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Assignments

▶ weekly assignments

▶ no assignment the first week
▶ solutions reviewed in Tutorial
▶ no late assignments
▶ roughly every second assignment will be online in D2L. (AKA

Online Quiz).
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Linear vs Quadratic
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big-O example 1
Goal show 2𝑛 + 20 ∈ 𝑂(𝑛2)

Start with the definition
New Goal to show 2𝑛 + 20 ≤ 𝑐𝑛2 ∀𝑛 > 𝑛0, for some

𝑐, 𝑛0.
idea fix one of 𝑐, 𝑛0, find the other.

Step 1 Simplify l.h.s. using choice of 𝑛0.
Step 2 Choose 𝑐 = 3 to make inequality true.
Step 3 Alternatively we can fix 𝑐 = 1, then choose

𝑛0.
Comment We can prove a smaller 𝑛0 by finding

crossing, but it’s usually not worth it.
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big-O example 2

Goal 2𝑛2 ∈ 𝑂(𝑛3)

New Goal ∀𝑛 ≥ 𝑛0, 2𝑛2 ≤ 𝑐 × 𝑛3

ignoring previous slides gave us 𝑛0 and 𝑐.
observation this example gets very easy if we divide

both sides by 𝑛2
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big-Omega example

Show
√

𝑛 ∈ Ω(lg 𝑛)

I.e. 𝑐 = 1, 𝑛0 = 16, ∀𝑛 ≥ 𝑛0,
√

𝑛 ≥ 𝑐 lg 𝑛
Why?

√
16 = lg 16, we know the crossing point.

After crossing? compare derivatives (slope of tangents at crossing)
left 𝑑

𝑑𝑛
√

𝑛 = 1/(2
√

𝑛)
right 𝑑

𝑑𝑛 lg 𝑛 = 1/(ln(2)𝑛)
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Exponential versus Polynomial
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y = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^xy = 1.01^x

lim
𝑛→∞

𝑛𝑏/𝑎𝑛 = 0 ∀𝑎 > 1
(CLRS3.13)

▶ How to prove?

▶ How does it show
(1.01)𝑛 ∈ Ω(𝑛10)?

▶ Tune in next lecture…
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