CS3383 Unit 0: Asymptotics Review

David Bremner David Bremner

Asymptotics

Unit prereqs The view from 10000m Definitions

Unit prereqs

- O and Ω (CS2383)
- limits, derivatives (calculus)
- induction (CS1303)
- working with inequalities
- monotone functions

The Big Question(s)

- When is Algorithm A better than Algorithm B w.r.t. running time and memory use?
- If we know the input, we can just run the two algorithms.
- In general we assume performance is a function of the input size (bits / bytes)
- So we need to know how to compare functions.
- We also need not to drown in details.

Asymptotic Notation — f — I.I * g mmmm • f = O(g)

f — 0.9 * g

mmm

• $f = \Omega(g)$

Linear versus Quadratic

Exponential versus Polynomial

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE: $2n^2 = O(n^3)$ ($c = 1, n_0 = 2$)

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Set definition of O-notation

$$O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$$

Set definition of O-notation

$$O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$$

EXAMPLE: $2n^2 \in O(n^3)$

Set definition of O-notation

$$O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$$

EXAMPLE: $2n^2 \in O(n^3)$ (*Logicians:* $\lambda n. 2n^2 \in O(\lambda n. n^3)$, but it's convenient to be sloppy, as long as we understand what's *really* going on.)

L2.8

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

EXAMPLE: $f(n) = n^3 + O(n^2)$ means $f(n) = n^3 + h(n)$ for some $h(n) \in O(n^2)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

EXAMPLE: $n^2 + O(n) = O(n^2)$ means for any $f(n) \in O(n)$: $n^2 + f(n) = h(n)$ for some $h(n) \in O(n^2)$.

\mathbf{Q} -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

 $\Omega(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}$

Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

 $\Omega(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}$

EXAMPLE: $\sqrt{n} = \Omega(\lg n)$ (*c* = 1, *n*₀ = 16)