CS3383 Unit 0: Asymptotics Live

David Bremner

$$
\begin{aligned}
& \text { 2024-01-08 }
\end{aligned}
$$

Outline

Administrivia

Examples

Course Syllabus

- read it at https://www.cs.unb.ca/~bremner/teaching/ cs3383/printable

Course Syllabus

- read it at https://www.cs.unb.ca/~bremner/teaching/ cs3383/printable
$>$ Note discussion on plagiarism. This applies particularly to assignments and quizzes.

Course Delivery

Web Site https:
//www.cs.unb.ca/~bremner/teaching/cs3383/

Course Delivery

Web Site https:
//www.cs.unb.ca/~bremner/teaching/cs3383/
Pre Lecture Videos Posted Friday (for Monday), the day before otherwise.

Course Delivery

Web Site https:
//www.cs.unb.ca/~bremner/teaching/cs3383/
Pre Lecture Videos Posted Friday (for Monday), the day before otherwise.
Tutorials W 09:30 GC122. Assignment solutions.

Course Delivery

Web Site https:
//www.cs.unb.ca/~bremner/teaching/cs3383/
Pre Lecture Videos Posted Friday (for Monday), the day before otherwise.
Tutorials W 09:30 GC122. Assignment solutions.
Lectures MWF 13:30 GD124

Assignments

- weekly assignments

Assignments

- weekly assignments
- no assignment the first week

Assignments

- weekly assignments
- no assignment the first week
- solutions reviewed in Tutorial

Assignments

- weekly assignments
- no assignment the first week
- solutions reviewed in Tutorial
- no late assignments

Assignments

- weekly assignments
- no assignment the first week
- solutions reviewed in Tutorial
- no late assignments
roughly every second assignment will be online in D2L. (AKA Online Quiz).

Linear vs Quadratic

n

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.
idea fix one of c, n_{0}, find the other.

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.
idea fix one of c, n_{0}, find the other.
Step 1 Simplify I.h.s. using choice of n_{0}.

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.
idea fix one of c, n_{0}, find the other.
Step 1 Simplify I.h.s. using choice of n_{0}.
Step 2 Choose $c=3$ to make inequality true.

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.
idea fix one of c, n_{0}, find the other.
Step 1 Simplify I.h.s. using choice of n_{0}.
Step 2 Choose $c=3$ to make inequality true.
Step 3 Alternatively we can fix $c=1$, then choose n_{0}.

big-O example 1

Goal show $2 n+20 \in O\left(n^{2}\right)$
Start with the definition
New Goal to show $2 n+20 \leq c n^{2} \forall n>n_{0}$, for some c, n_{0}.
idea fix one of c, n_{0}, find the other.
Step 1 Simplify I.h.s. using choice of n_{0}.
Step 2 Choose $c=3$ to make inequality true.
Step 3 Alternatively we can fix $c=1$, then choose n_{0}.
Comment We can prove a smaller n_{0} by finding crossing, but it's usually not worth it.

big-O example 2

Goal $2 n^{2} \in O\left(n^{3}\right)$

big-O example 2

Goal $2 n^{2} \in O\left(n^{3}\right)$
New Goal $\forall n \geq n_{0}, 2 n^{2} \leq c \times n^{3}$

big-O example 2

Goal $2 n^{2} \in O\left(n^{3}\right)$
New Goal $\forall n \geq n_{0}, 2 n^{2} \leq c \times n^{3}$
ignoring previous slides gave us n_{0} and c.

big-O example 2

$$
\begin{aligned}
& \text { Goal } 2 n^{2} \in O\left(n^{3}\right) \\
& \text { New Goal } \forall n \geq n_{0}, 2 n^{2} \leq c \times n^{3} \\
& \text { ignoring previous slides gave us } n_{0} \text { and } c \text {. } \\
& \text { observation this example gets very easy if we divide } \\
& \text { both sides by } n^{2}
\end{aligned}
$$

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$
I.e. $c=1, n_{0}=16, \forall n \geq n_{0}, \sqrt{n} \geq c \lg n$

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$
I.e. $c=1, n_{0}=16, \forall n \geq n_{0}, \sqrt{n} \geq c \lg n$

Why? $\sqrt{16}=\lg 16$, we know the crossing point.

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$
l.e. $c=1, n_{0}=16, \forall n \geq n_{0}, \sqrt{n} \geq c \lg n$

Why? $\sqrt{16}=\lg 16$, we know the crossing point.
After crossing? compare derivatives (slope of tangents at crossing)

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$
I.e. $c=1, n_{0}=16, \forall n \geq n_{0}, \sqrt{n} \geq c \lg n$

Why? $\sqrt{16}=\lg 16$, we know the crossing point.
After crossing? compare derivatives (slope of tangents at crossing) left $\frac{d}{d n} \sqrt{n}=1 /(2 \sqrt{n})$

big-Omega example

Show $\sqrt{n} \in \Omega(\lg n)$
I.e. $c=1, n_{0}=16, \forall n \geq n_{0}, \sqrt{n} \geq c \lg n$

Why? $\sqrt{16}=\lg 16$, we know the crossing point.
After crossing? compare derivatives (slope of tangents at crossing) left $\frac{d}{d n} \sqrt{n}=1 /(2 \sqrt{n})$
right $\frac{d}{d n} \lg n=1 /(\ln (2) n)$

Exponential versus Polynomial

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{b} / a^{n}= & 0 \forall a>1 \\
& (\text { CLRS3.13 })
\end{aligned}
$$

- How to prove?

Exponential versus Polynomial

$$
\lim _{n \rightarrow \infty} n^{b} / a^{n}=0 \forall a>1
$$

(CLRS3.13)
How to prove?

- How does it show $(1.01)^{n} \in \Omega\left(n^{10}\right)$?

Exponential versus Polynomial

$$
\lim _{n \rightarrow \infty} n^{b} / a^{n}=0 \forall a>1
$$

(CLRS3.13)
How to prove?

- How does it show
$(1.01)^{n} \in \Omega\left(n^{10}\right)$?
- Tune in next lecture...

