CS3383 Unit 0: Asymptotics Review

David Bremner David Bremner

Asymptotics
Unit prereqs
The view from 10000 m
Definitions

Unit prereqs

- O and Ω (CS2383)
- limits, derivatives (calculus)
- induction (CS1303)
- working with inequalities
- monotone functions

The Big Question(s)

When is Algorithm A better than Algorithm B w.r.t. running time and memory use?

- If we know the input, we can just run the two algorithms.
- In general we assume performance is a function of the input size (bits / bytes)
- So we need to know how to compare functions.
- We also need not to drown in details.

Asymptotic Notation

Asymptotic Notation

$$
-\mathrm{f} \quad-\mathrm{I} .1 * \mathrm{~g}
$$

- $\mathrm{f}=\mathrm{O}(\mathrm{g})$

Asymptotic Notation

$$
-\mathrm{f} \quad-0.9 * \mathrm{~g}
$$

- $\mathrm{f}=\Omega(\mathrm{g})$

Linear versus Quadratic

Exponential versus Polynomial

Asymptotic notation

O-notation (upper bounds):
We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

Asymptotic notation

O-notation (upper bounds):

> We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

$$
\text { Example: } 2 n^{2}=O\left(n^{3}\right) \quad\left(c=1, n_{0}=2\right)
$$

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq \operatorname{cg}(n)$ for all $n \geq n_{0}$.

Set definition of O-notation

$$
\begin{aligned}
O(g(n))=\{f(n): & \text { there exist constants } \\
& c>0, n_{0}>0 \text { such } \\
& \text { that } 0 \leq f(n) \leq c g(n) \\
& \text { for all } \left.n \geq n_{0}\right\}
\end{aligned}
$$

Set definition of O-notation

$$
\begin{aligned}
& O(g(n))=\{f(n): \\
& c>0, \text { there exist constants } \\
& \\
& \text { that } 0 \leq f(n) \leq \operatorname{n}) \leq \operatorname{cg}(n) \\
& \\
& \text { for all } \left.n \geq n_{0}\right\}
\end{aligned}
$$

Example: $2 n^{2} \in O\left(n^{3}\right)$

Set definition of O-notation

$$
\begin{aligned}
O(g(n))=\{f(n): & \text { there exist constants } \\
& c>0, n_{0}>0 \text { such } \\
& \text { that } 0 \leq f(n) \leq c g(n) \\
& \text { for all } \left.n \geq n_{0}\right\}
\end{aligned}
$$

Example: $2 n^{2} \in O\left(n^{3}\right)$
(Logicians: $\lambda n .2 n^{2} \in O\left(\lambda n \cdot n^{3}\right)$, but it's convenient to be sloppy, as long as we understand what's really going on.)

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

$$
\text { Example: } \quad f(n)=n^{3}+O\left(n^{2}\right)
$$

means

$$
f(n)=n^{3}+h(n)
$$

for some $h(n) \in O\left(n^{2}\right)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

$$
\text { Example: } \quad n^{2}+O(n)=O\left(n^{2}\right)
$$

means

$$
\text { for any } f(n) \in O(n) \text { : }
$$

$$
n^{2}+f(n)=h(n)
$$

$$
\text { for some } h(n) \in O\left(n^{2}\right) \text {. }
$$

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O\left(n^{2}\right)$.

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O\left(n^{2}\right)$.

$$
\begin{aligned}
& \Omega(g(n))=\{f(n): \text { there exist constants } \\
& c>0, n_{0}>0 \text { such } \\
& \text { that } 0 \leq \operatorname{cg}(n) \leq f(n) \\
& \text { for all } \left.n \geq n_{0}\right\}
\end{aligned}
$$

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O\left(n^{2}\right)$.
$\Omega(g(n))=\{f(n):$
$c>0, n_{0}>0$ such

that $0 \leq \operatorname{cg}(n) \leq f(n)$

for all $\left.n \geq n_{0}\right\}$

$$
\text { Example: } \quad \sqrt{n}=\Omega(\lg n) \quad\left(c=1, n_{0}=16\right)
$$

