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unit prereqs

▶ mergesort
▶ geometric series (CLRS A.5)



Structure of divide and conquer

function Solve(P)
if |𝑃 | is small then

SolveDirectly(𝑃)
else

𝑃1 … 𝑃𝑘 = Partition(𝑃 )
for 𝑖 = 1 … 𝑘 do

𝑆𝑖 = Solve(𝑃𝑖)
end for
Combine(𝑆1 … 𝑆𝑘)

end if
end function

▶ Where is the actual
work?

▶ How many
subproblems?

▶ How big are the
subproblems?



Merge sort

MergeSort(A[1 … 𝑛]):
if (n == 1):

return A
left = MergeSort(𝐴[1 … ⌈𝑛/2⌉])
right = MergeSort(𝐴[⌈𝑛/2⌉ + 1 … 𝑛])
return Merge(left , right)

▶ non-recursive cost is in merging (and splitting) arrays
▶ can be done in Θ(𝑛) time



Recurrence for merge sort
1 def MergeSort(A[1 … 𝑛]):
2 if (n == 1):
3 return A
4 left = MergeSort(𝐴[1 … ⌈𝑛/2⌉])
5 right = MergeSort(𝐴[⌈𝑛/2⌉ + 1 … 𝑛])
6 return Merge(left ,right)

𝑇 (𝑛) = 𝑇 (𝑛/2)(line 4)
+ 𝑇 (𝑛/2)(line 5)
+ Θ(𝑛)(line 6)
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Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Appendix: geometric series
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Integer Multiplication

The Problem
Input positive integers 𝑥 and 𝑦, each 𝑛 bits long

Output positive integer 𝑧 where 𝑧 = 𝑥 ⋅ 𝑦

▶ A straightforward approach using base-2 arithmetic, akin to
how we multiply by hand, takes Θ(𝑛2) time.

▶ Can we do better with divide and conquer?



Splitting the input

Split the bitstrings in half, generating 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅
such that

𝑥 = 2𝑛
2 ⋅ 𝑥𝐿 + 𝑥𝑅

𝑦 = 2𝑛
2 ⋅ 𝑦𝐿 + 𝑦𝑅 .

▶ Like base 2⌊𝑛
2 ⌋

▶ Assume that 𝑛 is a power of 2, so 𝑛
2 will always

be integer.



A first approach
Express our multiplication of the 𝑛-bit integers as four
multiplications of 𝑛

2 -bit integers:

𝑥 ⋅ 𝑦 = (2𝑛
2 ⋅ 𝑥𝐿 + 𝑥𝑅) ⋅ (2𝑛

2 ⋅ 𝑦𝐿 + 𝑦𝑅)
= 2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛

2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

This gives a recurrence of

𝑇 (𝑛) = 4𝑇 (𝑛
2

) + 𝑐𝑛

Bad news
This recurrence solves to Θ(𝑛2)
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Finding a better recurrence / algorithm.

We want to compute

2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛
2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

▶ Can we compute (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿), the coefficient of 2𝑛
2 , more

efficiently?
▶ How about re-using 𝑥𝐿𝑦𝐿 and 𝑥𝑅𝑦𝑅?



Gauss’s trick

From the binomial expansion

(𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) = 𝑥𝐿𝑦𝐿 + 𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿 + 𝑦𝑅𝑥𝑅

we get that

𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿 = (𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) − 𝑥𝐿𝑦𝐿 − 𝑥𝑅𝑦𝑅



Recursive Algorithm
To compute

2𝑛 ⋅ 𝑥𝐿𝑦𝐿 + 2𝑛
2 ⋅ (𝑥𝐿𝑦𝑅 + 𝑥𝑅𝑦𝐿) + 𝑥𝑅𝑦𝑅

1. find 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅 and 𝑥𝐿 + 𝑥𝑅, 𝑦𝐿 + 𝑦𝑅 [𝑂(𝑛)]
2. find 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦𝑅, and (𝑥𝐿 + 𝑥𝑅)(𝑦𝐿 + 𝑦𝑅) recursively
3. and assemble the results in linear time

Roughly speaking, the recurrence is

𝑇 (𝑛) ≈ 3𝑇 (𝑛
2

) + 𝑐𝑛

▶ one subproblem is actually one bit bigger. Does it
matter?
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