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Abstract. Currently, the only discipline that has dealt with scientific representations—
albeit non-structural ones—is mathematics (as distinct from logic). I suggest that it is
this discipline, only vastly expanded based on a new, structural, foundation, that will
also deal with structural representations.

Logic (including computability theory) is not concerned with the issues of various
representations useful in natural sciences. Artificial intelligence was supposed to address
these issues but has, in fact, hardly advanced them at all.

How do we, then, approach the development of representational formalisms? It
appears that the only reasonable starting point is the primordial point at which all
of mathematics began, i.e. we should start with the generalization of the process of
construction of natural numbers, replacing the identical structureless units, out of which
numbers are built, by structural ones, each signifying an atomic “transforming” event.

This paper is conceived as a companion to [1], and is a revised version of [2].

Mathematics is the science of the infinite, its goal is the symbolic comprehension
of the infinite with human, that is finite, means.

Hermann Weyl

The definition of mathematics accepted in the 20th century, as a science of the
infinite, should be replaced by another one, which more accurately captures its
nature: it is the science of the relationship between the finite and the infinite.

N. N. Yanenko
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1 Introduction: the situation in artificial intelligence

Why is the problem of representation so strategically critical? Mainly because, once we
discover the “right” representational formalism, we will be able “to know the mind of god”,
to use a popular phrase coined by modern physicist Stephen Hawking, i.e. we will truly un-
derstand what the nature of intelligence in the Universe is. “The problem [of representation]
persists because it is extraordinarily difficult, perhaps the most difficult one in all of science.
It is essentially the question of knowledge and of thought, and all that these imply . . . ” [3,
p. 3].

The scientific area that was supposed to focus on various representational formalisms
is artificial intelligence (AI), and almost from the very beginning of AI a very paradoxical
situation arose: representation was indeed considered to be a key issue but practically no
work at a basic scientific level has been directed toward it. In other words, this area has
evolved along the lines of least resistance: after some minor explorations, the researchers
have chosen not to embark on the development of radically new representational formalisms.

The name “artificial intelligence” was proposed by John McCarthy at the 1956 Dart-
mouth workshop on “thinking machines”, and later widely accepted as the name of the area
dealing with the (computer) modeling of various “intelligent” processes [4, pp. 39–40, 48–50].
Unfortunately for the development of the field, “Dartmouth indeed defined the AI establish-
ment: for almost two decades afterwards all ‘significant AI advances’ were made by the
original group members or their students” [4, p. 49; the single quotation marks are added].
In particular, two historical facts have exacerbated this state of affairs: the dominance of
logical formalisms in AI1 and the exclusion of pattern recognition from AI2.

The issue of why logical formalisms are not relevant to the development of representa-
tional formalisms, and are therefore not central to the development of AI, will be addressed
briefly in Section 7. Here it suffices to quote Bertrand Russell, one of the prominent logicians
of the last century: “Nature herself cannot err, because she makes no statements. It is men
who may fall into error, when they formulate propositions” [9, p. 311; emphasis is added]. At
the same time, it is not difficult to see why the choice of the logical formalism by McCarthy
is, to some extent, not really surprising: at that time it was the only widely known “quali-
tative”, as opposed to quantitative/mathematical, formalism. (In fact, this characterization
is superficial.) Although many AI conferences as well as topics in AI conferences have the
popular but nebulous name of “knowledge representation”, they have not addressed repre-
sentational formalisms in the sense that all natural sciences would find useful: for the most
part they have been dealing with logical formalisms.

The separation of pattern recognition and AI had a very negative effect on the develop-
ment of both fields but particularly on AI, since it put on the back burner the modeling of
inductive learning, the process I believe to be the central intelligent process, i.e. the process
around which all other relevant processes have evolved. Nevertheless, as stated in [10, p.
18], “in the late ‘80s, . . . once political events intervened (in the form of the recent rise of
connectionism . . . ), the situation has begun to change as can be seen from the content of

1 See some of the popular AI texts [5], [6], [7]. The dominating role of logical formalisms in AI is mainly
due to the influence of McCarthy and his Stanford AI school.

2 “In 1973 . . . pattern recognition was explicitly excluded causing much sound and fury, and wailing and
gnashing of teeth. . . .” [8, p. 8].
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recent leading AI textbooks” (such as, for example, [11]). But this had no substantive effect
on the investigation of representational formalisms, except by introducing various hybrids
of classical formalisms. Thus, for example inductive logic programming is still one of the
popular machine learning paradigms. What has recently changed is that the relative role of
the vector-space-based statistical learning methods has increased in AI, i.e. only a very small
part of the damage caused by the above exclusion of pattern recognition from AI during the
last 30 years has been patched up. It is quite clear that this exclusion was motivated by
the incompatibility of logical and vector-spaced-based formalisms, which instead should have
motivated the development of new representational formalisms.

Primarily, because AI researchers avoided dealing with the representational issues at
a more fundamental level, I believe that, when all said and done, no truly lasting ideas
have emerged within this field so far, an opinion echoed in the following quote from Hilary
Putnam, one of the leading philosophers of mind of the second half of the 20th century [12,
pp. 182–83]:

I am disturbed by the following, which is an undeniable sociological fact of Artificial Intelli-
gence: no branch or sub-branch of science in the twentieth century has engaged in the kind
of salesmanship that Artificial Intelligence has engaged in. A scientist in any other field who
tried to sell his accomplishments in the way Artificial Intelligence people have consistently done
since the sixties would be thrown out. This is something very disturbing. There are valuable
engineering achievements, but the claim to have made something like a breakthrough or even
a really new approach in thinking about the mind and psychology, seems to me fraudulent.

I want to emphasize one general point about the practice of AI that is largely responsible
for its current regrettable state of affairs: the reliance on the language of existing (especially
logical) formalisms to formalize the relevant concepts, instead of relying on the “logic” of
the relevant intuitive concepts to drive the development of the corresponding formalisms.

This reliance on basic logical and mathematical formalisms also suggests that the failure
of AI can be explained by the lack of relevant representational formalisms in present-day
mathematics and logic, which will be discussed in Sections 3, 7, and 8.

The situation in pattern recognition (and machine learning) will be addressed in several
sections below. As just mentioned in regards to AI, the basic methodological point to keep
in mind here is, again, an understandable but inappropriate reliance on the existing basic
formalisms to lead the way.

In light of the above, the main lesson from the development of AI and the basic point of
the paper is this: we need to focus our efforts on the development of radically new represen-
tational formalisms that are “structural” generalizations of the classical numeric representa-
tional formalism and allow them to lead the way. I believe that, at present, we have no other
reasonable option. I am also convinced that these new representational formalisms must shed
new light on the nature of mathematics, as it is clarified in the epigraphs. Regrettably, as far
as I know, there is only one such formalism being developed—the evolving transformation
system (ETS) [1]—which is, for convenience, briefly summarized in the next section.

Finally, embarking on the development of a representational formalism, we must be
prepared, to an even greater extent than Einstein was suggesting to physicists, that “In
order further to approach this goal, we must resign to the fact that the logical basis departs
more and more from the facts of experience, and that the path of our thought from the
fundamental basis to those derived propositions, which correlate with sense experiences,
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becomes continually harder and longer” [13, p. 322]. I would like to add that while this
“path” had quite some time to become “harder and longer” in physics, in AI, due to the
more abstract nature of the field, it must be “harder and longer” from the very beginning.

2 Class-oriented representational formalisms: a one-page outline
of a key topic

I now very briefly outline (see also [1, Section 1.4]) the concept of a representational formalism
as that of a class-oriented representational formalism, which, I believe, the only reasonable
orientation in approaching the former. The reason for this view is related to our basic
hypothesis about the informational nature of the Universe: we view the Universe as a system
of evolving and interacting classes of processes/objects. Consistent with this hypothesis, I
assume that any representational formalism must represent real entities in such a manner
as to preserve their original class identity, i.e. the corresponding mapping from the set
of physical objects to the set of abstract objects in the representational formalism should
preserve all original class delineations (see also Fig. 1 in [1]).

Classical, numeric, formalisms do not satisfy this requirement3, hence their need to in-
troduce extrinsic “decision surfaces” to deal with classes, which cannot and do not really
clarify anything about the structure or nature of the classes. The (algebraic) structure of
such decision surfaces has practically nothing—and can have hardly anything—to do with
the training examples from the class: these surfaces are not sensitive at all to the data inside
the decision regions, where most of the data is, and, moreover, in the case of non-linear
surfaces, they have nothing to do with the underlying representational, i.e. linear, structure.
So what is the class structure that is being captured by such surfaces?

Of course, it is understood that the above representational mapping must be realizable
via some sensors (see also [14]). The main conceptual question, however, is this: What is the
structure of the (abstract) underlying operations that the above representational formalism
should be based on? Three points should be relatively clear. First, the operations must be
chosen so as to be structurally isomorphic to the corresponding actual object operations,
and hence should be structurally sufficiently diverse. Second, the same chosen operations
must be adequate for supporting—in an “algebraic” sense—a meaningful concept of class
representation, or less formally, class description (see Sections 3 and 6). In particular, class
description/representation should be specified by means of the chosen operations, otherwise
the representational mapping might not be able to preserve the integrity of a class. The
third point concerns the preservation (by the mapping) of the modular/hierarchical object
and class structure: the formal underlying structure of the formalism should allow for a
natural transition from one “level” of representation to the next one, i.e. this transition
should be possible without any modification of the underlying formal language.

3 Representational formalism through the eyes of ETS: a two-page
summary

3This is a consequence of the fact that in such formalisms an object is represented as a point in an abstract
space, rather than as a structural entity with its own “combinatorial” structure.
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In this section, I briefly summarize the lessons learned from the development of the ETS
formalism (for details see [1]). Let me start by characterizing this representational formalism
as one designed to support the view of the environment as being formed by a hierarchi-
cally evolved—and therefore hierarchically organized—interacting system of classes (of
entities, where each entity should be properly viewed and represented as a process).

From a representational stand-point, the environment is viewed as being multi-staged4.
An object in an environment—approached at a particular representational stage—is repre-
sented by what we call a struct, which is a sequence of interconnected structural primitives,
or primitive transformations constituting this struct (see Figs. 1,3). Each such primitive
(see Fig. 1)—except those from the initial stage—stands for a temporal event signifying a
compressed previous stage macro-event, which represents the interaction of one or several
previous stage processes (see the top two processes in Fig. 2, left) resulting in one or several
news processes (the bottom process in Fig. 2, left).

In general, the interaction of several real processes representationally manifests itself in
their structs overlapping, i.e. sharing some their events (primitives).

The novel nature of ETS representation is its assumption that the “structure” should
be understood as a temporal recording of structured events. In particular, this allows the
introduction of structural primitives whose syntax and semantics are inseparable, and it also
makes such primitives fundamentally different from similar concepts in previous formalisms.
Moreover, the classes, stages, and the number of stages are not fixed, i.e. they can be
modified by the inductive learning process, which is the basic process supporting the
“reconstruction” of the multistage environment by an intelligent agent. An agent—relying
on its own system of classes—tries to learn inductively the structure of other classes. It is
understood that the formalism must provide the same formal language for dealing with each
stage, i.e. the formal language must be stage independent.

Figure 1: Pictorial illustration of two (abstract) primitives. The atomic/primitive event designated by
primitive π1 captures a particular split of a single initial process, depicted by the top circle, into three
terminal processes, depicted by the bottom circle and two squares (see Fig. 9 in [1]).

To take an example, “water molecule” and “mammal’s ear” are names (but not represen-
tations) of corresponding classes of entities separated by several stages. Obviously, during
the evolution of the universe, the former class has participated, at a much later time, in the
formation of the latter. A good, suggestive example for modeling a single stage representa-
tional structure is provided by basic chemical structures, i.e. molecules. Of course, this is
not to suggest that chemists or physicists already knew how to represent these observable
structures in a satisfactory manner.

Within a single representational stage, each class is also viewed as possibly multileveled
(see Part III in [1]). A single-level class representation is specified by means of a (single-
level) class generating system. Each step of the corresponding generative process is specified

4Each transition to the next “stage” corresponds to the compaction of representation—associated with
climbing to the next conceptual level— expressed in the same formal language (see Fig. 2).
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Figure 2: Pictorial illustration of a transformation (a macro-event) with two initial and one terminal processes
(left) and the corresponding next-stage primitive (right) (see Fig. 5 in [1]).

by a set of structural constraints, one of which must be satisfied, i.e. when generating a class
element out of structural pieces—each composed of the above primitives—this piece must
satisfy at least one of the step’s constraints. In the multilevel version of class representation—
still within a single representational stage—each step is also specified via a set of structural
constraints, but the structural pieces admissible at the step are composed out of elements
from the previous level classes, i.e. out of constituent elements.

Thus, even within a single representational stage, classes may have a hierarchical struc-
ture, which provides sufficient room for the evolution of an object structure within a single
stage. This structure, however, is qualitatively distinct from the large scale, stage-related
hierarchical structure, in which the larger structural patterns—reflecting the interaction of
(structural) processes—are contracted into new next stage primitives (Fig. 2). The former
refers to the constituent class organization, while the latter refers to the more compact rep-
resentation obtained by replacing a macro-event corresponding to the interaction of several
classes, i.e. a transformation, with the corresponding next stage primitive (Fig. 2). The
introduction of stages allows for an exponential reduction of representational complexity: as
was just mentioned, each higher stage primitive stands for a complex event encapsulating an
interaction of several previous stage processes.

Having fixed the nature of the generating process, any class must be adequately re-
constructable from its representation. At the same time, the class representation must be
efficiently learnable from a small training sample, which of course cannot be assumed to be
noise free. The last two statements point to a powerful and most general connection between
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the finite (class representation) and the infinite (set of class elements).
In a broader context of the philosophy of science, the ETS formalism points to the

basic validity of the Francis Bacon’s theoretico-inductive approach to science. Moreover, it
becomes quite clear why David Hume’s and especially the last century’s criticisms leveled
at such a program went wrong: without a structural representational formalism (plus the
corresponding hypothesis about the inductive structure of all classes in nature), induction
may, indeed, appear to be much less reliable than it really is. In particular, looking at several
“similar” ETS structs one can easily intuit why, during the inductive learning process, the
enormous structural information present in the structs representing training examples allows
for a quite reliable recovery of the class representation.

4 The present-day mathematics: numbers as the sole foundation
of, and directing force for, the entire current scientific edifice

The story of numbers goes back in history at least many tens of millennia, predating the
development of civilization itself. In [15, Section 3], I briefly outlined the inductive origin
of natural numbers, including four stages in their emergence, and tried to justify why “the
decisive and irreplaceable role of the induction axiom in the well-known Peano axiomatization
of natural numbers is a reflection of the inductive cognitive origin of numbers”.

A lesser-known fact about the much more recent role of numbers in shaping Western
civilization is researched by the noted historian Alfred Crosby.

Europeans of the late middle ages inherited a profound change in mentalité that had been
fermenting for centuries, a change from the ancient qualitative way of comprehending the
world—what Crosby calls the “venerable model”—to a quantitative model that would soon
dominate Western society and provide Europe with the power to dominate the world. . . . In
the space of less than a century just before and after 1300, Europe produced its first mechanical
clock (which quantized time), marine charts and perspective painting (which quantized space),
and double-entry bookkeeping (which quantized financial accounts).

. . . In 1300 everyone thought of nature as heterogeneous, each quality with its own measure.
Yet 250 years later Pieter Bruegel (in his 1560 painting Temperance) portrayed people engaged
in visualizing reality as aggregates of uniform units (or quanta): leagues, miles, degrees, letters,
guilders, hours, minutes, musical notes. [16, p. 1] (based on [17])

In practical terms, the new approach was simply this: reduce what you are trying to think
about to the minimum required by its definition; visualize it on paper, or at least in your mind,
be it the fluctuation of wool prices at the Champagne fairs or the course of Mars through
the heavens, and divide it, either in fact or in imagination, into equal quanta. Then you can
measure it, that is, count the quanta.

Then you possess a quantitative representation of your subject that is, however simplified,
even in its errors and omissions, precise. You can think about it rigorously. [17, pp. 228–29;
emphasis added]

In fact, in the preface of his book [17], Alfred Crosby attributes to the above events the
later amazing success of European expansion around the beginning of the 14th century.

Why is there, then, a relatively recent perception, particularly among some mathemati-
cians and theoreticians, that “mathematics is not about numbers”? There is no doubt that,
partly, the latter is true, but fundamentally it is only an illusion. The main reason for this
recent perception, and misconception, is the nature of the axiomatic form of mathematics
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and especially of one of its main areas—algebra—as it gradually emerged over the last 100–
150 years. During the last century, algebra became a general “repository” for many useful
abstract mathematical concepts/structures, e.g. group, ring, field, vector space, category,
morphism. Simultaneously a tradition5 emerged in mathematics for organizing these various
abstract (axiomatic) structures in a hierarchical manner. As a result, many (but not all)
texts, including some authoritative ones, have propagated the illusion of the primacy of ab-
stract structures themselves, without explaining where these structures came from, i.e. what
motivated them in the first place or by tracing their historical roots. For example, one should
know that the concept of group has emerged gradually from the research on the solutions
of higher degree (numeric) polynomials by Lagrange, Ruffini, Abel, and Galois around the
start of the 19th century.

Indeed, the concept of group is one of the most general concepts in algebra. In science,
particularly in physics and chemistry, once introduced, it gradually began to play the role of a
concept that is supposed to algebraically characterize the nature of a particular “invariant” of
a phenomenon, i.e. the nature of the set of all transformations under which the corresponding
“feature”, or “structure”, is preserved (see, for example, [18], [19]). In fact, the group can be
used to characterize the nature, or “degree”, of symmetry of a given geometric figure. I would
like to emphasize here that, although the group concept appears to be independent of numeric
forms of representation, this is a misapprehension: currently, the formal understanding of
geometric as well as non-geometric objects is based on their numeric representations.

It is interesting to note that the group concept can be viewed as a concept of “class
description” when the set of admissible classes is substantially restricted, i.e. when dealing
with much more “regular” classes of phenomena. With the introduction of a structural (non-
numeric) representational formalism, e.g. the ETS formalism, the description of much more
general classes of phenomena becomes possible.

Another example is furnished by one of the most central mathematical concepts, the
concept of a space of (numeric) functions. Although the underlying set could potentially
be endowed with many abstract (and non-linear) structures, what we see in mathematics
is a particular dominating structure—the linear, or vector space, structure—inspired by
corresponding “numeric” considerations. And, of course, it couldn’t be any other way:
generalizations are always inspired by some concrete structure.

Thus, to be sure, abstractions are present in mathematics, but because they emerged as
tools for dealing with numeric structures, they must carry at the very least some limitations
associated with this numeric origin. We have it on the authority of no less a mathematician
than Nicolas Bourbaki that “the axiomatic research of the 19th and 20th centuries has there,
too, substituted little by little a unitary conception progressively leading all mathematical
notions back, first to the notion of number, then, as a second step, to that of set.” [20, p.
28, footnote 6; emphasis added]

I would like to make one final point regarding a future, “structural”, mathematics, to
which I will return in the next section. Although the concept of set is an auxiliary one in
mathematics6, it still occupies a very prominent, foundational, place. It appears that in

5 The major protagonist of this tradition was a French group of mathematicians under the pseudonym of
Nicolas Bourbaki.

6 As Bourbaki correctly insists, the basic mathematical concepts are those related to the main mathe-
matical structures, e.g. in algebra, the ones mentioned above.
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a “structural” mathematics its place will be occupied by the concept of a class (of related
objects). Interestingly, Cantor’s conception of the set as “the multitude that might be
thought as oneness” may be viewed as already pointing in that direction.

5 Our starting point: generalization of Peano axioms by replacing
the successor operation by more general structural operations

What should guide us in the construction of a formalism for structural representation? Here
we are entering absolutely unfamiliar territory: we don’t have any examples of formalisms
on which our (inductively trained) esthetical selection principles can be based [21]. So what
should our starting point be?

We do have one example of a “representational formalism”, albeit a non-structural one:
the set of natural numbers, which are the abstract entities on top of which the edifices of
mathematics and natural sciences are built. So, since this is all we have, we should try to
learn as much as we can from this example. To this end, we should look very carefully at
the process of construction of natural numbers. The well-known Peano axioms that define
natural numbers also perfectly capture their process of construction via one simple operation,
which is applied successively to “objects”, starting from some initial “object” (see [22] or
[23]). I will not discuss here the overriding importance of this construction process to the
development of mathematics (see [24, chapter 1], [25]).

The temporal nature of this construction process strongly suggests that, when generaliz-
ing it, our construction must also proceed in a temporal manner (with a possible allowance
for atemporal/parallel application of a few operations at a time, see Fig. 3)7. The critical
point to note, however, is this: if one of the identical simple, i.e. almost non-structural, op-
erations in the construction of natural numbers is now replaced by a few parallel structural
operations, one can now “see”, in contrast to the former case, which structural operation was
applied and when it was applied (Fig. 3). In other words, for the first time, the “structure”
is emerging as the corresponding temporal structure.

Such representational power, mainly due to the transparency/explicitness of the repre-
sentation, has never before been available in any mathematical formalism, and it is this
newly discovered power that we will have to learn to garner and exploit, starting literally
from scratch. The full practical implications of such a representation are overwhelming since
they include, in particular, the concept of a “structural measurement process” [14]. But even
outside the considerations of structural measurement, we are still faced with the unprece-
dented challenge of gradually developing the mathematics of such temporal entities, which
no doubt will require the development of completely new “tools” as compared to those de-
veloped within the classical numeric-based mathematics. (By perusing [1] it is not difficult
to get a feeling why this is so.) However, for incremental progress, it is important to keep in
mind that the development of any formalism proceeds much more effectively and efficiently
if, at least initially, when necessary, we separate the issues related to formalism construction
from the purely implementational ones. Of course, one of the more immediate promises

7 We are still dealing with temporal order but extended now to small sets of operations, which are
atemporal within each such set but whose (i.e. sets) relation to each other is temporal: the linear order of
operations becomes a partial order.
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Figure 3: ETS Representation of the natural number three (left) and of a more “general” object (right),
where each πij denotes an ETS primitive.

of such a powerful representation is the reliability it affords in the solution of problems in
pattern recognition and other information retrieval areas.

Returning to the above structural operations—called primitive transformations (Section
2)—I note again that these (syntactic) primitives can also be considered as semantic primi-
tives, which is not the case with the prototype they generalized, i.e. with the single numeric,
or Peano, primitive. Indeed, a primitive transformation is supposed to mimic/model the cor-
responding actual object’s transformation, which appears to be the key feature of structural,
as compared to numeric, representation (see Section 8).

The question of whether the information processes are irreversible is also resolved. Ob-
viously, in view of the temporal nature of such processes, the appearance of a primitive
transformation in the representation cannot be undone, simply because all future primitives
appear after it.

One of the most interesting questions raised by such an “irreversible” representation is
this: Is the formative/generative history that is captured by this representation a necessary
feature? From biology—more specifically, from developmental biology—we already have a
clear affirmative answer: in order to “produce” an organism Nature apparently relies on
some kind of formative history of the species, which the organism must recapitulate during
the early stages of its development. But is this wisdom applicable to pattern recognition?
I believe yes, it is, and it could not be otherwise. For example, if, in computer vision,
when representing a face, along with conventional face features, we were able to incorporate
some contour lines and expressions captured temporally as the expression changes, this rich
structural information would dramatically reduce the size of the class of “similar” faces.
Moreover, when then trying to recognize a face, the recognition process would abort earlier
if it does not encounter some structural piece expected in the representation of the given
face.

In any case, to answer the above question, one should proceed in the usual scientific
manner, which was succinctly summarized by well-known physicist Richard Feynman [26,
p. 19]: “How do we know that there are atoms? By one of the tricks mentioned earlier: we
make the hypothesis that there are atoms, and one after the other results come out the way
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we predict, as they ought to if things are made of atoms.” So, how will we know that an
object’s generative history is important? We adopt the above representation and then see if
the predictions of new class elements based on this representation are valid.

I should also mention one quite obvious but critical advantage of the above tempo-
ral structural representation: given a small training set from a class, in contrast to the
numeric representation, we can “directly” observe/learn the larger structural operations,
macro-operations, that delineate this class. This correlates, for example, with our visual
experience in a familiar environment, when we can fairly quickly see all “interesting” class
features.

Finally, I draw your attention to an important philosophical observation. Although a
number of past philosophers, starting with Heraclitus, insisted on “change” as the main “re-
ality”, as compared to the “visible object” reality, these philosophical observations have never
been realized—except in ETS, which postulates transformations as the basis of representation—
as the foundation of a representational formalism.

6 Finite class representation of a possibly infinite class

Assuming that the concept of class is primary, the concept of a naturally evolving class
representation must be the central concept in a representational formalism. I should note
that, from the very beginning, it was this vision that inspired and directed the development
of the ETS formalism.

The term class representation was introduced in [27], and although it refers to a particular
form of class description, it may also (more loosely) be interpreted as associated with a
particular structure of the underlying formalism, within which this form of class description
is a natural one. By introducing this term, I wanted to draw greater attention to the form
of class description used in any representational formalism, given that very little attention
has been paid to it: the inductive adequacy of the class representation should play the
central role in assessing the adequacy of a formalism for pattern recognition. I believe
that the lack of attention to the concept of class representation is not accidental, but is a
consequence of an important aspect of the structure of basic (mathematical) formalisms: they
lack a satisfactory concept of class description/representation.8 In other words, it turns out
that their (underlying) formal structure cannot support a satisfactory concept of class, and
therefore the situation simply cannot be remedied within existing formalisms by developing
“more powerful” classification algorithms.

In connection with this, one of the most remarkable telltale signs is the lack of both
the concept of class as well as the concept of class representation in AI—including machine
learning—and the avoidance of both via the introduction of “a boolean-valued function from
training examples” [28, p. 21] (see also [11, p. 651]). I find this remarkable because a boolean-
valued mapping is a very unnatural/roundabout way of dealing with the concept of class
and highlights the intrinsic limitations of the conventional formalisms.

Moreover, the substitution of the concept of class representation by the class indicator,
or characteristic, mapping has a number of serious consequences, one of which is the conceal-
ment/removal from scientific attention of the question of the relationship between a (finite)

8As was mentioned above, this situation can be explained by the fact that classical mathematical
formalisms—which have served mainly the needs of physics—represent an object as a point in some space.
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class representation and the (possibly infinite) set of its elements. I believe that the resolu-
tion of this most central scientific question is of vital importance to the development of AI
(including pattern recognition), and that the quality of the answer to this question, within a
particular representational formalism, is the decisive factor in judging the adequacy of that
formalism. In particular, if a representational formalism offers a scientifically satisfactory
and experimentally supported solution to the nature of this relationship, it can be taken
seriously. Not surprisingly, the great riddle of induction is closely associated with this sci-
entific question. Also, in light of the above epigraphs addressing the nature of mathematics,
I suggest that the concept of class representation, rather than the concept of set (with the
subsequent development of non-mathematical logical languages to support it, see Section 8),
should be in the center of attention for mathematicians.

What is the relationship between a class and its representation in the ETS formalism?
Very briefly (see Part III in [1]): since class representation is specified by a finite sequence
of sets of constraints, the objects of the class can be generated in a systematic generative
manner. In other words, a possibly infinite set of class objects is specified by a finite sequence
of sets of constraints. As the class evolves, its sets of constraints also evolve in a very natural
manner, i.e. incrementally. This hypothesis about the nature of class representation, as was
mentioned in Section 4, can and should be experimentally verified. Another important point
regarding this form of class representation is that we expect it to be efficiently learnable from
a small training set and also to be stable with respect to various kinds of “noise” present in
the object representation.

7 A new phase in applications: construction of structural repre-
sentation

In this section, I want to briefly address a major shift in the relative importance of the
representation phase as compared to other implementation phases.

First, following conventional scientific experience, it is quite natural to hypothesize the
existence of a structural measurement process, which is a far-reaching generalization of the
classical, numeric, measurement process. While the numeric process involves a systematic
procedure (built into the measurement device) for “dismantling” the structural information
present in the original object and encoding it into identical non-structural units, the struc-
tural measurement process involves the transduction of one kind of structural information
into another via much more complex and dynamic interactions associated with the sensing
of primitives and their connections. Although we touched on this issue in [14], it should be
quite clear that this paper is not the place to address this vast topic.

Next, I want to address a radical shift in the relative importance of various constructive
phases associated with the application of the ETS formalism as compared to the application
of the vector-space-based formalism. In short, within the latter framework, it appears that
representation is “easy” but learning is “difficult”, while within the ETS framework, the
expectation is that representation is difficult but learning is easy.

Indeed, in the implementation of a representational formalism, especially in the initial
stages of its development, it is only natural to expect the development of the basic repre-
sentation to be of central importance. (Of course, once it is satisfactorily developed, this
representation can be used in a routine manner.) At the same time, once this implemen-
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tation phase is complete, the learning phase is relatively “simple”, in the sense that it can
now, for the first time, rely on the sufficiently rich structural information present in the
constructed representation. I would also like to draw your attention to the observation that
human experience seems to support this “division of labor”: when we find ourselves in a new
environment, we spend most of our time building necessary representations.

On the other hand, within the vector-space-based formalism, which I consider sepa-
rately in the next section, the main theoretical and practical efforts are directed towards the
development of “good” classification algorithms (without a meaningful concept of class rep-
resentation), while the construction of “good” representations, of necessity, is accomplished
in an ad hoc manner. As a result, we have no reliable object and class representations,
and further, at the end of the learning process, we are also no better off with respect to
our ability to utilize the results of learning for various other information processing needs,
e.g. discovering the connections between classes and gaining insight into the nature of data,
including its main “features” (as are the needs of data mining and information retrieval).
In light of this basic deficiency, I am also suggesting that it is very misleading to call such
statistical algorithms “learning” algorithms.

8 The vector space as a formalism and the important applied role
of its underlying formal operations

I will focus here on two key points, both of which concern the role of the formal operations
by means of which a formal model is axiomatically defined: their conceptual and applied
roles.

The conceptual role of such operations in mathematics has been clarified by the work
of the Bourbaki group (see Section 3) but, apparently, is not widely understood. Basically,
this point can be summarized as follows: the formal operations involved in the axiomatic
definition of a particular mathematical structure (and the compositions of those operations)
are the only legitimate/admissible operations within that structure. In case of the vector
space, the two basic operations are vector addition and multiplication of a vector by a scalar.
Their compositions specify what are called “linear” operations, which are the only legitimate
operations in a vector space, also called a linear space. No non-linear operation is a part
of this mathematical structure. Incidentally, there are uncountably many such operations,
and so even if we wanted to choose one of them over the other, we have no legitimate
way of doing so. Thus, if we decide to ignore this point, we are no longer dealing with a
bona fide mathematical structure, and the many benefits that come from working within a
mathematical structure are lost. Regrettably, many statisticians and applied mathematicians
are not concerned about this.

The second point is related to the applied role of the defining operations, and has not,
to my knowledge, been addressed (except briefly in several of my papers), but it is of even
greater importance for us. Let us consider an “intelligent” agent operating in some envi-
ronment. In order for this agent to be able to interact effectively with the environment,
the agent must possess a finite set of basic representational operations whose compositions
should be able to capture all critical “features” in the environment. Moreover, since many
of these features are compositionally related to one another in a very particular way, the
corresponding compositions of the agent’s operations must be related in a similar way (see
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Section 2)9. Otherwise the agent will not be able to capture the relationships within a class
as well as between classes of objects (and between the features). For example, the agent will
not be able to understand what a dog’s ear is—which should be thought of as a class at a
lower “level” and at the same time a feature at a higher “level”—and that ears of dogs of
various breeds play the same compositional “role”, independent of their shape, size, texture,
etc. The common role of the ears can be hypothesized on the basis of the fact that they
form a class with a fixed compositional role in the structure of the head. Without such a
capability, no autonomous functioning in a non-trivial environment is possible. This obser-
vation implies that if we ignore the structure of basic representational operations and their
interrelations, we will not be able to build a truly autonomous/intelligent system or agent,
since, in this case, such a system would completely depend on the implementer to hardcode
the necessary features in the environment. Furthermore, in many areas, such as AI, data
mining, and information retrieval, we would also need to hardcode the meanings of all the
features. However, both of these tasks are practically impossible. And even in the case that
we were to hardcode most of the relevant features, the learning and classification processes
will be quite brittle, as has been experienced so far.

Thus, again as in Section 2, I want to draw attention to the applied role of the ba-
sic operations (in an axiomatic specification) of a mathematical formalism: they must
be structurally isomorphic to the basic object operations in the modeled envi-
ronment. In other words, one should choose that representational formalism whose basic
operations “mimic” most accurately those of the environment. The latter can be verified by
observing how well the agent can autonomously learn various classes in the environment.

In this respect, the representational capability of the vector space model is incredibly
weak, were it not sanctioned by the millennia-old tradition supported/entrenched by nu-
meric measurement devices (see Section 4): there are only two basic operations and both
are modeled on numeric operations rather than on structural ones. Moreover, their (alge-
braic) compositions do not offer sufficient richness, and this is precisely the main reason why
various non-linear operations, including kernels, are being (inevitably) introduced.10 But,
as explained above, this will not save the situation: non-linear operations may somewhat
improve classification, but since the representational question is not being addressed at all,
the whole construction becomes very brittle, with no benefits to various postclassification
processings, which are increasingly in demand, for example, in data mining and information
retrieval.

One final but important point relates to a number of recent developments in pattern
recognition and machine learning, in particular to various kernel- and dissimilarity-based
approaches. The main observation I want to make is, in a way, quite obvious: to obtain
good kernels or dissimilarity measures one needs to rely on some good “representation”,
since this is how they are computed. In other words, without such an (implicit, at least)
representation, no kernel or dissimilarity can be introduced. Thus, without the underlying
operations associated with a transformation of one object into another, such concepts cannot
be implemented. In fact, this is how I was led to the development of transformation-based,

9 During the last century, this point was also made a number of times by philosophers of mind in the
context of “symbolic computation”, tracing back to [29] at least.

10 In particular, additional layers in a neural network increase the power of discriminating functions, but
are not meaningfully related at all to the class representation.
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or structural, representations, when I realized that, in order to be successful in a sufficiently
rich environment, the agent must be able to evolve a wide variety of new dissimilarities—
defined via such transformations—without the help of a human designer [30]: even for the
string environment, how does one chose the “right” (sub)string operations for computing the
appropriate dissimilarity measure? I firmly believe that we need fundamentally new kinds
of formalisms offering a sufficiently rich and evolving repertoire of (structural) operations.

9 Logical formalisms

As was suggested above, the key to the success of a representational formalism is the quality
of the class representation it provides. In the case of a logical formalism, although the
situation may initially appear to be more promising than in the case of the vector space
formalism11, in reality, this “promise” turns out to be illusory.

Logical formalisms emerged from relative obscurity early in the 20th century, when
researchers working on the foundations of mathematics—mainly trying to clean up the
“language” of set theory introduced by Georg Cantor in the last quarter of the previous
century—discovered a number of serious antinomies, e.g. Russell’s, Burali-Forti’s, Richard’s,
and Berry’s. The rise of logical formalisms to prominence in the ’20s and ’30s was fueled
by David Hilbert, the most influential mathematician of the time (after Poincare’s death
in 1912), who became involved in the program to secure the foundations of mathemat-
ics12. At that time, the work of George Boole, Gottlob Frege, Bertrand Russell, and several
other researchers on the foundations of mathematics—and definitely not on “modeling the
mind”—suddenly became of interest to some other mathematicians.

But what was this logical formalism (whose main ideas are attributed to Frege) motivated
by? Here are some relevant points regarding Frege’s motivation, which shaped, and is fully
reflected in, the formalism [31, pp. 14–18; emphasis added]:

Although . . . some . . . have been tempted to claim that mathematical truths in general are
ultimately justified on the basis of our experience, Frege rejects the view that the contents of
our experience are at all relevant to the truth of arithmetical claims.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic, according to Frege, limns the laws of thought. These must not be confused with the laws
of thinking, the psychological processes that might take place as one reasons. Rather, they
are laws that constrain what can be rationally thought. Logic does not aim to describe how
humans think, but instead to characterize how they must think if their thought is to remain
within the bounds of reason.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The laws of logic govern all rational thought, regardless of its particular content: logic ‘[disre-
gards] the particular characteristics of objects, [and] depends solely on those laws upon which
all knowledge rests.’

Thus, the basic logical formalism (developed for needs of the foundations of mathematics) is
deliberately structured in such a way that the structure of inductive experience, as well as

11 This is simply because logical formalisms appear to be more “qualitative” as compared to quantitative
mathematical formalisms.

12 It was Hilbert who insisted “No one shall be able to drive us from the paradise that Cantor created for
us.”
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the structure of the corresponding biological processes, are ignored, while these are precisely
the processes that should be of central importance to AI.

In connection with the development of logic at the beginning of the century, it is instruc-
tive to read the scathing reaction of the great Henri Poincare to those developments, which
he gave in chapters 3, 5 of [32]. Poincare also criticized the introduction in mathematics of
actual infinity, as opposed to potential infinity. Most importantly, he was convinced of the
central role of inductive constructions in mathematics and that

All the efforts that have been made to upset this order, and to reduce mathematical induction
to the rules of logic, have ended in failure, [and this failure is] but poorly disguised by the use
of a language inaccessible to the uninitiated [32, last section titled “General Conclusions”].

It is also interesting to note that, as his quotes in Section 1 and below clearly indicate,
later on in his life Bertrand Russell changed his mind about the role of logical formalisms:

Inference is supposed to be a mark of intelligence and to show the superiority of men to
machines. At the same time, the treatment of inference in traditional logic is so stupid as to
throw doubt on this claim . . . . I have never come across any . . . case of new knowledge obtained
by means of a syllogism. It must be admitted that, for a method which dominated logic for
two thousand years, this contribution to the world’s stock of information cannot be considered
very weighty. [33, p. 63]

I had become increasingly aware of the very limited scope of deductive inference as practiced
in logic and pure mathematics. I realized that all the inferences used both in common sense
and in science are of a different sort from those in deductive logic. [34, p. 141]

However, most interestingly, one should look at how the original father of logic, Aristotle,
perceived the place of logical mechanisms. I quote one of the most known philosophers of
science of the last century, Karl Popper, who, in his words “didn’t like Aristotle” precisely
for his epistemology:

[Aristotle] tries to give a theory of epistēmē, of demonstrable knowledge; and being a clever man,
and a good logician, he finds that his assumption that there is demonstrable knowledge involves
him in an infinite regress, because this knowledge, if demonstrated, must be logically deduced
from something else, which in turn must also be demonstrated knowledge, and therefore in its
turn deduced from something else, and so on.

So he gets to the problem: how can this infinite regress be stopped? Or: what are the real
original premises, and how do we make sure of their truth? He solves this fundamental problem
of knowledge by the doctrine that the real original premises are statements of definitions.
. . . Definitions, on the one hand, give to words a meaning by convention and are therefore
certain (analytic, tautological). But if they are only conventional, and therefore certain, then
all epistēmē is truth by convention and therefore certain. In other words, all epistēmē is
tautological, deduced from our definitions. This conclusion Aristotle does not want, and he
therefore proposes that there exists, on the other hand, also definitions that are not conventional
and not certain. Yet he does not stress that they are not certain, only that they are the result
of ’seeing the essence of a thing’, and so synthetic; they are the result of induction.

This seems to have been the way in which induction entered into the theory of scientific
method, of epistemology. [35, p. 2]

To the above, I want to add a few, more formal, reasons why logical formalisms cannot be
used as representational ones. Basically, all main features in the characterization of a repre-
sentational formalism, as proposed in Sections 2 and 3, are missing: logical primitives cannot
at all model structural object operations (and they were not intended for this purpose)13, no

13 That is why, in logical formalisms, one has to deal with syntax, semantics, and interpretations.
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multilevel structural representation can be supported14, no inductive class representation is
possible, and thus there is no representational mapping as outlined in Section 2. In particu-
lar, predicates cannot be sensed by a sensor as they are language-like entities created by the
human mind, after it has sensed and interpreted the environment. (For additional discussion
see also [30, Section 5], in which I outlined a possible role of logical mechanisms that turns
out to be reasonably consistent with that advocated by Aristotle.)

Thus, in view of the above, it was a gross misunderstanding to choose the logical formal-
ism, even in an expanded form, as a basic representational formalism for AI.

10 Computational models

Turning our attention to computational models, I note that, as is generally accepted, com-
putability theory is in fact part of logic15, and since computational models do not have
much claim on representational novelty, I want to touch on the following two issues only:
Chomsky’s generative grammar model and the inappropriate obsession with computational
complexity in machine learning.

First of all, one should acknowledge the historical importance of Chomsky’s formal gram-
mar model: it was the first model to emphasize the critical role of generativity, and in this
sense its importance should not be underestimated. However, even though Chomsky stressed
its central role in his model, a generative object history simply cannot be represented as part
of a string (over the basic alphabet), and therefore this critical feature of the model could
not be incorporated into an object’s representation, i.e. into a string (see also the next sec-
tion). Moreover, since Chomsky has been consistently opposed to putting this model into an
inductive, i.e. more dynamic, context, no important issues related to the inductive nature of
languages and grammars or their inductive connections have been addressed by his school.
In particular, a grammar is not viewed as an (inductive) class representation. When the
corresponding issues arose in pattern recognition in the ’70s and ’80s, it gradually became
reasonably clear that the framework in its current form was inadequate for the goals of
pattern recognition [30], [37]. In essence, given a training sample—since no generative in-
formation is present in the training strings themselves—there is no reliable way to associate
a class grammar with the training strings (even under reasonable restrictions on the class
grammars). Of course, the presence in the model of the second, somewhat ad hoc, alphabet
does not help, either.

The second point I would like to draw attention to is the absolutely inappropriate obses-
sion with computational complexity above all other considerations, including representational
issues. I am convinced that we should follow the wisdom of, for example, a physicist who
would be appalled if she was approached about complexity issues before a satisfactory phys-
ical model of the phenomenon was available. Of course, complexity issues have their place,
but one should not put the cart before the horse. Moreover, a satisfactory representational
formalism should allow for efficient learning algorithms, otherwise, as was mentioned above,
it simply cannot be “satisfactory”. (Again, when have physicists worried about computa-
tional issues?) Thus, for example, the presence of a generative object history as a part of an

14 At least one prominent logician has drawn attention to this: [36, part III].
15 One should also not forget that the main tenets of computability theory were developed by logicians,

i.e. Post, Gödel, Church, Turing, Kleene, and (more recently) Cook.
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object’s representation in the ETS formalism exponentially reduces the number of candidate
classes from which a training set could have originated.

11 The inadequacy of popular discrete representations

First of all, it is important to note that all such “representations”—e.g. strings, trees,
graphs—have emerged outside the scope of any representational formalism and became “rep-
resentations” simply by default as the importance of “discrete” representations gradually
grew with the advent of computers.

As a result, there is no (classical) mathematical framework in which, for example, the set
of all strings over a fixed finite alphabet can be reliably considered as elements of some (for-
mal/mathematical) “space”, and there are actually some good reasons for this: in contrast
to classical mathematical objects, there is no “universal space” that can naturally accom-
modate this set of strings. In my opinion, the latter situation is mainly due to the fact
that the relationships between two strings are not defined well, and therefore there are no
well-defined classes of strings. I believe that unless some temporal dimension of represen-
tation is introduced—as was done in the ETS formalism, for example—we are not dealing
here with a reliable form of representation. A simple example might clarify this point: How
do I compose/construct a new, non-trivial sentence? The process does not proceed from
left to right as the final written form may suggest, simply because the generation of a sen-
tence in my mind follows a more complex “non-linear” order, not (obviously) related to the
linearly-written sequence of words. Of course, the same is true for DNA sequences. The
representational situation with graphs is even more problematic, since a graph’s formative
history is more complex than that of a string.

Thus, the inadequacy of the popular discrete representations, e.g. strings, trees, and
graphs, cannot be remedied in a simple manner: it requires radical rethinking. It is such
rethinking that actually led to the ETS formalism. I am afraid that a “relational revolution”,
in which “statistical machine learning is [currently] in the midst of” [38], has nothing to do
with the radical representational rethinking I am referring to (see Section 2).

12 Why conventional methodologies for the evaluation of perfor-
mance of learning algorithms are inadequate for that purpose

First of all, it is very important to realize (particularly for funding agencies) that, today, in
the age of computing, almost any model, including a very poor one, could be “made to work”
in a number of applications, especially when given enough human resources. That does not
at all mean that the model has a scientific merit. What makes a new model scientifically
attractive is its important explanatory value, i.e. it must hypothesize a qualitatively new,
non-trivial feature of reality that one should be able to verify experimentally (otherwise, at
best, it is not a “new” model). If no interesting/novel feature of reality is being hypothesized,
the model, accordingly, does not have much scientific value. In AI, one must insist on this
criterion to an even greater extent, since there is a strong intuitive expectation that any
natural environment is “meaningful”, or “full of meaning”. Thus, in pattern recognition
(and machine learning), from a scientific point of view, a useful formalism is supposed
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to advance a “useful” hypothesis about the structure of pattern classes in the Universe16.
Again, as was mentioned in Section 5, there is a longstanding scientific practice concerning
the verification of such hypotheses. But, above all, one must have such a hypothesis. The
ETS formalism advances such a hypothesis, while no other popular machine learning model
does so.

On the other hand, from an engineering, or applied, perspective, the situation looks
quite different. This is because an engineering practice, in contrast to a scientific one, re-
volves around implementations. Of course, this is not to say that implementations do not
require creativity, but rather that this kind of creativity is typically confined to a differ-
ent level/context: scientific creativity is about advancing a new hypothesis concerning the
nature of reality, while engineering creativity is about finding original and efficient ways of
implementing the experimental part of the enterprise, including the verification of scientific
hypotheses.

So what is the situation in pattern recognition? Since pattern recognition (PR) has been
perceived as an engineering field, engineering methodologies and practices apply, including
the adoption of conventional statistical methodology. As a result, we have the following
situation. Suppose you and I preprocess the data independently, and my PR algorithm
performs at the level of 98% and yours performs at 88%. Does that mean that my algorithm
is more satisfactory than yours? No, of course not. For example, no one knows which kinds
of “talents” were put to work in the preprocessing stage. Moreover, if we use completely
different pattern representations, the situation becomes even more confusing. For example,
how do we know that my algorithm is as robust as yours when we substantially increase the
number of classes or slightly change the original setting?

Thus my main point is this: the statistical methodology could be made more meaningful,
provided the underlying representational formalism is fixed. What should be clear from the
above is that, at this stage in the development of AI (including PR), it is the representational
formalism that should be of main concern, and its development is much more a scientific,
rather than an engineering, matter. Once a satisfactory representational formalism is devel-
oped, only then will it be “safe” to proceed with the development of learning algorithms, as
well as the corresponding statistical methodology for the verification of their performance.

13 Conclusion

We need a representational formalism that offers powerful class representation capabilities
and that would clarify the nature of the ubiquitous link between an object and its class.
Since the development of mathematics and logic (including computability theory) were not
motivated by, and their existing models are not appropriate for, such a goal17, a radically new
formalism is called for. Of course, I am not the first to suggest the need for a fundamentally
new formalism. In fact, a number of leading scientists during the last century have suggested
this; see, for example, Schrödinger [39, pp. 143–162] and, more relevantly, von Neumann [40,
especially pp. 80–82].

16 I don’t believe that by restricting the environment we can expect the corresponding hypothesis to be
much simpler.

17 In fact, they have not been dealing with any (structural) representational formalisms.
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Over the last 50 years, we have witnessed too many non-radical and failed attempts in AI
and PR, including the appearance in the ’80s of such “new” areas as machine learning and
neural networks. I believe that, by now, a healthy scientific sense should strongly suggest
that we can’t squeeze out of the conventional formalisms—e.g. out of decision surfaces or
internal nodes of ANNs—any representational miracles. Moreover, the same scientific sense
suggests that we should not expect any other miracles from conventional formalisms, or that
“one should not expect to find a lost key, at night, only under an existing light”.

I am convinced that we are at a very important crossroads in the history of science: we
will not make substantive progress unless we embark on the development of a fundamentally
new (structural) representational formalisms. In fact, there appears to be no way around
this undertaking. It is a very big—indeed unprecedented—scientific step, precipitating an
attendant restructuring of science. To some of us, however, it is also a very exciting journey,
one which actually began more than ten millennia ago with a relatively small collection of
clay shapes (spheres, disks, cones, tetrahedrons, ovoids, cylinders, rectangles, and others)
[41, p. 11] and which, after a numeric detour, is once again leading to new, much more
powerful, structural entities.
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