CS3383 Unit 3.2: Dynamic Programming Examples

David Bremner

March 10, 2024

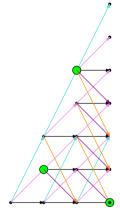
Dynamic Programming

Balloon Flight Planning Longest Increasing Subsequence Edit Distance

Balloon Flight Planning

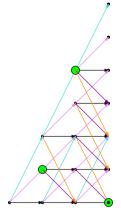
> Start at (0,0)

- every step, rise or fall up to k steps, and increase x by 1.
- lacktriangleright one prize per integer x > 0.
 - discretize the problem as a graph search



Big Graph is Big

- computed graph is $\Omega(kn)$
- input coordinates $O(n \log n + n \log k)$.
- bad dependence on k; more later

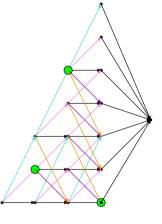


Finding a maximum value path

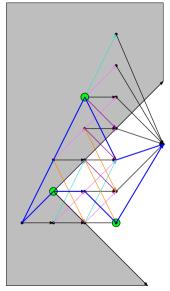
An easy case of a hard problem

In general NP-Hard, but not in DAGs.

function BESTPATH(V, E)for $v \in \mathsf{TopSort}(V)$ do $Score[v] = -\infty // unreachable$ for $(u, v) \in E$ do // incoming edges Score[v] = max(Score[v])Value[v]+Score[u]) end for end for end function



Straightening paths

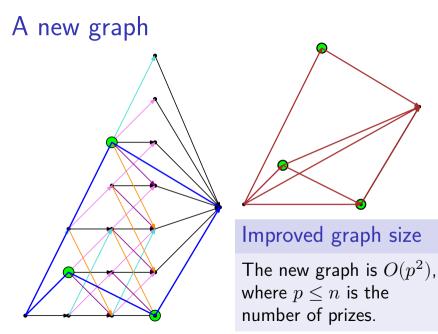


Lemma (Straightening Paths)

If there is a feasible path from p to q then the segment [p,q] is feasible.

Proof

The path cannot escape the cone define by the steepest possible segments.



Longest increasing subsequence problem

Input Integers $a_1, a_2 \dots a_n$ Output

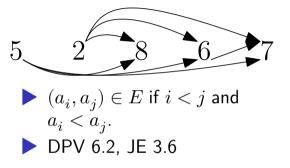
 $a_{i_1},a_{i_2},\ldots a_{i_k}$

Such that

 $i_1 < i_2 \cdots < i_k$

and

 $a_{i_1} < a_{i_2} < \dots < a_{i_k}$



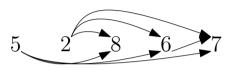
Defining subproblems

Define F(i) as the length of longest sequence starting at position i

- We could do n longest path in DAG queries.
- Thinking recursively:

 $F(i)=1+\max\{F(j)\mid (i,j)\in E\}$

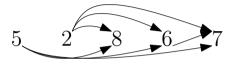
We could solve this reasonably fast e.g. by memoization.



 Topological sort is trivial

Longest path in DAG, working backwards

• Define L[i] as the longest path ending at a_i



total cost is O(|E|), after computing E.

Improving memory use

```
We can inline the definition of E.
L(i) = 1 + max{L(j) | j < i and a<sub>j</sub> < a<sub>i</sub>}
```

```
def lis(A):
 n = len(A)
 L = [1] * n
  for i in range(n):
    for j in range(i):
      if A[j] < A[i]:
        L[i] = \max(L[i], L[j]+1)
  return max(L)
```

Edit (Levenshtein) Distance

DPV 6.3, JE3.7

Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

non optimal solution

i	i	i	i		d	d	d	d	d	ន			
_	_	_	_	Т	Ι	М	В	Е	R	L	А	Κ	Ε
F	R	U	Ι	Т	_	_	_	_	_	С	А	Κ	Ε

Total cost 10.

Alignments (gap representation)

1 1 1 1 0 1 1 1 1 1 1 0 0 0 _ _ _ T I M B E R L A K E F R U I T _ _ _ C A K E

top line has letters from A, in order, or _
bottom line has has letters from B or _
cost per column is 0 or 1.

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

Subproblems (prefixes)

• Define E[i, j] as the minimum edit cost for $A[1 \dots i]$ and $B[1 \dots j]$

$$E[i,j] = \begin{cases} E[i,j-1]+1 & \text{insertion} \\ E[i-1,j]+1 & \text{deletion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

justification.

We know deleting a column removes an element from one or both strings; all edit operations cost 1.

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

- dependency of subproblems is *exactly* the same as LCS, so essentially the same DP algorithm works.
- or just memoize the recursion
 - what are the base cases?

