CS3383 Unit 0: Asymptotics Live

David Bremner

2024-01-08

Outline

Administrivia

Examples

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

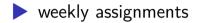
read it at https://www.cs.unb.ca/~bremner/teaching/ cs3383/printable

Course Syllabus

- read it at https://www.cs.unb.ca/~bremner/teaching/ cs3383/printable
- Note discussion on plagiarism. This applies particularly to assignments and quizzes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Web Site https: //www.cs.unb.ca/~bremner/teaching/cs3383/



weekly assignments

no assignment the first week

Assignments

weekly assignments

no assignment the first week

solutions reviewed in Tutorial

Assignments

weekly assignments

no assignment the first week

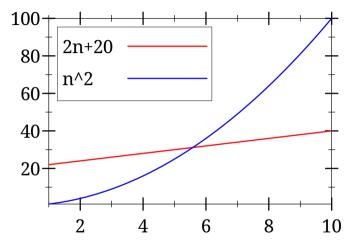
solutions reviewed in Tutorial

no late assignments

Assignments

- weekly assignments
- no assignment the first week
- solutions reviewed in Tutorial
- no late assignments
- roughly every second assignment will be online in D2L. (AKA Online Quiz).

Linear vs Quadratic



n

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Goal show $2n+20 \in O(n^2)$

Goal show $2n + 20 \in O(n^2)$ Start with the definition

 $\begin{array}{l} \mbox{Goal show } 2n+20 \in O(n^2) \\ \mbox{Start with the definition} \\ \mbox{New Goal to show } 2n+20 \leq cn^2 \ \forall n>n_0 \mbox{, for some} \\ c,n_0. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $\begin{array}{l} \mbox{Goal show } 2n+20 \in O(n^2) \\ \mbox{Start with the definition} \\ \mbox{New Goal to show } 2n+20 \leq cn^2 \ \forall n>n_0, \mbox{ for some} \\ c,n_0. \\ \mbox{idea fix one of } c, \, n_0, \mbox{ find the other.} \end{array}$

 $\begin{array}{l} \mbox{Goal show } 2n+20 \in O(n^2) \\ \mbox{Start with the definition} \\ \mbox{New Goal to show } 2n+20 \leq cn^2 \ \forall n>n_0, \mbox{ for some } \\ c,n_0. \\ \mbox{idea fix one of } c, \ n_0, \mbox{ find the other.} \\ \mbox{Step 1 Simplify l.h.s. using choice of } n_0. \end{array}$

Goal show $2n + 20 \in O(n^2)$ Start with the definition New Goal to show $2n + 20 \le cn^2 \ \forall n > n_0$, for some c, n_0 . idea fix one of c, n_0 , find the other. Step 1 Simplify l.h.s. using choice of n_0 . Step 2 Choose c = 3 to make inequality true.

Goal show $2n + 20 \in O(n^2)$ Start with the definition New Goal to show $2n + 20 \le cn^2 \ \forall n > n_0$, for some c, n_0 . idea fix one of c, n_0 , find the other. Step 1 Simplify l.h.s. using choice of n_0 . Step 2 Choose c = 3 to make inequality true. Step 3 Alternatively we can fix c = 1, then choose n_0 .

Goal show $2n + 20 \in O(n^2)$ Start with the definition New Goal to show $2n + 20 \le cn^2 \ \forall n > n_0$, for some c, n_0 . idea fix one of c, n_0 , find the other. Step 1 Simplify l.h.s. using choice of n_0 . Step 2 Choose c = 3 to make inequality true. Step 3 Alternatively we can fix c = 1, then choose n_0 . Comment We can prove a smaller n_0 by finding crossing, but it's usually not worth it.

Goal
$$2n^2 \in O(n^3)$$

$$\begin{array}{l} \mbox{Goal} \ 2n^2 \in O(n^3) \\ \mbox{New Goal} \ \forall n \geq n_0, 2n^2 \leq c \times n^3 \end{array}$$

$$\begin{array}{ll} \mbox{Goal} & 2n^2 \in O(n^3) \\ \mbox{New Goal} & \forall n \geq n_0, 2n^2 \leq c \times n^3 \\ \mbox{ignoring} \mbox{ previous slides gave us } n_0 \mbox{ and } c. \end{array}$$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ◆ ● ◆

 $\begin{array}{ll} \mbox{Goal} & 2n^2 \in O(n^3) \\ \mbox{New Goal} & \forall n \geq n_0, 2n^2 \leq c \times n^3 \\ \mbox{ignoring previous slides gave us } n_0 \mbox{ and } c. \\ \mbox{observation this example gets very easy if we divide } \\ \mbox{both sides by } n^2 \end{array}$

Show $\sqrt{n} \in \Omega(\lg n)$

$$\begin{array}{ll} \mbox{Show} & \sqrt{n} \in \Omega(\lg n) \\ \mbox{I.e.} & c=1, n_0=16, \ \forall n \geq n_0, \sqrt{n} \geq c \lg n \end{array}$$

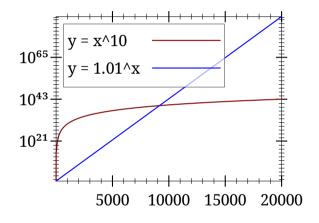
Show
$$\sqrt{n} \in \Omega(\lg n)$$

I.e. $c = 1, n_0 = 16$, $\forall n \ge n_0, \sqrt{n} \ge c \lg n$
Why? $\sqrt{16} = \lg 16$, we know the crossing point.

$$\begin{array}{ll} \mbox{Show } \sqrt{n} \in \Omega(\lg n) \\ \mbox{I.e. } c=1, n_0=16, \ \forall n \geq n_0, \sqrt{n} \geq c \lg n \\ \mbox{Why? } \sqrt{16} = \lg 16, \ \mbox{we know the crossing point.} \end{array}$$

$$\begin{array}{ll} \mbox{Show } \sqrt{n} \in \Omega(\lg n) \\ \mbox{I.e. } c=1, n_0=16, \ \forall n \geq n_0, \sqrt{n} \geq c \lg n \\ \mbox{Why? } \sqrt{16} = \lg 16, \ \mbox{we know the crossing point.} \\ \mbox{After crossing? compare derivatives (slope of tangents at crossing)} \\ \mbox{left } \frac{d}{dn} \sqrt{n} = 1/(2\sqrt{n}) \end{array}$$

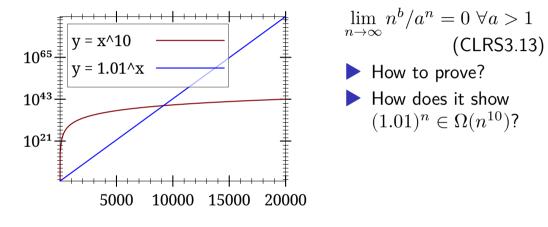
Exponential versus Polynomial



 $\lim_{n \to \infty} n^b / a^n = 0 \ \forall a > 1$ (CLRS3.13) How to prove?

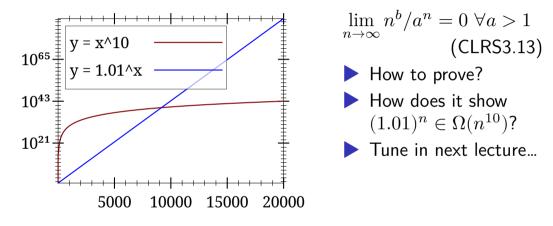
n

Exponential versus Polynomial



n

Exponential versus Polynomial



n