CS3383 Unit 3.2: Dynamic Programming Examples

David Bremner

March 10, 2024

Outline

Dynamic Programming Longest Increasing Subsequence Edit Distance Balloon Flight Planning

Longest Increasing Subsequence problem

Input Integers $a_1, a_2 \dots a_n$ Output

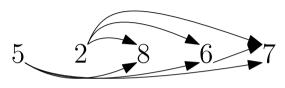
$$a_{i_1}, a_{i_2}, \dots a_{i_k}$$

Such that

$$i_1 < i_2 \dots < i_k$$

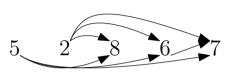
and

$$a_{i_1} < a_{i_2} < \dots < a_{i_k}$$

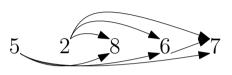


- $\begin{array}{c} \bullet & (a_i, a_j) \in E \text{ if } i < j \text{ and } \\ a_i < a_j. \end{array}$
- ▶ DPV 6.2, JE 3.6

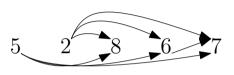
▶ Define F(i) as the length of longest sequence starting at position i



- ▶ Define F(i) as the length of longest sequence starting at position i
- ▶ We could do n longest path in DAG queries.

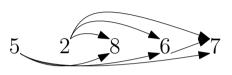


- ▶ Define F(i) as the length of longest sequence starting at position i
- ▶ We could do n longest path in DAG queries.
- Thinking recursively:



- ▶ Define F(i) as the length of longest sequence starting at position i
- ▶ We could do n longest path in DAG queries.
- ► Thinking recursively:

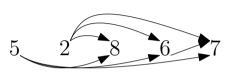
$$F(i) = 1 + \max\{F(j) \mid (i, j) \in E\}$$



- ▶ Define F(i) as the length of longest sequence starting at position i
- ▶ We could do n longest path in DAG queries.
- ► Thinking recursively:

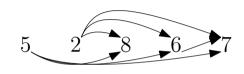
$$F(i) = 1 + \max\{F(j) \mid (i,j) \in E\}$$

We could solve this reasonably fast e.g. by memoization.



Longest path in DAG, working backwards

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$



```
For i = 1...n:
L[i] = 1 + max { L(j) | (j,i) in E }
```

total cost is O(|E|), after computing E.

Improving memory use

▶ We can inline the definition of *E*.

```
def lis(A):
  n = len(A)
  L = [1 \text{ for } j \text{ in } range(n)]
  for i in range(n):
    for j in range(i):
       if A[j] < A[i]:
         L[i] = \max(L[i], L[j]+1)
  return max(L)
```

Improving memory use

- We can inline the definition of E.
- $\blacktriangleright \ L(i) = 1 + \max\{L(j) \mid j < i \text{ and } a_j < a_i\}$

```
def lis(A):
  n = len(A)
  L = [1 \text{ for } j \text{ in } range(n)]
  for i in range(n):
    for j in range(i):
       if A[j] < A[i]:
         L[i] = \max(L[i], L[j]+1)
  return max(L)
```

Edit (Levenshtein) Distance

- ► CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

Using mostly insertions and deletions

```
iiii ddddds
_ _ _ TIMBERLAKE
FRUIT _ _ _ CAKE
```

Total cost 10.

Edit (Levenshtein) Distance

- ► CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

Using more substitutions

Total cost 7.

Alignments (gap representation)

- \blacktriangleright top line has letters from A, in order, or $_$
- bottom line has has letters from B or _
- cost per column is 0 or 1.

Alignments (gap representation)

- \blacktriangleright top line has letters from A, in order, or $_$
- bottom line has has letters from B or _
- cost per column is 0 or 1.

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

Alignments (gap representation)

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

proof.

By contradiction

Subproblems (prefixes)

▶ Define E[i,j] as the minimum edit cost for $A[1 \dots i]$ and $B[1 \dots j]$

$$E[i,j] = \begin{cases} E[i,j-1]+1 & \text{insertion} \\ E[i-1,j]+1 & \text{deletion} \\ E[i-1,j-1]+1 & \text{substitution} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

justification.

We know deleting a column removes an element from one or both strings; all edit operations cost 1.

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

- dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.
- or just memoize the recursion

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

- dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.
- or just memoize the recursion
- what are the base cases?

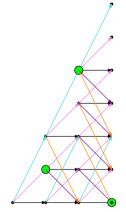
Edit distance

```
def dist(x,y):
 n = len(x); m=len(y)
 E = [ [max(i,j) for j in range(m+1)]
        for i in range(n+1) ]
  for i in range (1,n+1):
    for j in range (1, m+1):
      diff = int(x[i-1] != v[j-1])
      E[i][j] = \min(E[i-1][j-1] + diff,
                     E[i-1][j]+1,
                     E[i][i-1]+1)
  return E
```

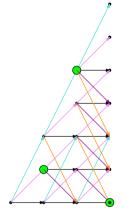
Tracing back the edits

```
def trace (E, x, y, i, j):
  if (i < 1):
    return "i" * i:
  elif (i < 1):
    return "d" * i:
  elif \times [i-1] == y[i-1]:
    return trace (E, \times, y, i-1, j-1)+"."
  elif E[i][i] = E[i-1][i-1] + 1:
    return trace (E, \times, y, i-1, j-1)+"s"
  elif E[i][j] = E[i-1][j]+1:
    return trace (E, \times, y, i-1, i) + "d"
  else:
    return trace (E, x, y, i, j-1) + "i"
```

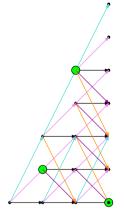
ightharpoonup Start at (0,0)



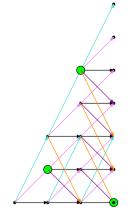
- \blacktriangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.



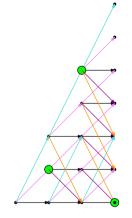
- \blacktriangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.



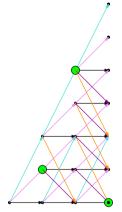
- ightharpoonup Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.
- Maximize value of collected prizes



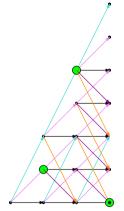
- ightharpoonup Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer *x* coordinate.
- Maximize value of collected prizes
- We can discretize/simulate the problem as a graph search



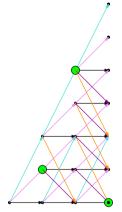
▶ We can discretize/simulate the problem as a graph search



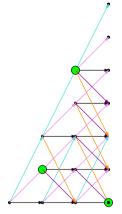
- ▶ We can discretize/simulate the problem as a graph search
- lacktriangle After n steps we could reach as high as kn



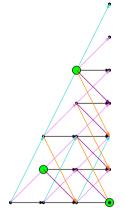
- ▶ We can discretize/simulate the problem as a graph search
- ightharpoonup After n steps we could reach as high as kn
- ▶ Worse, there could be a prize that high



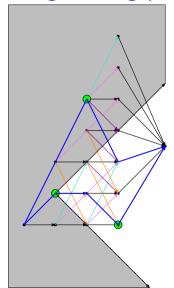
- We can discretize/simulate the problem as a graph search
- \blacktriangleright After n steps we could reach as high as kn
- Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.



- We can discretize/simulate the problem as a graph search
- ightharpoonup After n steps we could reach as high as kn
- Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.
- This means we have a bad dependence on k; more about this later



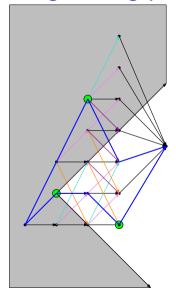
Straightening paths



Lemma (Straightening Paths)

There is a feasible path from p to q iff the segment [p,q] is feasible.

Straightening paths



Lemma (Straightening Paths)

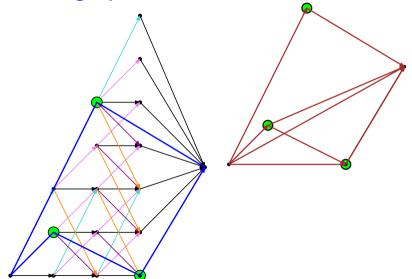
There is a feasible path from p to q iff the segment [p,q] is feasible.

Proof sketch

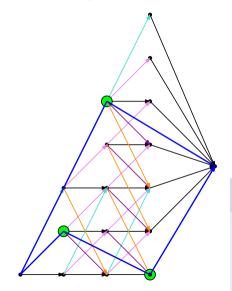
The path cannot escape the cone define by the steepest possible segments.

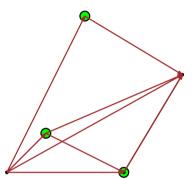
There is always one step back towards start within cone. Apply induction.

A new graph



A new graph





Improved graph size

The new graph is $O(p^2)$, where $p \leq n$ is the number of prizes.

