
CS4613 Lecture 3

David Bremner

January 14, 2025

Local Binding Examples
What can we learn by comparing these two programs in stacker? p. 47
(deffun (f x)

(let ([y 2])
(+ x y)))

(f 7)stacker

(deffun (f x)
(defvar y 2)
(+ x y))

(f 7)stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=47
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28let+%28%5By+2%5D%29%0A++++%28%2B+x+y%29%29%29%0A%28f+7%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28defvar+y+2%29%0A++%28%2B+x+y%29%29%0A%28f+7%29%0A

Local Binding Examples
What can we learn by comparing these two programs in stacker? p. 47
(deffun (f x)

(let ([y 2])
(+ x y)))

(f 7)stacker

(deffun (f x)
(defvar y 2)
(+ x y))

(f 7)stacker20
25

-0
1-

14 CS4613 Lecture 3
Local Binding

Local Binding Examples

1. Compare syntax in other languages
2. What about execution?

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=47
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28let+%28%5By+2%5D%29%0A++++%28%2B+x+y%29%29%29%0A%28f+7%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28defvar+y+2%29%0A++%28%2B+x+y%29%29%0A%28f+7%29%0A

A simplified local binding syntax
Let’s look ahead a bit to Desugaring p. 72and define a compatible
syntax to the book.
(define-syntax-rule (let1 (var expr) body)

(let ([var expr]) body))

Now we can look at how some examples should work p. 49

ex1 {let1 {x 1} {+ x x}}

{let1 {x 1}
{let1 {y 2}

{+ x y}}}

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=72
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=49
lectures/lecture03/let1-example1.rkt

A simplified local binding syntax
Let’s look ahead a bit to Desugaring p. 72and define a compatible
syntax to the book.
(define-syntax-rule (let1 (var expr) body)

(let ([var expr]) body))

Now we can look at how some examples should work p. 49

ex1 {let1 {x 1} {+ x x}}

{let1 {x 1}
{let1 {y 2}

{+ x y}}}20
25

-0
1-

14 CS4613 Lecture 3
Local Binding

A simplified local binding syntax

1. this is a bit subtle. In some sense we have implimented the feature, but not
as part of our interpreter

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=72
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=49
lectures/lecture03/let1-example1.rkt

Inner and Outer Scope
p. 50

ex2 {let1 {x 1}
{let1 {y 2}

{let1 {x 3}
{+ x y}}}}

I What feature does this example introduce?
I Where can we find this feature in other languages?

ex3 {let1 {x 1}
{+ x

{let1 {x 2} x}}}

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=50
lectures/lecture03/let1-example2.rkt
lectures/lecture03/let1-example3.rkt

Inner and Outer Scope
p. 50

ex2 {let1 {x 1}
{let1 {y 2}

{let1 {x 3}
{+ x y}}}}

I What feature does this example introduce?
I Where can we find this feature in other languages?

ex3 {let1 {x 1}
{+ x

{let1 {x 2} x}}}20
25

-0
1-

14 CS4613 Lecture 3
Local Binding

Inner and Outer Scope

1. We can use DrRacket to trace the bindings
2. We don’t need to rewrite things in racket, because we cheated and changed

the syntax of plait to match our examples

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=50
lectures/lecture03/let1-example2.rkt
lectures/lecture03/let1-example3.rkt

Static Scoping
p. 52

scope1 (defvar x 1)
(deffun (f)

(+ x 1))

(let ([x 2])
(f))stacker

Static Scope
Variable binding is determined by position in the source program,
not order of execution.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=52
lectures/lecture03/scope1.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28defvar+x+1%29%0A%28deffun+%28f%29%0A++%28%2B+x+1%29%29%0A%0A%28let+%28%5Bx+2%5D%29%0A++%28f%29%29%0A

Static Scoping
p. 52

scope1 (defvar x 1)
(deffun (f)

(+ x 1))

(let ([x 2])
(f))stacker

Static Scope
Variable binding is determined by position in the source program,
not order of execution.

20
25

-0
1-

14 CS4613 Lecture 3
Local Binding

Static Scoping

1. The book uses a different set of examples for dynamic scope, but for me
these go beyond dynamic scope by not obeying the block structure of let

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=52
lectures/lecture03/scope1.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28defvar+x+1%29%0A%28deffun+%28f%29%0A++%28%2B+x+1%29%29%0A%0A%28let+%28%5Bx+2%5D%29%0A++%28f%29%29%0A

Dynamic scope

scope2 (defvar x 1)
(deffun (f)

(+ x 1))

(let ([x 2])
(f))

Dynamic scope
Binding is determined by execution environment.

lectures/lecture03/scope2.rkt

Dynamic scope makes many traps

scope3 (deffun (blah func val) (func val))
(let ([x 3])

(let ([f (λ (y) (+ x y))])
(let ([x 5])

(blah f 4))))

scope4 (deffun (blah func x) (func x))
(let ([x 3])

(let ([f (λ (y) (+ x y))])
(let ([x 5])

(blah f 4))))

lectures/lecture03/scope3.rkt
lectures/lecture03/scope4.rkt

Dynamic scope makes many traps

scope3 (deffun (blah func val) (func val))
(let ([x 3])

(let ([f (λ (y) (+ x y))])
(let ([x 5])

(blah f 4))))

scope4 (deffun (blah func x) (func x))
(let ([x 3])

(let ([f (λ (y) (+ x y))])
(let ([x 5])

(blah f 4))))20
25

-0
1-

14 CS4613 Lecture 3
Local Binding

Dynamic scope makes many traps

1. Can you see what changed between the two examples? They are run with
the same interpreter (i.e. the same #lang)

lectures/lecture03/scope3.rkt
lectures/lecture03/scope4.rkt

Controlled Dynamic Scope
I plait has parameters for dynamic scope
I internally used by smol/dyn-scope-is-bad

scope5 (define location (make-parameter "here"))
(define (foo) (parameter-ref location))
(parameterize ([location "there"]) (foo))
(foo)
(parameterize ([location "in a house"])

(list (foo)
(parameterize ([location "with a mouse"])

(foo))
(foo)))

(parameter-ref location)

http://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plait/plait.html#%28part._.Parameters%29
lectures/lecture03/scope5.rkt

Update AST

p. 54
(define-type Exp

[numE (n : Number)]
[plusE (left : Exp) (right : Exp)]
[timesE (left : Exp) (right : Exp)]
[varE (name : Symbol)] ;; new
[let1E (var : Symbol) ;; new

(value : Exp)
(body : Exp)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=54

Environments

How to interpret variables? p. 55
(define (interp e)

(type-case (Exp) e
[(numE n) n]
[(varE s)]))

Let’s take a closer look at how stacker evaluates let:
(let ([y 2])

(+ 7 y))stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=55
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5By+2%5D%29%0A++%28%2B+7+y%29%29%0A

Implementing environments
p. 55We will use hash tables to implement environments

(define-type-alias Env (Hashof Symbol Value))
(define mt-env (hash empty)) ;; "empty environment"

Our interpreter will need to take an extra argument
(interp : (Exp Env -> Value))

Encapsulate the use Optional values as a way of handling errors.
(define (lookup (s : Symbol) (n : Env))

(type-case (Optionof Value) (hash-ref n s)
[(none) (error s "not bound")]
[(some v) v]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=55
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plait/plait.html#%28part._.Hash_.Tables%29
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plait/plait.html#%28part._tuples-tutorial%29

Implementing environments
p. 55We will use hash tables to implement environments

(define-type-alias Env (Hashof Symbol Value))
(define mt-env (hash empty)) ;; "empty environment"

Our interpreter will need to take an extra argument
(interp : (Exp Env -> Value))

Encapsulate the use Optional values as a way of handling errors.
(define (lookup (s : Symbol) (n : Env))

(type-case (Optionof Value) (hash-ref n s)
[(none) (error s "not bound")]
[(some v) v]))20

25
-0

1-
14 CS4613 Lecture 3

Evaluating Local Binding

Implementing environments

1. Somewhere along the way calc was renamed to interp
2. The extra argument is mainly for use in recursive evaluations of

sub-expressions
3. There is many debates about the best way to handle errors. In this simple

intepreter it is easiest to throw an (uncaught) exception to report an
unbound variable

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=55
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plait/plait.html#%28part._.Hash_.Tables%29
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plait/plait.html#%28part._tuples-tutorial%29

Evaluation strategy

Checking our example again p. 56
(let ([y 2])

(+ 7 y))stacker

We need to
1. evaluate the body of the expression, in
2. an environment that has been extended, with
3. the new name
4. bound to its value.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=56
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5By+2%5D%29%0A++%28%2B+7+y%29%29%0A

Extending environments
p. 56

Encapsulating some more hash-table manipulation
(define (extend old-env new-name value)

(hash-set old-env new-name value))

[(let1E var val body)
(let ([new-env (extend nv ;; 2

var ;; 3
(interp val nv))]) ;; 4

(interp body new-env))] ;; 1

1. evaluate the body of the expression, in
2. an environment that has been extended, with
3. the new name
4. bound to its value.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=56

Interpreter for let1

let1 (define (interp e nv)
(type-case Exp e

[(numE n) n]
[(varE s) (lookup s nv)]
[(plusE l r) (+ (interp l nv) (interp r nv))]
[(timesE l r) (* (interp l nv) (interp r nv))]
[(let1E var val body)
(let ([new-env (extend nv

var
(interp val nv))])

(interp body new-env))]))

lectures/lecture03/let1.rkt

Extending the parser

let1 [(? `(let1 (SYMBOL ANY) ANY))
(let* ([def (sx 1)]

[parts (s-exp- >list def)]
[var (s-exp- >symbol (list-ref parts 0))]
[val (parse (list-ref parts 1))]
[body (px 2)])

(let1E var val body))]

lectures/lecture03/let1.rkt

	Local Binding
	Evaluating Local Binding

