CS3383 Unit 1 Lecture 1: Divide and Conquer intro

David Bremner David Bremner

2024-01-12

Outline

Divide and Conquer
Merge Sort
Recursion Tree

Merge Sort

Input: | 10 | 2 | 5 | 3 | 7 | 13 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Merge Sort

```
def merge_sort(A):
    n = len(A)
    if (n<= 1):
        return A
    split = max(n//2,1)
    left=merge_sort(A[0:split])
    right=merge_sort(A[split:])
    return merge(left,right)
```


ALGORITHMS

…… Merging two sorted arrays
$20 \quad 12$
1311
79
21

ALGORITHMS

…… Merging two sorted arrays
$20 \quad 12$
1311
$7 \quad 9$

\therefore Merging two sorted arrays

20	12	20	12
13	11	13	11
7	9	7	9
2	1	2	
1			

\therefore Merging two sorted arrays

2012	$20 \quad 12$
1311	1311
$7 \quad 9$	9
2	(2)
1	2

\therefore … Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	20	12
1311	1311	13	11
$7 \quad 9$	$7 \quad 9$	7	9
	(2)		
1	2		

\therefore … Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	$20 \quad 12$
1311	1311	1311
79	79	(7) 9
	2	1
1	2	7

…… Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	$20 \quad 12$	$20 \quad 12$
1311	1311	1311	1311
$7 \quad 9$	$7 \quad 9$	(7) 9	9
	(2)		
	,	,	

Merging two sorted arrays

20	12	20	12	20	12	20	12
13	11	13	11	13	11	13	11
7	9	7	9	7	9	9	9

Merging two sorted arrays

| $20 \quad 12$ |
| :---: | :---: | :---: | :---: | :---: |
| 1311 | 1311 | 1311 | $\begin{array}{ll}13 & 11\end{array}$ | 1311 |
| $7 \quad 9$ | $7 \quad 9$ | (7) 9 | (9) | |
| 2 | (2) | | 1 | |
| | 2 | 1 | | |

Merging two sorted arrays

Merging two sorted arrays

| $20 \quad 12$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1311 | 1311 | 1311 | 1311 | 13 (11) | 13 |
| $7 \quad 9$ | $7 \quad 9$ | (7) 9 | (9) | | |
| 2 | (2) | | 1 | 1 | |
| 1 | 2 | | 9 | 11 | |

Merging two sorted arrays

Merging two sorted arrays

Time $=\Theta(n)$ to merge a total of n elements (linear time).

Analyzing Merge sort

```
def merge_sort(A):
n = len(A)
if (n <= 1):
    return A
split = max(n//2,1)
left=merge_sort(A[0:split]) # T(n/2)
right=merge_sort(A[split:]) # T(n/2)
return merge(left,right) # @(n)
```


Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 ; \\
2 T(n / 2)+\Theta(n) \text { if } n>1 .
\end{array}\right.
$$

- We shall usually omit stating the base case when $T(n)=\Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- We will see several ways starting with "Rec. Tree" to find a good upper bound on $T(n)$.

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.
…․ Example of recursion tree
Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$$
T(n)
$$

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Appendix: geometric series

$$
\begin{gathered}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots=\frac{1}{1-x} \text { for }|x|<1
\end{gathered}
$$

Return to last slide viewed.
\square

Naive D\&C multiplication

 Solve $T(n)=4 T\left(\frac{n}{2}\right)+c n$, via recursion tree.
Naive D\&C multiplication

Solve $T(n)=4 T\left(\frac{n}{2}\right)+c n$, via recursion tree.

$$
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 4^{i}
$$

Naive D\&C multiplication

Solve $T(n)=4 T\left(\frac{n}{2}\right)+c n$, via recursion tree.

$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 4^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{4^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n} 2^{i}
\end{gathered}
$$

Naive D\&C multiplication

Solve $T(n)=4 T\left(\frac{n}{2}\right)+c n$, via recursion tree.

$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 4^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{4^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n} 2^{i} \\
=c n \cdot \frac{2^{\lg n+1}-1}{2-1}=2 c n \cdot 2^{\lg n}-c n
\end{gathered}
$$

Naive D\&C multiplication

 Solve $T(n)=4 T\left(\frac{n}{2}\right)+c n$, via recursion tree.$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 4^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{4^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n} 2^{i} \\
=c n \cdot \frac{2^{\lg n+1}-1}{2-1}=2 c n \cdot 2^{\lg n}-c n \\
=2 c n \cdot n-c n=2 c n^{2}-c n \in \Theta\left(n^{2}\right)
\end{gathered}
$$

Smart D\&C multiplication, sloppy analysis

 Solve $T(n)=3 T\left(\frac{n}{2}\right)+c n$, via recursion tree.
Smart D\&C multiplication, sloppy analysis

Solve $T(n)=3 T\left(\frac{n}{2}\right)+c n$, via recursion tree.

$$
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 3^{i}
$$

Smart D\&C multiplication, sloppy analysis

 Solve $T(n)=3 T\left(\frac{n}{2}\right)+c n$, via recursion tree.$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 3^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{3^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n}(3 / 2)^{i}
\end{gathered}
$$

Smart D\&C multiplication, sloppy analysis

 Solve $T(n)=3 T\left(\frac{n}{2}\right)+c n$, via recursion tree.$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 3^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{3^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n}(3 / 2)^{i} \\
=c n \cdot \frac{(3 / 2)^{\lg n+1}-1}{(3 / 2)-1}=3 c n \cdot(3 / 2)^{\lg n}-2 c n
\end{gathered}
$$

Smart D\&C multiplication, sloppy analysis

 Solve $T(n)=3 T\left(\frac{n}{2}\right)+c n$, via recursion tree.$$
\begin{gathered}
T(n)=\sum_{i=0}^{\lg n} c \cdot \frac{n}{2^{i}} \cdot 3^{i} \\
=c n \cdot \sum_{i=0}^{\lg n} \frac{3^{i}}{2^{i}}=c n \cdot \sum_{i=0}^{\lg n}(3 / 2)^{i} \\
=c n \cdot \frac{(3 / 2)^{\lg n+1}-1}{(3 / 2)-1}=3 c n \cdot(3 / 2)^{\lg n}-2 c n \\
=3 c n \cdot n^{\lg 3 / 2}-2 c n \in O\left(n^{1.6}\right)
\end{gathered}
$$

recursion tree example I/II

$$
T(n)=2 T(3 n / 8)+n^{2}
$$

recursion tree example I/II

$$
\begin{gathered}
T(n)=2 T(3 n / 8)+n^{2} \\
n^{2},(3 n / 8)^{2},\left[(3 / 8)^{2} n\right]^{2},\left[(3 / 8)^{3} n\right]^{2}, \ldots,(3 / 8)^{2 k} n^{2} \\
(\text { call at depth } k)
\end{gathered}
$$

recursion tree example I/II

$$
\begin{gathered}
T(n)=2 T(3 n / 8)+n^{2} \\
n^{2},(3 n / 8)^{2},\left[(3 / 8)^{2} n\right]^{2},\left[(3 / 8)^{3} n\right]^{2}, \ldots,(3 / 8)^{2 k} n^{2} \\
\quad(\text { call at depth } k)
\end{gathered}
$$

There are 2^{k} nodes on level k, so work on level k is

$$
2^{k} \cdot(3 / 8)^{2 k} n^{2}=
$$

$$
=
$$

$$
=
$$

recursion tree example I/II

$$
\begin{gathered}
T(n)=2 T(3 n / 8)+n^{2} \\
n^{2},(3 n / 8)^{2},\left[(3 / 8)^{2} n\right]^{2},\left[(3 / 8)^{3} n\right]^{2}, \ldots,(3 / 8)^{2 k} n^{2} \\
\quad(\text { call at depth } k)
\end{gathered}
$$

There are 2^{k} nodes on level k, so work on level k is

$$
2^{k} \cdot(3 / 8)^{2 k} n^{2}=2^{k} \frac{3^{2 k}}{2^{6 k}} n^{2}
$$

$$
=
$$

recursion tree example I/II

$$
\begin{gathered}
T(n)=2 T(3 n / 8)+n^{2} \\
n^{2},(3 n / 8)^{2},\left[(3 / 8)^{2} n\right]^{2},\left[(3 / 8)^{3} n\right]^{2}, \ldots,(3 / 8)^{2 k} n^{2} \\
\quad(\text { call at depth } k)
\end{gathered}
$$

There are 2^{k} nodes on level k, so work on level k is

$$
\begin{aligned}
2^{k} \cdot(3 / 8)^{2 k} n^{2} & =2^{k} \frac{3^{2 k}}{2^{6 k}} n^{2} \\
& =2^{k} \frac{9^{k}}{64^{k}} n^{2} \\
& =
\end{aligned}
$$

recursion tree example I/II

$$
\begin{gathered}
T(n)=2 T(3 n / 8)+n^{2} \\
n^{2},(3 n / 8)^{2},\left[(3 / 8)^{2} n\right]^{2},\left[(3 / 8)^{3} n\right]^{2}, \ldots,(3 / 8)^{2 k} n^{2} \\
\quad(\text { call at depth } k)
\end{gathered}
$$

There are 2^{k} nodes on level k, so work on level k is

$$
\begin{aligned}
2^{k} \cdot(3 / 8)^{2 k} n^{2} & =2^{k} \frac{3^{2 k}}{2^{6 k}} n^{2} \\
& =2^{k} \frac{9^{k}}{64^{k}} n^{2} \\
& =\left(\frac{9}{32}\right)^{k} n^{2}
\end{aligned}
$$

recursion tree example II/II

Total work

$$
\begin{aligned}
T(n) & =n^{2} \sum_{i=0}^{\log _{8 / 3} n}\left(\frac{9}{32}\right)^{k} \\
& \leq \\
& = \\
& =n^{2}
\end{aligned}
$$

recursion tree example II/II

Total work

$$
\begin{aligned}
T(n) & =n^{2} \sum_{i=0}^{\log _{8 / 3} n}\left(\frac{9}{32}\right)^{k} \\
& \leq n^{2} \sum_{i=0}^{\infty}\left(\frac{9}{32}\right)^{k} \\
& = \\
& =n^{2}
\end{aligned}
$$

recursion tree example II/II

Total work

$$
\begin{aligned}
T(n) & =n^{2} \sum_{i=0}^{\log _{8 / 3} n}\left(\frac{9}{32}\right)^{k} \\
& \leq n^{2} \sum_{i=0}^{\infty}\left(\frac{9}{32}\right)^{k} \\
& =n^{2} \frac{1}{1-9 / 32} \\
& =n^{2}
\end{aligned}
$$

recursion tree example II/II

Total work

$$
\begin{aligned}
T(n) & =n^{2} \sum_{i=0}^{\log _{8 / 3} n}\left(\frac{9}{32}\right)^{k} \\
& \leq n^{2} \sum_{i=0}^{\infty}\left(\frac{9}{32}\right)^{k} \\
& =n^{2} \frac{1}{1-9 / 32} \\
& =\frac{32}{23} n^{2}
\end{aligned}
$$

