CS3383 Unit 3.2: Dynamic Programming Examples

David Bremner

March 10, 2024

Dynamic Programming
Balloon Flight Planning
Longest Increasing Subsequence Edit Distance

Balloon Flight Planning

\rightarrow Start at $(0,0)$

- every step, rise or fall up to k steps, and increase x by 1 .
one prize per integer $x>0$.
discretize the problem as a graph search
one prize per integer $x>0$.
discretize the problem as a graph search

Big Graph is Big

$>$ computed graph is $\Omega(k n)$
$>$ input coordinates $O(n \log n+n \log k)$.

- bad dependence on k ; more later

Finding a maximum value path

An easy case of a hard problem
In general NP-Hard, but not in DAGs.

```
function BestPath ( \(V, E\) )
    for \(v \in \operatorname{TopSort}(V)\) do
        Score[v] \(=-\infty / /\) unreachable
        for \((u, v) \in E\) do // incoming edges
        Score \([v]=\max (\) Score \([v]\),
            Value[v]+Score[u])
        end for
    end for
end function
```


Straightening paths

Lemma (Straightening Paths)

If there is a feasible path from p to q then the segment $[p, q]$ is feasible.

Proof
The path cannot escape the cone define by the steepest possible segments.

A new graph

Improved graph size
The new graph is $O\left(p^{2}\right)$, where $p \leq n$ is the number of prizes.

Longest increasing subsequence problem

Input Integers $a_{1}, a_{2} \ldots a_{n}$ Output

$$
a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}
$$

Such that

$$
i_{1}<i_{2} \cdots<i_{k}
$$

and

$$
a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}
$$

$>\left(a_{i}, a_{j}\right) \in E$ if $i<j$ and $a_{i}<a_{j}$.

- DPV 6.2, JE 3.6

Defining subproblems

$>$ Define $F(i)$ as the length of longest sequence starting at position i

- We could do n longest path in DAG queries.
- Thinking recursively:

- Topological sort is trivial

$$
F(i)=1+\max \{F(j) \mid(i, j) \in E\}
$$

- We could solve this reasonably fast e.g. by memoization.

Longest path in DAG, working backwards

- Define $L[i]$ as the longest path ending at a_{i}

$$
\begin{aligned}
& \text { For } i=1 \ldots n \text { : } \\
& \quad L[i]=1+\max \{L(j) \mid(j, i) \text { in } E\}
\end{aligned}
$$

total cost is $O(|E|)$, after computing E.

Improving memory use

$>$ We can inline the definition of E.
$\triangleright L(i)=1+\max \left\{L(j) \mid j<i\right.$ and $\left.a_{j}<a_{i}\right\}$

```
def lis(A):
    n = len(A)
    L = [1] * n
    for i in range(n):
        for j in range(i):
        if A[j] < A[i]:
        L[i] = max(L[i],L[j]+1)
    return max(L)
```


Edit (Levenshtein) Distance

- DPV 6.3, JE3.7

Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

- non optimal solution

Total cost 10.

Alignments (gap representation)

1	1	1	1	0	1	1	1	1	1	1	0	0	0
\bar{F}	\bar{R}	\bar{U}	\bar{I}	T									C

top line has letters from A, in order, or _
$>$ bottom line has has letters from B or _
$>$ cost per column is 0 or 1 .

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

Subproblems (prefixes)

$>$ Define $E[i, j]$ as the minimum edit cost for $A[1 \ldots i]$ and $B[1 \ldots j]$

$$
E[i, j]= \begin{cases}E[i, j-1]+1 & \text { insertion } \\ E[i-1, j]+1 & \text { deletion } \\ E[i-1, j-1]+1 & \text { substition } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

justification.

We know deleting a column removes an element from one or both strings; all edit operations cost 1 .

order of subproblems

$$
E[i, j]= \begin{cases}E[i-1, j]+1 & \text { deletion } \\ E[i, j-1]+1 & \text { insertion } \\ E[i-1, j-1]+1 & \text { substition } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

$>$ dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.

- or just memoize the recursion
\checkmark what are the base cases?

