CS3383 Unit 1, Lecture 1: Divide and conquer intro

David Bremner

February 15, 2024

Divide and conquer

Big Picture Merge Sort Recursion tree Integer Multiplication

geometric series (CLRS A.5)

Structure of divide and conquer

function SOLVE(P) if |P| is small then SolveDirectly(P) else $P_1 \dots P_k = \mathsf{Partition}(P)$ for $i = 1 \dots k$ do $S_i = \text{Solve}(P_i)$ end for $Combine(S_1 \dots S_k)$

end if

end function

Where is the actual work? How many subproblems? How big are the subproblems?

Merge sort

```
MergeSort(A[1...n]):

if (n == 1):

return A

left = MergeSort(A[1...\lceil n/2 \rceil])

right = MergeSort(A[\lceil n/2 \rceil + 1...n])

return Merge(left, right)
```

non-recursive cost is in merging (and splitting) arrays
 can be done in Θ(n) time

Recurrence for merge sort

(line 4) (line 5) (line 6)

$$T(n) = T(n/2) + T(n/2) + \Theta(n)$$

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Appendix: geometric series

Integer Multiplication

The Problem

Input positive integers x and y, each n bits long Output positive integer z where $z = x \cdot y$

- A straightforward approach using base-2 arithmetic, akin to how we multiply by hand, takes $\Theta(n^2)$ time.
- Can we do better with divide and conquer?

Splitting the input

Split the bitstrings in half, generating $x_L \mbox{, } x_R \mbox{, } y_L \mbox{, } y_R$ such that

$$\begin{aligned} x &= 2^{\frac{n}{2}} \cdot x_L + x_R \\ y &= 2^{\frac{n}{2}} \cdot y_L + y_R \,. \end{aligned}$$

 \blacktriangleright Like base $2^{\lfloor \frac{n}{2} \rfloor}$

Assume that n is a power of 2, so $\frac{n}{2}$ will always be integer.

A first approach Express our multiplication of the *n*-bit integers as four multiplications of $\frac{n}{2}$ -bit integers:

$$\begin{split} x \cdot y &= (2^{\frac{n}{2}} \cdot x_L + x_R) \cdot (2^{\frac{n}{2}} \cdot y_L + y_R) \\ &= 2^n \cdot x_L y_L + 2^{\frac{n}{2}} \cdot (x_L y_R + x_R y_L) + x_R y_R \end{split}$$

This gives a recurrence of

$$T(n) = 4T\left(\frac{n}{2}\right) + cn$$

A first approach Express our multiplication of the *n*-bit integers as four multiplications of $\frac{n}{2}$ -bit integers:

$$\begin{split} x \cdot y &= (2^{\frac{n}{2}} \cdot x_L + x_R) \cdot (2^{\frac{n}{2}} \cdot y_L + y_R) \\ &= 2^n \cdot x_L y_L + 2^{\frac{n}{2}} \cdot (x_L y_R + x_R y_L) + x_R y_R \end{split}$$

This gives a recurrence of

$$T(n) = 4T\left(\frac{n}{2}\right) + cn$$

Bad news

This recurrence solves to
$$\Theta(n^2)$$

Finding a better recurrence / algorithm.

We want to compute

$$2^n\cdot x_Ly_L+2^{\frac{n}{2}}\cdot (x_Ly_R+x_Ry_L)+x_Ry_R$$

- Can we compute $(x_L y_R + x_R y_L)$, the coefficient of $2^{\frac{n}{2}}$, more efficiently?
- ▶ How about re-using $x_L y_L$ and $x_R y_R$?

Gauss's trick

From the binomial expansion

$$(x_L+x_R)(y_L+y_R)=x_Ly_L+x_Ly_R+x_Ry_L+y_Rx_R$$

we get that

$$x_L y_R + x_R y_L \;\; = \;\; (x_L + x_R) (y_L + y_R) - x_L y_L - x_R y_R$$

Recursive Algorithm To compute

$$2^n\cdot x_Ly_L+2^{\frac{n}{2}}\cdot (x_Ly_R+x_Ry_L)+x_Ry_R$$

- 1. find x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ [O(n)]
- 2. find $x_L y_L$, $x_R y_R$, and $(x_L + x_R)(y_L + y_R)$ recursively
- 3. and assemble the results in linear time

Recursive Algorithm To compute

$$2^n\cdot x_Ly_L+2^{\frac{n}{2}}\cdot (x_Ly_R+x_Ry_L)+x_Ry_R$$

1. find x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ [O(n)]2. find $x_L y_L$, $x_R y_R$, and $(x_L + x_R)(y_L + y_R)$ recursively 3. and assemble the results in linear time Roughly speaking, the recurrence is

$$T(n) \approx 3T\left(\frac{n}{2}\right) + cn$$

one subproblem is actually one bit bigger. Does it matter?