certain applications (e.g., vertex enumeration), it is possible to determine
the child number in the computation of the local search function without
calling the adjacency oracle. In these cases, Forward can de�ne a more
e�cient computation replacing the following three-line code fragment of the
reverse-search engine:

node = F(global, child);

k = FindChildNumber(rs_global, child, node);

z_FreeNode(child);

appl NodeP appl NextChild(appl GlobalP global,

appl NodeP parent,

int k,

int l,

uint32 *num)

This function can replace the following code fragment which tries to �nd a
child with a number between k and l and returns this number in num:

step = (l > k) ? 1 : -1;

for (; k != l; k += step) {

next = AdjOracle(global, parent, k);

6.3. REVERSE SEARCH 67

if (next) {

if (!IsRoot(global, next)) {

f_next = F(global, next);

if (Equal(global, parent, f_next)) {

/* found a child */

z_FreeNode(f_next);

*num = k;

return next;

} /* if */

z_FreeNode(f_next);

} /* if */

z_FreeNode(next);

} /* if */

} /* for */

return NULL; /* there are no more children */

void appl Result(appl GlobalP global,

appl NodeP node)

This procedure (if de�ned) is called by the search engine for every node
enumerated. It can, for instance, print the node.

Search-Engine Calls

void z_rs_Enumerate(z_ProcSetNum procsetnum,

z_lb_GlobalP global,

z_NodeP root,

boolean sequential)

z_rs_Enumerate is the main call to the reverse-search engine. It enumerates
nodes beginning at root. The read-only global data is given in global, and
the application-speci�c functions are given in procsetnum. If sequential is
1, the enumeration is done sequentially, if it is 0, the tree is enumerated in
parallel. The computation is checkpointed as described in Section 5.2.

void z_rs_Restart(z_ProcSetNum procsetnum,

z_lb_GlobalP global,

boolean sequential)

This procedure restarts an interrupted reverse-search enumeration at the
checkpoint saved in the checkpoint �le. All three parameters must be given
identical values as in the original call to the search engine.

68 CHAPTER 6. SEARCH ENGINES

Discussion

Although the mandatory part of the interface seems to be concise and clear,
we could eliminate the function IsRoot, leaving only four mandatory func-
tions. We see two possibilities for this elimination. First, we could replace
IsRoot by an equality test, for the search engine knows the root node. This
solution is not satisfactory because the root node would have to be broadcast
to all processors and because the equality test may be more expensive than
the root test.

A more e�cient solution is modifying the de�nition of the local search
function F such that it returns NULL when it is called for the root (the current
de�nition does not allow the root node as a parameter to F). This modi�-
cation would su�ce because the only place where the root test is used in
the implementation is just before the call to F in NextChild. One might
think that another root test is necessary to detect the termination of the
reverse-search algorithm, but the search engine always knows the depth of
the current node in the tree and stops when this depth decreases to zero.

6.3.2 Implementation

Reverse search traverses a tree in depth-�rst order. It uses the adjacency
oracle to move down the tree (away from the root) and the local search func-
tion to move up. In contrast to backtracking, which has a space complexity
proportional to the height of the tree, reverse search does not have to save
the whole path from the current node back to the root, and thus its space
complexity is independent of the height of the tree.

ZRAM keeps a cache of ancestors of the current node which eliminates
most calls to the local search function. After ZRAM had shown that this
idea can double the speed of an enumeration, David Avis integrated the same
concept into his vertex enumeration program lrs. Load balancing transfers
subproblems (intervals) among processors, but not the ancestor cache. This
loss of context contributes to the parallelization overhead.

The memory requirements of reverse search do not depend on the size of
the graph, and we can save any intermediate state of the sequential compu-
tation by merely recording the current node along with the values of global
variables, such as bounds. Thus checkpointing and restarting a computation
are inexpensive operations, a great practical asset for long computations.

The large variance in the size of the subtrees, coupled with the impossi-
bility of estimating their sizes, creates the need to balance the processor load
dynamically. The reverse-search engine uses the load balancer of ZRAM's
virtual machine, and therefore has to de�ne the work units as well as the

6.3. REVERSE SEARCH 69

work and split operations in terms of the �ve application-speci�c functions
(Figure 6.4).

Applications
EST

Main Program
mmain

est_F

est_AdjOracle

est_Delta

est_IsRoot

est_Equal

Search engines

Service modules

z_rs_Enumerate rs_Split

Load Balancing
and Checkpointing

rs_Work

ZRAM Runtime System

Figure 6.4: Mapping the reverse-search operations onto the virtual machine. The
search-engine layer de�nes the operations work and split in terms of the �ve
application-speci�c functions.

The work is not split into contiguous subtrees, but rather into intervals of
the tree's preorder traversal. In this memory-e�cient approach, every pro-
cessor stores only one interval instead of a set of subtrees. Such an interval
[s; e] extends from its start node s to its end node e. The virtual machine re-
quires the search engine to provide a Work and a Split operation on intervals
(Sec. 5.3.3). These operations are de�ned as follows:

� Work removes the start node of an interval, decreasing the size of the
interval by one.

� Split splits an interval of size greater than one into two parts [s;m] and
[m+ 1; e].

We can limit our implementation to a set of intervals which contains the
interval corresponding to the whole search tree and is closed under these two
operations, so we work only with intervals representable by a triple hs; d; ki,
where d is the depth of the start node relative to a common ancestor, and k

is the number of the node following e as a neighbor of the common ancestor

70 CHAPTER 6. SEARCH ENGINES

de�ned by the adjacency oracle (Figure 6.5). The whole search tree is rep-
resented by the triple hroot; 0;1i. As the storage size of a node is typically
much greater than two integers, this implementation outperforms one which
simply stores the start and the end node.

s

1
2

3

e

node following
the end node{depth = 2

least common ancestor

Figure 6.5: Mapping the reverse-search data onto the virtual machine. The �lled
circles are the elements of an interval of the preorder traversal represented by
hs; 2; 3i. An interval corresponds to a work unit of the virtual machine. The nodes
which may be in the ancestor cache are marked by a �.

Discussion

The described implementation of the reverse-search engine has been chosen
for its space-e�ciency. This choice has the tradeo� that the split operation
can be slow. It is the best choice when the memory size of the nodes is
large. It is appropriate whenever the search tree is not too irregular and
therefore few split operations are executed (for a speedup diagram, see Fig-
ure 7.1). But it can be improved when the nodes are so small that hundreds
of them can be kept in memory. For these cases, a search engine similar to
z_bt_EnumerateDFExp and z_BranchBoundDFExp should be designed. The
work units given to the virtual machine would be subtrees rather than inter-
vals.

6.4. TREE-SIZE ESTIMATOR 71

6.4 Tree-Size Estimator

If we knew the running time of a given problem instance before starting
the computation, we could avoid starting computations which later turn out
to exceed the time available. This capability would be preferable to killing
a computation which already has used many resources. We thus want to
estimate the di�culty of a given instance so as to decide whether it is solvable
by the available algorithm in a reasonable amount of time.

Because we cannot predict the running times of a Branch and Bound
algorithm by traditional complexity analysis (aside from weak worst-case
considerations), we need another approach for estimating the resources such
as running time involved in the actual solution of an instance. Knuth's
tree-size estimator [39] evaluates a relatively small number of paths of the
search tree and computes the degree of every node along these paths. This
information provides an unbiased estimate of the size of the full tree.

6.4.1 Interface

Application-De�ned Functions

As the tree-size estimator is currently implemented only for branch-and-
bound applications, it expects the same application-de�ned functions as the
branch-and-bound engines, namely Branch or BranchInPlace, Compare, and
IsSolution (see Section 6.2.1).

Search-Engine Calls

void z_BranchBoundEstimate(z_ProcSetNum procsetnum,

z_bb_GlobalDataP global,

z_NodeP root,

z_NodeP UpperBound,

int numEstimates,

float *nNodes,

float *sNodes,

float *nTime,

float *sTime)

This function estimates the size of a branch-and-bound search tree and the
execution time of a sequential branch-and-bound algorithm. The parameters
procsetnum, global and root are equivalent to the corresponding param-
eters of the branch-and-bound engine. UpperBound should be the value of
an optimal solution, or an estimate of it, as the optimal solution usually is

72 CHAPTER 6. SEARCH ENGINES

not available. The estimate of the tree-size depends heavily on the quality of
UpperBound, for the estimator estimates the number of nodes which have a
lower bound less than UpperBound. If UpperBound is too high, the tree size
is overestimated; if it is too low, the tree size is underestimated.

numEstimates is the number of random paths through the tree to eval-
uate. The execution time of the estimator is proportional to it, and the
variance of the estimates is inversely proportional to it. The four output
parameters are described in Table 6.1.

Name Meaning
nNodes estimated number of nodes in the tree
sNodes standard error of the estimated number of nodes
nTime estimated execution time of the branch-and-bound engine
sTime standard error of the estimated execution time

Table 6.1: Output of the tree-size estimator.

Discussion

The tree-size estimator could easily be extended to reverse-search and back-
track trees. This generalization has not been implemented yet because there
was no demand for it.

6.4.2 Implementation

The parallel implementation of the tree-size estimator calculates the number
of paths to be evaluated per processor (static load balancing), and broadcasts
this number together with the global data and the root to the processors.
The processors then independently evaluate the paths and collect the data
needed. At the end of the computation, the front end gathers the results and
computes the mean as well as the standard deviation as described in [39].

Discussion

The di�erent paths in a search tree generally have di�erent lengths and their
evaluations have di�erent running times, but the tree-size estimator, which
has been parallelized before the load-balancer was available in the virtual
machine, balances the load statically rather than dynamically. This imple-
mentation is no real handicap because usually thousands of paths are eval-
uated and because the execution time of every process depends only on the

6.4. TREE-SIZE ESTIMATOR 73

lengths of the chosen paths through the tree, which have a much smaller
variance than the size of the subtrees.

74 CHAPTER 6. SEARCH ENGINES

Chapter 7

ZRAM in Action

Having explained the three lower layers of ZRAM, we will now illustrate its
use for computation-intensive search problems. More than a dozen appli-
cations using ZRAM's search engines have been implemented. We start
by describing the �rst parallel implementation of a space-e�cient vertex
enumeration algorithm for higher dimensions and a parallel solver for the
quadratic assignment problem. These applications both have solved hith-
erto unsolved instances of di�cult combinatorial problems. Both results
involve large amounts of computation and would have been impossible with-
out ZRAM's checkpointing possibility. We continue with four applications
which show the exibility of ZRAM, ending with references to other people
who have used ZRAM pro�tably for the parallelization of search algorithms.

7.1 Convex Hull and Vertex Enumeration in

Polyhedra

A convex polyhedron or simply polyhedron is the solution set of a system
of linear inequalities in d variables; it is a subset P of the d-dimensional
space Rd of the form fx 2 Rd : A x � bg, for some matrix A 2 Rm�d and
vector b 2 Rm. The vertex enumeration problem consists of generating all
the vertices (extreme points) of P for given inputs A and b. The convex
hull problem is the reverse problem; that is, for a given set V of m points
in Rd �nd minimal A and b whose solution is the convex hull of V . These
two problems are computationally equivalent by the duality of points and
hyperplanes [3, 26], and have been extensively studied in operations research
and computational geometry. Many problems, such as the computation of
the d-dimensional Voronoi diagram or the Delaunay triangulation, can be
reduced to one of these problems [22].

75

76 CHAPTER 7. ZRAM IN ACTION

The least time and space complexities for solving vertex enumeration and
convex hull problems, at least under the assumption of nondegeneracy, are
achieved by the reverse search algorithm [3], which is based on reversing the
Simplex method for linear programming. The time and space complexities
of the vertex enumeration problem for v vertices are O(mdv) and O(md),
respectively. Reverse search is ideally suited for parallel computation, unlike
other algorithms such as the double description method and its dual, the
beneath-and-beyond method [22], which are memory-intensive sequential al-
gorithms. Other advantages of reverse search are the small size and simple
structure of its checkpoint �les, and the possibility of estimating the output
size without doing the full computation.

The implementation is based on David Avis' sequential lrs code, which
implements the Simplex algorithm with lexicographic pivoting, and it uses
the same format for input and output �les. Note that each basis of the system
A x � b represents a vertex, but generally there are many bases representing
the same vertex.

Table 7.1 lists the running times for a sample polytope on four di�erent
machines, and Figure 7.1 shows the speedup on the Paragon. The speedup
of 35.2 for 100 processors is rather good, as the test problem is small com-
pared to real instances. Higher-dimensional problems, with much wider and
larger search trees, have a more favorable speedup. See Section 6.3.2 for an
explanation of the parallelization overhead.

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

processors

sp
ee

du
p

Figure 7.1: Speedup for vertex enumeration of c7-3 on the Intel Paragon.

Our parallel code was able to solve three large polytopes on a Cenju-3 with
64 processors. Table 7.2 shows their dimension, the number of inequalities

7.1. CONVEX HULL 77

Machine processors time [s] speedup

DEC AXP 3000/700 1 791.5 1.0
Paragon MP 1 2523.0 1.0

10 268.3 9.4
100 71.6 35.2
150 65.7 38.4

Cenju-3 1 952.0 1.0
10 101.5 9.4
100 27.8 34.2

GigaBooster 1 1520.3 1.0
7 248.3 6.1

Table 7.1: Running times and speedup for the polytope c7-3 on di�erent machines.
c7-3 is the cross product of the dual of the 7-dimensional hypercube and a 3-
dimensional cube. It is 10-dimensional, has 134 facets and 112 vertices, and thus
d = 10,m = 134 and v = 112. The reverse search algorithm generates 75040 bases
in a search tree of depth 37. Typical instances that arise in applications and have
been solved by our ZRAM application are three orders of magnitude larger. As we
can see, the Cenju-3 has the highest single-processor performance and (together
with the Paragon) the highest speedup.

and vertices, the number of bases of the perturbed polytope, and the execu-
tion time. These instances could not be solved on any single workstation|the
estimated CPU time on a DEC AXP workstation ranges from 130 days to 5.4
years. The Cenju-3 system we used is a research machine dedicated primar-
ily to software development. During the computation, it was rebooted with
di�erent system software at unexpected times. Thus, the restart capability
of ZRAM while running reverse search was essential.

How can we be sure that the result of a month-long computation is cor-
rect? For vertex enumeration, one part of the veri�cation is easy. Verifying
that the points which are output are vertices of the polytope can be done in
a reasonable amount of time. For the other part of the veri�cation, "have all
vertices been found?", no e�cient algorithm is known.

Our work on this topic has led to the development of a primal{dual vertex-
enumeration algorithm, which is described in [8, 7]. The new algorithm is
based on the facts that (1) we can check the completeness of the vertices
found by computing their convex hull and comparing it to the input, and (2)
we can always derive an additional vertex from the comparison between an
incomplete convex hull and the input.

78 CHAPTER 7. ZRAM IN ACTION

Name d m v bases

time on
Cenju-3
(64

procs)

time on
worksta-
tion
(esti-
mated)

01torus15x 14 240 101445 409794857 3 days 130 days
mit71-61 60 71 3149579 57613364 4.5 days 130 days
01torus16x 15 340 519275 3971059018 38 days 5.4 years

Table 7.2: Three previously unsolved polytopes. The vertex-enumeration program
based on ZRAM is suitable for computing polyhedra with billions of bases. The
polytope mit71-61 stems from materials science research and describes ground
states of ternary alloys [16]. 01torus15x and 01torus16x describe reachable
con�gurations in a variant of the well-known peg solitaire game [6, 2].

7.2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) in Koopmans{Beckmann form can
be stated as

min
�2S

nX

i=1

nX

j=1

fij � d�(i)�(j)

where S is the set of all permutations of 1; 2; : : : ; n, and F and D are integer
n�n matrices. A typical example of a QAP is the facility location problem,
in which a set of n facilities is to be assigned to an equal number of locations.
Between each pair of facilities, there is a given amount of ow, contributing a
cost equal to the product of the ow and the distance between the locations to
which the facilities are assigned. There are many other applications [14, 51].

The QAP is a hard problem because many classical combinatorial opti-
mization problems, such as the traveling salesman problem and the maximum
clique problem, are special cases of the QAP. The exact solution of instances
with n � 20 is reputed to be di�cult, the only practical method for their so-
lution being branch-and-bound. Although many sophisticated lower bounds
for the QAP have been proposed, the most successful programs for solving
the QAP use the rather weak bound developed by Gilmore and Lawler, which
can be computed quickly.

In striking contrast to the di�culty of solving a QAP to optimality is the
easyness of guessing optimal solutions by heuristic algorithms. A comparison
of the main heuristics for the QAP can be found in [10].

We have implemented a parallel program [11, 12], which is based on

7.2. QUADRATIC ASSIGNMENT PROBLEM 79

ZRAM, the Gilmore{Lawler bound, the branching rule of Mautor and Rou-
cairol, and simulated annealing. The program �rst �nds a good solution
by simulated annealing, estimates the size of the search tree using ZRAM's
estimator, and then veri�es the solution by parallel depth-�rst branch and
bound. As the initial solution is optimal in most cases, the depth-�rst search
tree has the same size as a best-�rst tree would have. The program has little
communication overhead and gives good speedup.

We used instances in the set of QAP instances that is commonly used
to compare work on QAP algorithms (QAPLIB [15]) as a benchmark to
evaluate our implementation. First we used the estimator on every unsolved
instance to predict the execution time necessary for solving it. Then, we
determined nine instances to be solvable within a reasonable amount of time
and solved them. In this application, the tree-size estimator proved to be an
extremely valuable tool. Instances had20 and tai20a were solved on the
Intel Paragon, the other instances on the NEC Cenju-3. Table 7.3 shows the
execution time and the size of the search tree for all nine instances. The
largest instance we could solve with this approach is nug22 with almost 49
billion nodes in the search tree, and it was solved in 12 days with a varying
number of processors.

name cost processors nodes
time
[Min]

had16 3 720 32 18 770 885 4
had18 5 358 16 761 452 218 442
had20 6 922 96 7 616 968 110 2875
tai17a 491 812 32 20 863 039 6
tai20a 703 482 96 2 215 221 637 684
rou20 725 522 32 2 161 665 137 961
nug21 2 438 16 3 631 929 368 3213
nug22 3 596 48{96 48 538 844 413 12780
esc32e 2 32 12 515 753 10

Table 7.3: Nine previously unsolved benchmark instances taken from QAPLIB.
The tree-size estimator enabled us to select those instances that could be solved
in the available amount of time.

After we had published our results, Tsch�oke et al. implemented a sim-
ilar algorithm on their parallel PowerPC computer and solved the nug24
instance. Their result motivated us to develop a dynamic programming al-
gorithm based on a new relaxation of the QAP which is stronger than the
Gilmore{Lawler bound. By running this algorithm on the Paragon, we could

80 CHAPTER 7. ZRAM IN ACTION

solve nug25 [10].

7.3 Vertex Cover

We will now discuss an optimization problem arising in graph theory. Let
G = (V;E) be an undirected graph. A subset U � V is called vertex cover
if every edge of G has at least one endpoint in U (Figure 7.2); that is,

8(u; v) 2 E : u 2 U _ v 2 U

In the vertex cover problem we want to �nd a vertex cover with the smallest
cardinality. This problem is equivalent to �nding a maximum independent
set in the same graph or �nding a maximum clique in its complement. It is
NP-complete [27], even for graphs containing no triangles. The vertex cover
problem can be generalized to the weighted vertex cover, where every vertex
has a weight and we want to �nd a cover of minimum weight.

Figure 7.2: A minimal vertex cover of a graph. That the vertices marked with
a ring cover all edges can easily be veri�ed by hand: Check that all neighbors of
every unmarked vertex are marked. Checking the minimality of the cover is an
NP-complete problem.

Another generalization of vertex cover is the set cover problem. Given is
a ground set M = f1; : : : ;mg and set of n subsets Mj �M with cost cj, �nd

7.3. VERTEX COVER 81

a set J � f1; : : : ; ng such that
S
j2J Mj = M and

P
j2J cj is minimum. The

de�nition of aij as 1 if i 2Mj and 0 otherwise leads to the formulation as a
zero-one optimization problem:

Minimize
nP
j=1

cjxj

such that
nP
j=1

aijxj � 1 for all i 2 f1; : : : ;mg

xj 2 f0; 1g for all j 2 f1; : : : ; ng

ZRAM uses a branch-and-bound algorithm to �nd a minimum vertex
cover for a graph. Although a branch-and-cut program might be more ef-
�cient [64], nobody has implemented branch-and-cut in parallel up to now,
and branch-and-bound vertex-cover programs have been used by other au-
thors [44] to test parallel algorithms. The unweighted vertex cover problem
is an easy task for the dynamic load balancing as most nodes of the search
tree have the same bound.

To optimize the performance for sparse graphs, the program uses an ad-
jacency list of the graph as the main data structure. For dense graphs, an
adjacency matrix would be more appropriate. The adjacency list is part of
the global data and is not modi�ed by the branching code.

The branching rule �nds a vertex of maximum degree and generates two
subproblems. Either the vertex is an element of the cover or it is not. If
it is, all edges incident to it are covered and can be ignored. If it is not
part of the cover, all vertices adjacent to it must be part of the cover and
the edges incident to them can be ignored. The program simpli�es the two
subproblems by repeatedly marking and removing every vertex adjacent to
a vertex of degree 1.

The data structure describing a subproblem (vc_Node) contains mainly
an array of integers where the degree of every vertex is stored together with
a ag signifying whether the vertex is part of the cover. This implementation
makes the operations �nd a maximum-degree vertex and mark a vertex and
remove its adjacent edges e�cient. On the other hand, storing the redundant
degree of every vertex wastes space. This redundancy is irrelevant for depth-
�rst computations, but the range of instances that can be solved by best-�rst
search is limited by the number of nodes that �t in the in-memory priority
queue.

The most important step in determining a lower bound for a subproblem
is the computation of a maximum matching by Edmonds' algorithm. The
cardinality of the maximum matching is a lower bound for the vertex cover
problem. This bound is never higher than 50 percent of the number of vertices
in the graph. To achieve stronger bounds, we search for cliques of size � 3

82 CHAPTER 7. ZRAM IN ACTION

and odd-length circles. In a clique of size k, at least k � 1 points are part
of any cover. In a circle of length 2k � 1, at least k points are part of any
cover. Of course, �nding big cliques or many nonintersecting circles is a hard
problem, so our algorithm uses a heuristic procedure to �nd a few of them
quickly. All these ideas are applications of one principle: If any vertex cover
for a graph is restricted to an induced subgraph, it covers this subgraph.
Thus, if the vertices of a graph are partitioned into disjoint subsets, the sum
of the sizes of minimum vertex covers for the subgraphs is a lower bound for
the vertex cover of the original graph (Figure 7.3).

Figure 7.3: A lower bound for the minimum vertex cover. The graph is partitioned
into subgraphs for which a minimum vertex cover can be computed easily. Every
clique of size k has at least k � 1 vertices in the cover, and thus 3 + 2 + 2 + 2 +
1 + 1 + 1 + 1 = 13 is a lower bound for the size of a cover of the full graph.

7.4 Connected Induced Subgraphs

The enumeration of connected induced subgraphs (CIS) [4] is a typical ap-
plication of the reverse-search paradigm. Given is an undirected graph
G = (V;E) with vertex set V = f1; 2; : : : ; ng. We want to enumerate all

7.4. CONNECTED INDUCED SUBGRAPHS 83

connected induced subgraphs of G without incurring the overhead of enu-
merating all 2jV j subsets of V .

In a reverse-search algorithm for CIS, the nodes of the search tree corre-
spond to the connected subsets U � V . If j 2 U is the smallest vertex in U

such that the subgraph induced by U � j is connected, the local search func-
tion is de�ned as fCIS(U) := U � j. This de�nition implies that the empty
subgraph is the root of the search tree. The de�nition of the adjacency or-
acle can be deduced from our description of the local search function. The
shallowness of the search tree (whose height is at most jV j) implies that it
is wide, and thus makes good speedup possible. The CIS algorithm can also
be used for the enumeration of polyominoes (Sec. 7.5).

The current implementation of the CIS algorithm on top of ZRAM is
capable of producing text (a list of vertex sets) or graphical (PostScript, see
Fig. 7.4) output. Its global data (cis_Global) consists of the number of
vertices jV j, the adjacency lists, and the coordinates of the vertices if the
output is to be shown graphically. A node of the search tree (cis_Node)
stores the subset U � V .

Figure 7.4: Connected induced subgraphs of a seven-vertex graph. The empty
graph at the top left is the root of the reverse-search tree.

84 CHAPTER 7. ZRAM IN ACTION

7.5 Polyominoes

Polyominoes are shapes made by connecting certain numbers of equal-sized
squares, each joined together with at least one other square along an edge.
Fig. 7.5 shows the 12 pentominoes (polyominoes consisting of 5 squares).
The idea of polyominoes is old, but they were given their name only in 1953
by Golomb [32].

There is an exponential number of polyominoes; that is, there is a con-
stant K (Klarner's constant) such that the number of polyominoes of size
n is �(Kn). The exact value of K is unknown, but has been proved to be
between 3.9 and 4.649551.

Two di�erent algorithms for the enumeration of polyominoes have been
implemented on top of ZRAM. One of them (PMBT) uses backtracking, the
other one (PMRS) uses the connected induced subgraphs program (Sec. 7.4)
and thus is a reverse search application. Both algorithms generate symmetric
instances of polyominoes but output only one representative of each class,
and both of them produce graphical output (Figure 7.5 and Figure 7.6).

The reverse-search program models a polyomino as a connected induced
subgraph of a suitably chosen rectangular-grid graph (Fig. 7.7). In fact,
a smaller graph could be used, but this would complicate the detection of
symmetries. The program enumerates all connected induced subgraphs of
size 1 through n and prints those with size equal to n. It has a high overhead
because of the implementation of the grid by adjacency lists, and is thus four
times slower than the backtrack program (Fig. 7.8).

The backtrack program works on a rectangular array of tiles. Every tile
is in one of the states undecided, used, or free. Initially one tile is used, and
the rest is undecided. The algorithm recursively chooses an undecided tile
adjacent to a used one and sets it either to used or to free until the polyomino
has size n.

7.6 Euclidean Spanning Trees

Let P be a �nite set of points in the plane, no three of which are collinear.
We consider trees with vertices in P and edges given by line segments with
endpoints in P , and we want to enumerate all of them that do not have
intersecting edges. These trees are called Euclidean Spanning Trees (EST),
and can be enumerated e�ciently by reverse search [4].

The current implementation of the EST algorithm on top of ZRAM is
capable of producing text (a list of trees represented as lists of edges) or
graphical (PostScript) output (Figure 7.9). Its global data (est_Global)

7.7. OTHER APPLICATIONS 85

Figure 7.5: The 12 pentominoes.

consists of the number of points and their coordinates. A node of the search
tree (est_Node) corresponds to a Euclidean Spanning Tree and is represented
as an array storing the lexicographically sorted edges.

7.7 Other Applications

The following list of other ZRAM applications shows the exibility of ZRAM
and demonstrates that several people have learned to use the library produc-
tively within a few days.

� The n-queens problem was presented in Chapter 2.

� Another simple example of a backtrack algorithm is the enumeration
of all partitions of a set into disjoint subsets. Instead of describing the
algorithm, we show its output for a four-element set (Table 7.4).

� Br�ungger [13, 10] implemented two versions of a 15-puzzle solver us-
ing branch-and-bound and Manhattan distances as lower bound (Fig-
ure 7.10). He used ZRAM for one version and carefully optimized the

86 CHAPTER 7. ZRAM IN ACTION

Figure 7.6: The 35 hexominoes. They can be enumerated by reverse search (based
on the enumeration of connected induced subgraphs) and by backtracking.

Figure 7.7: Mapping of polyominoes to connected induced subgraphs. In the
reverse-search program, the pentominoes correspond to the connected induced
subgraphs of the grid shown which have �ve vertices and contain the marked
vertex.

7.7. OTHER APPLICATIONS 87

tiles

1

10

100

1000

10000

100000

1000000

2 3 4 5 6 7 8 9 10 11 12 13

solutions

PMRS time

PMBT
time

Figure 7.8: Number of polyominoes and sequential execution time of both imple-
mented programs in seconds. The backtrack program is four times faster than the
one built on top of the connected induced subgraphs application.

Figure 7.9: The 77 Euclidean spanning trees of a �ve-point set. The top-left tree
is the root of the reverse-search tree.

88 CHAPTER 7. ZRAM IN ACTION

f1; 2; 3; 4g f1; 4g; f2; 3g
f1; 2; 3g; f4g f1; 4g; f2g; f3g
f1; 2; 4g; f3g f1g; f2; 3; 4g
f1; 2g; f3; 4g f1g; f2; 3g; f4g
f1; 2g; f3g; f4g f1g; f2; 4g; f3g
f1; 3; 4g; f2g f1g; f2g; f3; 4g
f1; 3g; f2; 4g f1g; f2g; f3g; f4g
f1; 3g; f2g; f4g

Table 7.4: Partitions of a four-element set. The 15 ways of partitioning the set
f1; 2; 3; 4g into disjoint subsets are enumerated by a backtrack algorithm.

other one for speed without using a search library. He reports that the
library version runs on a single processor at one-half of the speed of the
optimized version. At �rst sight, the overhead incurred by using the
library may seem to be large, but the 15-puzzle is a worst-case example
because the processor can generate the moves and update the bounds
in almost no time. In the QAP application, for instance, the overhead
is negligible and cannot even be measured.

14 1 9 6

4 3 13 5

7 8 2

10 11 12 15

1 2 3

4 5 6 7

8 9 10

12 13 14 15

11

?

minimal
moves

Figure 7.10: The 15-puzzle. Given any starting permutation of the 15 tiles, the
problem is �nding a minimal sequence of moves to the goal position. Br�ungger
[10] has proved that 80 moves always su�ce and are necessary in the worst case.
Figure courtesy of Adrian Br�ungger, ETH Z�urich.

� Br�ungger [9] implemented a traveling salesman solver using the Held{
Karp 1-Tree with iteration of Lagrangean coe�cients as the lower
bound.

7.7. OTHER APPLICATIONS 89

� Sleumer [58] used ZRAM to parallelize two algorithms (reverse search
and backtrack) that enumerate the cells in a hyperplane arrangement,
a well-known geometric problem (Figure 7.11). For the backtrack al-
gorithm, she determined isoe�ciency curves (Figure 7.12).

1 2

3

4 5

+++++ –+++–

––++–

––+––

–++––

++–––
–+–––

–––––
++–++

++–+–

++++–

++––+

–++++

––+++

Figure 7.11: The cells of a two-dimensional arrangement. A reverse-search algo-
rithm [4] enumerates the cells of an arrangement of m hyperplanes. Every cell is
represented by its sign vector in f+;�gm. The local search (parent) function is
de�ned as the lexicographically largest neighbor of a cell, and the + + + ++-cell
is the root of the search tree.

� Kindervater ported a branch-and-bound program for a scheduling prob-
lem to ZRAM. In a single day, he learnt to use ZRAM and ported his
code.

� Fukuda implemented a branch-and-bound program for the knapsack
problem and a reverse-search program for the enumeration of topolog-
ical sortings.

� Sosnowska and Rolim used ZRAM's branch-and-bound engine for de-
veloping a parallel program for the eet assignment problem.

90 CHAPTER 7. ZRAM IN ACTION

0

30

60

90

120

150

0 1000 2000 3000 4000 5000 6000 time [s]

processors

50%
60%
80%

cells6196 15276 31931 59536

hyperplanes35302520

efficiency

Figure 7.12: Isoe�ciency for cell enumeration using a backtrack algorithm. We
see contour lines of e�ciency as a function of problem size (execution time of the
sequential algorithm) and number of processors. The measurements were made
on an Intel Paragon with random nondegenerate hyperplane arrangements in four
dimensions, where m hyperplanes partition the space into (m4 � 2m3 + 11m2 +
14m+ 24)=24 cells. Figure courtesy of Nora Sleumer, ETH Z�urich.

� In his diploma thesis, Ammeter developed a parallel program for the
approximate solution of the vehicle routing problem using a GRASP
algorithm. Instead of using a search engine, this program directly ac-
cesses ZRAM's virtual machine to balance the load dynamically.

Although several of the people mentioned had no experience with distributed
computing at all when they began using ZRAM, they all quickly developed
e�cient applications based on its parallel search engines. How could there
be a stronger evidence of ZRAM's exibility and usability?

Chapter 8

Conclusions

With ZRAM, we have designed and implemented a software library which
has been useful in the development of a wide range of applications. Some of
its users had little or no experience in parallel programming and got access
to parallel computers only through ZRAM.

ZRAM is the �rst search library containing a tree-size estimation tool,
which proved to be valuable in allocating the limited CPU resources to the
most promising problem instances. It contains the �rst parallel implementa-
tion of the reverse-search algorithm and the �rst parallel branch-and-bound
engine which can be restarted at checkpoints.

The combination of these elements, together with the e�ciency of the
implementation, allowed us to solve large QAP instances and to enumerate
the vertices of complex high-dimensional polytopes. These results would
have been unachievable on a sequential workstation in a reasonable amount
of time.

The work on ZRAMhas clari�ed the requirements to a search library. The
comparison of ZRAM to similar systems (e.g., BOB or PPBB) demonstrates
that a useful parallel search library comprises much more than a collection of
load-balancing algorithms or a branch-and-bound engine; it contains search
engines for various paradigms, a tree-size estimator and a checkpointing fa-
cility. Further, we have seen that a four-layer structure is appropriate.

8.1 Lessons Learned

In the area of parallel search, libraries are a useful tool for several reasons:
There is a wealth of applications which build on the same or similar search
engines and whose common code is complex enough that learning to use
a library is more economical than reimplementing and debugging the code

91

92 CHAPTER 8. CONCLUSIONS

for every application. The advantages of reusing code and of the short im-
plementation times outweigh the few disadvantages. Although every library
introduces a little overhead in execution time, the cost incurred is small com-
pared to the work done in the application layer such as the computation of
lower bounds or pivot operations. Libraries bring the power of parallel com-
puters in an e�cient way to people who are used to sequential machines and
have little knowledge in parallel programming. Programs using a library are
typically more clearly structured than those which do not. This e�ect again
enhances the chances that program parts can be reused.

For large problem instances, the importance of a �ne-tuned (and perhaps
application-speci�c) implementation of a sophisticated load-balancing algo-
rithm has been overestimated. The quality of load balancing a�ects only the
very last minutes of a computation which takes hours. The coarse-grained
parallelism of ZRAM generates little communication.

Finally, an advice to future library designers: Start by studying many
potential applications of your planned library and implement some of them.
Building on this experience, de�ne the scope of the whole library (what
applications and what host systems will be supported, etc.), and then specify
all interfaces at once. The result of this process will be a library that is more
clearly structured and easier to maintain than one which has grown during
years. Some elements of ZRAM can only be explained historically and should
be redesigned in a later version. For instance, the various depth-�rst search
engines contain similar code which should exist only once and be shared by
all of them.

8.2 Directions for Future Research

Research on parallel search libraries can and should proceed in numerous
ways. Most obvious are the possible research directions on the search-engine
level:

� Besides those implemented in ZRAM, there are other CPU-intensive
search algorithms where an application-independent part can be sep-
arated from the application-dependent parts and be integrated into
the library. Candidates are exact algorithms such as branch-and-cut,
alpha{beta search and the evaluation of and{or trees, and approxi-
mation algorithms such as GRASP and simulated annealing. Some
applications could pro�t from a general transposition table provided
by the library or from other mechanisms to share data among branches
of the search tree. Possible structures for the state space range from
trees to directed acyclic graphs and general graphs.

8.2. DIRECTIONS FOR FUTURE RESEARCH 93

� Currently, there exist half a dozen parallel search libraries including
ZRAM and Ralph Gasser's SearchBench. Users would pro�t from a
uni�ed application interface for all of them.

� Parallel programming environments often have a graphical user inter-
face, which shows data useful for performance tuning. How can we
visualize the statistics which are typical for search algorithms (e.g.,
branching factors, lower bounds, or the number of cuto�s depending
on the depth) such that the programmer most easily recognizes the
essential information?

Extending the virtual machine and the host-system layer so that ZRAM (or
another parallel search library) runs on more machines|possibly even on
heterogeneous systems|raises the following issues:

� Porting the library to other host systems will make it usable for more
people. Most distributed-memory implementations will be a matter of
a few days. For an e�cient shared-memory implementation, however,
changes in the virtual machine and modi�ed search algorithms might
be necessary.

� On unreliable workstation networks, a fault-tolerant implementation of
the load-balancing and checkpointing modules renders the computing
power of underutilized workstations useful for long computations.

� As computers become cheaper from year to year, machines consisting
of thousands of processors will soon become much more common than
today. The algorithms in ZRAM have been used on up to 150 proces-
sors. Their scalability to machines which are ten times larger has not
yet been investigated.

Finally, we see three open questions which are more theoretically oriented:

� There are techniques for converting parallel algorithms to external-
memory algorithms. Would a best-�rst branch-and-bound storing its
priority queue in, say, a Gigabyte of external memory be practical?
Would it solve signi�cantly larger problems than the usual internal-
memory versions?

� The longer a computation is, the fewer people trust its correctness.
What application-independent methods are there to detect hardware
faults, software faults, and manipulation errors? Can ideas such as
certi�cation trails [63] or N-version programming be incorporated into
a search algorithm library?

94 CHAPTER 8. CONCLUSIONS

� In some optimization problems (e.g., the QAP), an optimal solution
can easily be guessed, but the proof of its optimality takes much more
time. What data must we show sceptics to convince them that the
computation for the optimality proof really has been executed?

Bibliography

[1] Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combina-
torial Optimization. Wiley, 1997.

[2] David Avis and Antoine Deza. Solitaire cones. Technical Report 130,
�Ecole des Hautes �Etudes en Sciences Sociales, Centre d'Analyse et de
Math�ematique Sociales, 1996.

[3] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra. Discrete Com-
putational Geometry, 8:295{313, 1992.

[4] David Avis and Komei Fukuda. Reverse search for enumeration.Discrete
Applied Mathematics, 65:21{46, 1996.

[5] M. Bena��chouche, Van-Dat Cung, Salah Dowaji, Bertrand Le Cun,
Thierry Mautor, and Catherine Roucairol. Building a parallel branch
and bound library. In Ferreira and Pardalos [23], pages 201{231.

[6] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for your mathematical plays 2: Games in Particular. Academic
Press, London, 1982.

[7] David Bremner, Komei Fukuda, and Ambros Marzetta. Primal{dual
methods for vertex and facet enumeration. Discrete and Computational
Geometry. to appear.

[8] David Bremner, Komei Fukuda, and Ambros Marzetta. Primal{dual
methods for vertex and facet enumeration (extended abstract). In ACM
Symposium on Computational Geometry, pages 49{56, 1997. http://

wwwjn.inf.ethz.ch/ambros/bfm97.ps.gz.

[9] Adrian Br�ungger. A parallel best-�rst branch and bound algorithm for
the traveling salesperson problem. In S. Ranka, editor, Proceedings of the
9th International Parallel Processing Symposium (IPPS'95), Workshop

95

96 BIBLIOGRAPHY

on Solving Irregular Problems on Distributed Memory Machines, pages
98{106, 1995.

[10] Adrian Br�ungger. Solving Hard Combinatorial Optimization Problems
in Parallel: Two Case Studies. PhD thesis, ETH Z�urich, 1997.

[11] Adrian Br�ungger, Ambros Marzetta, Jens Clausen, and Michael Perre-
gaard. Joining forces in solving large-scale quadratic assignment prob-
lems in parallel. In IPPS'97 [38], pages 418{427. http://wwwjn.inf.

ethz.ch/ambros/ipps97_qap_zram.ps.gz.

[12] Adrian Br�ungger, Ambros Marzetta, Jens Clausen, and Michael Perre-
gaard. Solving large-scale QAP problems in parallel with the search
library ZRAM. Journal of Parallel and Distributed Computing, 50:157{
169, 1998.

[13] Adrian Br�ungger, Ambros Marzetta, Komei Fukuda, and J�urg Niever-
gelt. The parallel search bench ZRAM and its applications. Annals of
Operations Research. to appear; http://wwwjn.inf.ethz.ch/ambros/
aor_zram.ps.gz.

[14] Rainer E. Burkard and Eranda C�ela. Quadratic and three-dimensional
assignments. In Dell'Amico et al. [20], chapter 21, pages 373{391.

[15] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. QAPLIB|a
quadratic assignment problem library. Journal of Global Optimization,
10:391{403, 1997.

[16] G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda. Ground states
of a ternary fcc lattice model with nearest- and next-nearest-neighbor
interactions. Physical Review B, 49(1):1{7, January 1994.

[17] Xinghao Chen and Michael L. Bushnell. E�cient Branch and Bound
Search with Application to Computer-Aided Design. Kluwer Academic
Publishers, 1996.

[18] R. Corrêa and A. Ferreira. Parallel best-�rst branch-and-bound in dis-
crete optimization: a framework. In Ferreira and Pardalos [23], pages
171{200.

[19] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay,
Eunice E. Santos, Klaus Erik Schauser, Ramesh Subramonian, and
Thorsten von Eicken. LogP: A practical model of parallel computation.
Communications of the ACM, 39(11):78{85, 1996.

BIBLIOGRAPHY 97

[20] Mauro Dell'Amico, Francesco Ma�oli, and Silvano Martello, editors.
Annotated Bibliographies in Combinatorial Optimization. John Wiley
and Sons, 1997.

[21] R. Diekmann, R. L�uling, and J. Simon. A general purpose distributed
implementation of simulated annealing. In SPDP'92 [59], pages 94{101.

[22] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Sprin-
ger, 1987.

[23] Afonso Ferreira and Panos Pardalos, editors. Solving Combinatorial
Optimization Problems in Parallel: Methods and Techniques, volume
1054 of Lecture Notes in Computer Science. Springer, 1996.

[24] Afonso Ferreira and Jos�e Rolim, editors. Parallel Algorithms for Irreg-
ularly Structured Problems, IRREGULAR '95, volume 980 of Lecture
Notes in Computer Science. Springer, 1995.

[25] Raphael Finkel and Udi Manber. DIB|a distributed implementation
of backtracking. ACM Transactions on Programming Languages and
Systems, 9:235{256, 1987.

[26] Komei Fukuda and Alain Prodon. Double description method revisited.
In M. Deza, R. Euler, and I. Manoussakis, editors, Combinatorics and
Computer Science, volume 1120 of Lecture Notes in Computer Science,
pages 91{111. Springer-Verlag, 1996. ftp://ftp.ifor.math.ethz.ch/
pub/fukuda/reports.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.

[28] Ralph Gasser. Harnessing Computational Resources for E�cient Ex-
haustive Search. PhD thesis, ETH Z�urich, 1995.

[29] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine|A User's Guide and Tutorial
for Networked Parallel Computing. MIT Press, 1994.

[30] B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms:
survey and synthesis. Operations Research, 42:1042{1066, 1994.

[31] F. Glover, M. Laguna, E. Taillard, and D. de Werra, editors. Tabu
Search, volume 41 of Annals of Operations Research. Baltzer, 1993.

[32] Solomon W. Golomb. Polyominoes. Princeton University Press, 1994.

98 BIBLIOGRAPHY

[33] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1994.

[34] Charles Antony Richard Hoare. Communicating sequential processes.
Prentice-Hall International, 1985.

[35] Kien A. Hua, Wen K. Lee, and S. D. Lang. On random sampling for
parallel simulated annealing. In IPPS'94 [37], pages 253{257.

[36] Proc. of the 6th International Parallel Processing Symposium, (IPPS
'92). IEEE Computer Society Press, 1992.

[37] Proceedings of the 8th International Parallel Processing Symposium.
IEEE Computer Society Press, 1994.

[38] Proceedings of the 11th International Parallel Processing Symposium
(IPPS'97), 1997.

[39] D. E. Knuth. Estimating the e�ciency of backtrack programs. Math.
Comp., 29:121{136, 1975.

[40] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Com-
puter Programming. Addison-Wesley, 1973.

[41] Norbert Kuck, Martin Middendorf, and Hartmut Schmeck. Generic
branch-and-bound on a network of transputers. In R. Grebe et al.,
editors, Transputer Applications and Systems '93, pages 521{535. IOS
Press, 1993.

[42] G. Laporte and I.H.Osman, editors. Metaheuristics in Combinatorial
Optimization, volume 63 of Annals of Operations Research. Baltzer,
1996.

[43] Shyh-Chang Lin, W. F. Punch III, and E. D. Goodman. Coarse-
grain parallel genetic algorithms: Categorization and new approach. In
SPDP'94 [60], pages 28{37.

[44] R. L�uling and B. Monien. Load balancing for distributed branch &
bound algorithms. In IPPS'92 [36], pages 543{549.

[45] Friedemann Mattern. Experience with a new distributed termination
detection algorithm. In Proceedings [50], pages 127{143.

[46] G. P. McKeown, V. J. Rayward-Smith, and H. J. Turpin. Branch-
and-bound as a higher-order function. Annals of Operations Research,
33:379{402, 1991.

BIBLIOGRAPHY 99

[47] David Nassimi, Milind Joshi, and Andrew Sohn. H-PBS: A hash-based
scalable technique for parallel bidirectional search. In SPDP'95 [61],
pages 414{419.

[48] Jakob Nielsen. The usability engineering life cycle. Computer, pages
12{22, March 1992.

[49] P. M. Pardalos, L. Pitsoulis, T. Mavridou, and M. G. C. Resende. Paral-
lel search for combinatorial optimization: Genetic algorithms, simulated
annealing, tabu search and GRASP. In Ferreira and Rolim [24], pages
317{331.

[50] Distributed Algorithms 1987, volume 312 of Lecture Notes in Computer
Science. Springer, 1987.

[51] Quadratic Assignment and Related Problems, volume 16 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science. Amer-
ican Mathematical Society, 1993.

[52] V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors.
Modern Heuristic Search Methods. John Wiley and Sons, 1996.

[53] Roland R�uhl. A Parallelizing Compiler for Distributed Memory Parallel
Processors. PhD thesis, ETH Z�urich, 1992.

[54] Sartaj Sahni and Venkat Thanvantri. Parallel computing: Per-
formance metrics and models. Technical report, Florida Univer-
sity, 1996. http://www0.cise.ufl.edu/research/tech-reports/

tr96-abstracts.shtml.

[55] Peter Sanders. Lastverteilungsalgorithmen f�ur parallele Tiefensuche.
PhD thesis, Karlsruhe, 1997.

[56] Yuji Shinano, Kenichi Harada, and Ryuichi Hirabayashi. Control
schemes in a generalized utility for parallel branch-and-bound algo-
rithms. In IPPS'97 [38], pages 621{627.

[57] Yuji Shinano, Masahiro Higaki, and Ryuichi Hirabayashi. A generalized
utility for parallel branch and bound algorithms. In SPDP'95 [61], pages
392{401.

[58] Nora Sleumer. Output-sensitive cell enumeration in hyperplane arrange-
ments. In The Sixth Scandinavian Workshop on Algorithm Theory, vol-
ume 1432 of Lecture Notes in Computer Science. Springer, 1998. to
appear, http://wwwjn.inf.ethz.ch/group/publications.html.

100 BIBLIOGRAPHY

[59] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed
Processing 1992. IEEE Computer Society Press, 1992.

[60] Proceedings of the Sixth IEEE Symposium on Parallel and Distributed
Processing 1994. IEEE Computer Society Press, 1994.

[61] Proceedings of the Seventh IEEE Symposium on Parallel and Distributed
Processing 1995. IEEE Computer Society Press, 1995.

[62] Lawrence D. Stone. Theory of Optimal Search, volume 118 of Mathe-
matics in Science and Engineering. Academic Press, 1975.

[63] Gregory F. Sullivan, Dwight S. Wilson, and Gerald M. Masson. Certi-
�cation of computational results. IEEE Transactions on Computers,
44:833{847, 1995. http://www.cs.jhu.edu/~sullivan/download.

html.

[64] Stefan Thienel. ABACUS: A Branch-And-CUt System. PhD thesis,
Universit�at K�oln, 1995.

[65] Anestis A. Toptsis. Parallel bidirectional heuristic search with dynamic
process re-direction. In IPPS'94 [37], pages 242{247.

[66] Stefan Tsch�oke and Norbert Holth�ofer. A new parallel approach to
the constrained two-dimensional cutting stock problem. In Ferreira and
Rolim [24], pages 285{300.

[67] Stefan Tsch�oke and Thomas Polzer. Portable parallel branch-and-bound
library: User manual. Technical report, University of Paderborn, 1995.
http://www.uni-paderborn.de/~ppbb-lib.

Index

15-puzzle, 17, 85

ABACUS, 16
abstract data type, 46
AdjOracle(), 64
algorithms

classi�cation, 14
genetic, 20
geometric, 75, 84, 89
graph, 80, 82

alpha-beta algorithm, 15, 17
ancestor cache, 68
architecture, 32
arrangement, 89

backtrack, 5
applications, 5, 84, 85, 89
implementation, 56
interface, 55{56

bandwidth, 22, 28
BOB, 16, 37
branch and bound, 15{18, 24, 46

applications, 14, 78, 80, 85, 89
implementation, 62{63
interface, 57{62
libraries, 16

branch and cut, 16, 81
Branch(), 58
BranchInPlace(), 55, 58
BSP model, 22

C, 31, 36
C++, 36
cache, 68

checkpointing, 7, 16, 39, 40, 61, 76
coarse-grain, 28
communication

front end, 41, 42, 51
horizontal, 41, 43, 51

CompareProc(), 58
crossover, 20

deadlock, 24, 50
Delta(), 64
DIB, 16
distributed memory, 27
dynamic load balancing, see load

balancing

e�ciency, 25, 31
enumeration

of cells of an arrangement, 89
of connected induced subgraphs,

82, 84
of Euclidean spanning trees, 84
of n-queens solutions, 5
of partitions, 85
of polyominoes, 84
of topological sortings, 89
of vertices and facets, 75

Equal(), 65
evolution, 20

F() (local search function), 64
FindChildNumber(), 65
�ne-grain, 28
�tness, 20
eet assignment, 89

101

102 INDEX

Forward(), 66
front end, see communication, front

end

GRASP, 21, 90

hash table, 15
heuristic methods, 17

information hiding, 43
information retrieval, 13
initproc(), 9
isoe�ciency, 26, 89
IsRoot(), 65
IsSolution(), 58

knapsack, 89

latency, 28
layer

application, 33, 75{90
host system, 33, 51{52
search engine, 33, 53{73
service modules, 33, 39{51

library, 23
load balancing

dynamic, 16, 39, 40
static, 72

LogP model, 22

message passing, 27, 51
metaheuristics, 17
MIMD, 26, 31
mmain(), 10, 42
model, 21
MPI, 23, 32, 43, 51
MUSIC, 31

n-queens, 5{11
neighbors, 18
NextChild(), 66
NP-complete, 14
NX library, 51

ordering heuristic, 15

Paragon, 51
parallelizing compilers, 22
performance metric, 26
PIGSeL, 16
polyomino, 84
portability, 31, 51
PPBB, 16
PRAM model, 22
programming language, 22, 31
PUBB, 16, 37

quadratic assignment problem, 17,
78{80

Result(), 67
retrograde analysis, 17
reverse search

applications, 82, 84, 89
implementation, 68{70
interface, 64{68

scalability, 26
search

backward, 14, 17
bidirectional, 17
engine, see layer, search engine
exhaustive, 14
forward, 14
heuristic, 14
libraries, 16
local, 17
meanings of, 13
overhead, 15, 62
reverse, see reverse search
tabu, 19

set cover, 80
shared memory, 2, 27
ShortNodeString(), 59
SIMD, 26, 31
Simplex, 18, 76

INDEX 103

simulated annealing, 18
skeleton, 34
speculative priority queue, 40, 60,

62
checkpointing, 63
implementation, 49{51
interface, 46{47

speedup, 25, 76
Split(), 45
state space, 14

temperature, 18
termination detection, 40, 47, 48,

50
time measurement interface, 51
tool, 23
topology, 27, 31
transposition table, 15
transputer, 31
traveling salesman, 16, 78, 88
tree-size estimator

implementation, 72{73
interface, 71{72

Turing machine, 21, 22

upcall, 34, 35
upper bound, 15
UpperBound(), 59

vehicle routing, 90
veri�cation of results, 77, 93
vertex cover, 80{82
virtual shared memory, 27

work unit, 44, 62, 63, 68, 70
Work(), 44
WorkAndSplit(), 45
World Wide Web, 13

z_bb_RedistributeDFExp(), 61
z_BranchBoundBestFirst(), 59
z_BranchBoundDepthFirst(), 59

z_BranchBoundDFExp(), 60
z_BranchBoundEstimate(), 71
z_BranchBoundMixedFirst(), 60
z_BranchBoundParallel(), 60
z_bt_EnumerateDepthFirst(), 55
z_bt_EnumerateDFExp(), 10, 55
z_Gtime, 51
z_Ibroadcast(), 44
z_IdleWithHandler(), 44
z_InstallClass(), 9
z_InstallJob(), 43
z_InstallMessage(), 44
z_InstallProcSet(), 9
z_Isend(), 44
z_lb_InstallCheckpointed(), 46
z_lb_RestartWork(), 46
z_lb_Work(), 45
z_NewNode(), 5, 9, 37
z_Poll(), 44
z_RestartBranchBoundDFExp(), 61
z_rs_Enumerate(), 67
z_rs_Restart(), 67
z_spq_DeleteLocalAbove(), 47
z_spq_FreeSpeculativePriorityQueue(),

47
z_spq_GetDeleteNearMinimum(), 47
z_spq_Insert(), 47
z_spq_NewSpeculativePriorityQueue(),

46
z_spq_numLocalElements(), 47
z_StartParallelJob(), 43
z_WaitWork(), 43

104 INDEX

Curriculum Vitae

1986 A-Maturity, Humanistisches Gymnasium Basel.

1986 Software development at Contraves AG, Z�urich.

1986{1991 Major in computer science and minor in electrical engineering
at ETH Z�urich, resulting in the degree of Dipl. Informatik-Ing.
ETH.

1991 Development of an application-speci�c integrated circuit at Lan-
dis & Gyr Building Control AG, Zug.

1991{1998 Assistant and Ph.D. student in the research group of Prof. Nie-
vergelt, Institute of Theoretical Computer Science, ETH Z�urich.

105

	Title Page
	Contents
	List of Figures
	Abstract
	Kurzfassung
	Acknowledgments
	Project Overview
	Goals
	Principal Findings
	Structure of This Thesis

	The N-Queens Example onZRAM
	Data Types
	Procedures
	Initialization
	Main Program

	Background: Search andParallel Computing
	Search Algorithms
	Classification
	Forward Search
	Backward Search
	Combination of Backward and Forward Search
	Heuristic Search

	Models and Tools
	Software Libraries
	Performance Measures
	Hardware

	Design of ZRAM
	Requirements for a Parallel SearchWork-bench
	Architecture of ZRAM
	Data Types

	Virtual Machine and CommonServices
	Requirements for a Virtual Machine
	Services Provided
	Interface
	Implementation
	Host-System Layer

	Search Engines
	Backtrack
	Branch-And-Bound
	Reverse Search
	Tree-Size Estimator

	ZRAM in Action
	Convex Hull and Vertex Enumeration inPolyhedra
	Quadratic Assignment Problem
	Vertex Cover
	Connected Induced Subgraphs
	Polyominoes
	Euclidean Spanning Trees
	Other Applications

	Conclusions
	Lessons Learned
	Directions for Future Research

	Bibliography
	Index

