
CS3383 Unit 3.2: Dynamic Programming
Examples

David Bremner

March 10, 2024

Dynamic Programming
Balloon Flight Planning
Longest Increasing Subsequence
Edit Distance

Balloon Flight Planning

▶ Start at (0, 0)
▶ every step, rise or fall up to 𝑘 steps, and

increase 𝑥 by 1.
▶ one prize per integer 𝑥 > 0.
▶ discretize the problem as a graph search

Big Graph is Big

▶ computed graph is Ω(𝑘𝑛)
▶ input coordinates 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ bad dependence on k; more later

Finding a maximum value path
An easy case of a hard problem
In general NP-Hard, but not in DAGs.

function BestPath(𝑉 , 𝐸)
for 𝑣 ∈ TopSort(𝑉) do

Score[v] = −∞ // unreachable
for (𝑢, 𝑣) ∈ 𝐸 do // incoming edges

Score[v] = max(Score[v],
Value[v]+Score[u])

end for
end for

end function

Straightening paths

Lemma (Straightening Paths)
If there is a feasible path from 𝑝 to 𝑞 then the
segment [𝑝, 𝑞] is feasible.

Proof
The path cannot
escape the cone
define by the
steepest possible
segments.

A new graph

Improved graph size
The new graph is 𝑂(𝑝2),
where 𝑝 ≤ 𝑛 is the
number of prizes.

Longest increasing subsequence problem
Input Integers 𝑎1, 𝑎2 … 𝑎𝑛

Output

𝑎𝑖1
, 𝑎𝑖2

, … 𝑎𝑖𝑘

Such that

𝑖1 < 𝑖2 ⋯ < 𝑖𝑘

and

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑘

5 2 8 6 7

▶ (𝑎𝑖, 𝑎𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and
𝑎𝑖 < 𝑎𝑗.

▶ DPV 6.2, JE 3.6

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Longest path in DAG, working backwards

▶ Define 𝐿[𝑖] as the longest path
ending at 𝑎𝑖

For i = 1…n:
L[i] = 1 + max { L(j) | (j,i) in E }

▶ total cost is 𝑂(|𝐸|), after
computing 𝐸.

5 2 8 6 7

Improving memory use
▶ We can inline the definition of 𝐸.
▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}

def lis(A):
n = len(A)
L = [1] * n
for i in range(n):

for j in range(i):
if A[j] < A[i]:

L[i] = max(L[i],L[j]+1)
return max(L)

Edit (Levenshtein) Distance
▶ DPV 6.3, JE3.7
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake
▶ non optimal solution

i i i i d d d d d s
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

Total cost 10.

Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
Removing any column from an optimal alignment, yields an
opt. alignment for the remaining substrings.

Subproblems (prefixes)
▶ Define 𝐸[𝑖, 𝑗] as the minimum edit cost for 𝐴[1 … 𝑖] and

𝐵[1 … 𝑗]

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

justification.
We know deleting a column removes an element
from one or both strings; all edit operations
cost 1.

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

▶ or just memoize the recursion
▶ what are the base cases?

	Dynamic Programming
	Balloon Flight Planning
	Longest Increasing Subsequence
	Edit Distance

