CS3383 Lecture 1.2: Substitution method

David Bremner

January 29, 2024

Outline

Even More Divide and Conquer Substitution Method for recurrences Substitution examples

Example recurrence

The Master Method actually works for this, but it won't always.

$$T(n) = 4T(n/2) + n$$
$$T(1) = 1$$

Suppose that we want to prove $T(n) \in O(n^3)$ by induction
 Guess $T(n) \le cn^3$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$$

$$\leq cn^3 \leftarrow desired$$

whenever $(c/2)n^3 - n \ge 0$, for example,
if $c \ge 2$ and $n \ge 1$.
residual

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- *Base:* $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- *Base:* $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.

This bound is not tight!

We shall prove that $T(n) = O(n^2)$.

We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\le 4c(n/2)^2 + n$ $= cn^2 + n$ $= O(n^2)$

We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\le 4c(n/2)^2 + n$ $= cn^2 + n$ $= O(n^2)$ We must prove the I.H.

We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ $=cn^2+n$ = **Wrong!** We must prove the I.H. $= cn^2 - (-n)$ [desired – residual] $< cn^2$ for **no** choice of c > 0. Lose!

IDEA: Strengthen the inductive hypothesis.

• *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for $k \le n$.

IDEA: Strengthen the inductive hypothesis. • *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n. T(n) = 4T(n/2) + n $= 4(c_1(n/2)^2 - c_2(n/2)) + n$ $= c_1 n^2 - 2c_2 n + n$ $= c_1 n^2 - c_2 n - (c_2 n - n)$ $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$.

IDEA: Strengthen the inductive hypothesis. • *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n. T(n) = 4T(n/2) + n $= 4(c_1(n/2)^2 - c_2(n/2)) + n$ $= c_1 n^2 - 2c_2 n + n$ $= c_1 n^2 - c_2 n - (c_2 n - n)$ $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$.

Pick c_1 big enough to handle the initial conditions.

Substitution example II

$$\begin{split} T(0) &= 1 \\ T(n) &= T(n-1) + c^n & n > 0, c > 1 \\ &= T(n-2) + c^{n-1} + c^n \\ &= \sum_{i=0}^n c^i & \text{guess!} \\ &= \frac{c^{n+1} - 1}{c-1} & \text{geo. series} \end{split}$$

Substitution example II

$$\begin{split} T(0) &= 1\\ T(n) &= T(n-1) + c^n & n > 0, c > 1\\ &= T(n-2) + c^{n-1} + c^n\\ &= \sum_{i=0}^n c^i & \text{guess!}\\ &= \frac{c^{n+1}-1}{c-1} & \text{geo. series}\\ &\text{base T(0)} \end{split}$$

Substitution example III

$$\begin{split} T(n) &= T(n/5) + T(3n/4) + cn \\ T(n) &\leq dn, n \geq n_0 \\ &\leq (1/5)dn + (3/4)dn + cn \\ &\leq dn \end{split} \qquad & \text{(Guess)} \\ \end{split}$$