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ABSTRACT
Motivation: In spite of a well-known fact that genome re-
arrangements are supposed to be viewed in the light of the
evolutionary relationships within and between the species
involved, no formal underlying framework based on the
evolutionary considerations for treating the questions aris-
ing in the area has been proposed. If such an underlying
framework is provided, all the basic questions in the area
can be posed in a biologically more appropriate and useful
form: e.g., the similarity between two genomes can then be
computed via the nearest ancestor, rather than ‘directly’,
ignoring the evolutionary connections.
Results: We outline an evolution-based general frame-
work for answering questions related to the multiple
genome rearrangement. In the proposed model, the
evolutionary genome graph (EG-graph) encapsulates an
evolutionary history of a genome family. For a set of all
EG-graphs, we introduce a family of similarity measures,
each defined via a fixed set of genome transformations.
Given a set of genomes and restricting ourselves to the
transpositions, an algorithm for constructing an EG-graph
is presented. We also present the experimental results in
the form of an EG-graph for a set of concrete genomes
(for several species). This EG-graph turns out to be very
close to the corresponding known phylogenetic tree.
Contact: dkorkin@unb.ca
Keywords: genome rearrangement; evolutionary model;
gene transformations; longest common subsequence;
ETS framework.

1 INTRODUCTION
The role of evolution in biology is so central that the two
words are almost synonymous (Dobzhansky, 1973). As
far as questions arising in connection with the multiple
genome rearrangements are concerned, they have not
yet been formulated and answered satisfactorily within
an evolution-based formal framework. This is in spite
of a well-known fact that genome rearrangements are

∗To whom the correspondence should be addressed.

supposed to be treated mainly as an integral part of
the evolutionary information, or relations, between the
species.

In this paper we outline an evolution-based general
framework for embedding some questions related to the
multiple genome rearrangement. It should be quite clear
that if the proposed model proves satisfactory, many
additional kinds of useful questions could be addressed
within such a model.

The main distinctive feature of the proposed model, as
compared with the conventional genome rearrangement
approaches, is that our model allows one to reconstruct
evolutionary relationships between the species based on
the evolutionary genome graph (EG-graph). The model
also allows one to reconstruct other than binary relations
between the species; for example, EG-graph can accom-
modate three genomes that have one closest common an-
cestor. Moreover, the model allows for a natural integra-
tion of point mutations into the overall scheme.

The proposed model was inspired by a much more
general ‘evolution-based’ formalism for structural object
representation within an inductive framework—evolving
transformations system (ETS) model—developed over
last 15 years (Goldfarb et al., 2001; Goldfarb and Korkin,
2001). The ETS formalism was motivated by the integra-
tion of the concept of similarity into a generative inductive
class representation. The resulting class representation can
be constructed based on a small set of class examples and
is conceptualized via a weighted set of transformations
acting on the class progenitor (the common ancestor).

This paper is organized as follows. In Section 2, we
present the basic definitions, including that of EG-graph,
and formulate two versions of the basic problem of
genome development (which are analogues of the corre-
sponding genome rearrangement problem). In Section 3,
we introduce an evolution-based model with reversals
and insertions as non-local evolutionary mutations (trans-
formations). We define the corresponding evolutionary
genome graph and discuss its properties. Next, we discuss
the relationship between evolutionary transformations and
the traditional genome rearrangement transformations.
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We also introduce an evolutionary similarity measure
for this model. At the end of this section, we introduce
context-sensitive genome transformations and discuss
how they could make the above model more accurate.
In Section 4, we outline a method of constructing the
EG-graph for a given set of genomes. We present the
algorithm and analyse its complexity. In Section 5, we
present the results of an experiment, i.e., an EG-graph
for genomes of several species, and compare them to
the corresponding known phylogenetic trees. In the last
section, we conclude with a brief summary of the paper
and propose some future directions.

2 BASIC DEFINITIONS AND PROBLEM
FORMULATION

Some of the following concepts are standard, while the
problems are formulated for the first time and rely on the
evolutionary genome graph.

2.1 Basic definitions
DEFINITION 1. Let �0 = {A, C, G, T } be an alphabet.

A gene is defined to be an element of the set of strings
S = �∗

0\{�}, and a genome G is defined to be a sequence
of genes: G = (s1, s2, . . . , sn), sk ∈ S, 1 � k � n.
The corresponding string G = s1 ◦ s2 ◦ . . . ◦ sn is called
the genome sequence. The length, |G|, of a genome is
defined to be the length of its genome sequence. The set
of all genomes is denoted as Γ.

Note that the circular genomes can and will also be
represented as sequences (see Section 4.1). The next
definition formally introduces the concept of gene order
transformation, which leaves the length of the genome
unchanged.

DEFINITION 2. Let A = (a1, a2, . . . , an) and B =
(b1, b2 . . . bn) be any genomes of the same length, such
that there exists a permutation ρ : {1, 2, . . . , n} →
{1, 2, . . . , n} satisfying bi = aρ(i) or bi = a′

ρ(i), where
a′ is a reversed a. A mapping f : Γ → Γ, f (A) =
B, is called a gene order transformation for genome
A, or simply gor-transformation. The set of all gor-
transformations is denoted as Φgor .

The following definition formally introduces the concept
of genome rearrangement.

DEFINITION 3. A rearrangement of genome G ter-
minating in genome Gm is a sequence ( f1, f2, . . . , fm),
m � 1, fi ∈ 	gor , defined inductively as follows:

1. f1 is a gor-transformation for genome G and G1 =
f1(G)

2. ∀i, 1 < i � m, fi is a gor-transformation for
genome Gi−1 and Gi = fi (Gi−1).

Genome A: 

a1 , … , ak –1 , ak , ak +1 , … , ak+m  , ak+m+1 , … , an

Genome B: 
a1 , … ak-1 , a’k+m , a’k+(m -1) , … , a’k , ak+m+1 , … , an

Fig. 1. A reversal of subsequence A1 = ak , ak+1, . . . , ak+m .

The next two definitions review the concepts of subse-
quence and the multiple longest common subsequence.

DEFINITION 4. Let a be a sequence of length n over
another alphabet � = {a, b, . . . , z}. If sequence a =
s1s2 . . . sn, si ∈ �, then sequence b = si1si2 . . . sik is
called a subsequence of a, if ∀ j, 1 � j � k:

1 � i j � n,

and for all s and t , 1 � s < t � k : is < it , where k is the
length of b.

DEFINITION 5. Let S = {a1, a2, . . . , ad} be a set of
sequences over alphabet � = {a, b, . . . , z}, of lengths
n1, n2, . . . , nd , correspondingly. The multiple longest
common subsequence (MLCS) for a set S is a sequence
b such that:

1. b is a subsequence of ai , ∀i ;

2. b is the longest sequence satisfying 1.

In case d = 2, MLCS is called simply the longest common
subsequence (LCS).

There are two particular kinds of gene order transforma-
tions, i.e., reversals and transpositions, that are of interest.

DEFINITION 6. Let A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) be genomes and let f be a
gor-transformation for genome A such that B = f (A).
The gor-transformation f is called a reversal of a
subsequence A1 = (ak, ak+1, . . . , ak+m) of genes, if the
corresponding permutation ρ (see Definition 2) is such
that there exist integers k, m � 1 satisfying (see Figure 1):

bi = ai , 1 � i � k − 1 or k + m + 1 � i � n (1)

bk+i = a′
k+(m−i), 0 � i � m. (2)

DEFINITION 7. Let A = (a1, a2, . . . , an) and B =
(b1, b2, . . . , bn) be two genomes and let f be a gor-
transformation for genome A such that B = f (A).
The gor-transformation f is called a transposition of
a subsequence A1 = (ak, ak+1, . . . , ak+m) of genes, if
the corresponding permutation ρ is such that there exist
j, k, m � 1 satisfying (see Figure 2):
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Genome : 

a1 , … , ak , ak +1 , ak +2 , … , ak +m , ak +m +1 , … , an

Genome : 

a1 , … aj , ak+1 , ak +2 , … , ak +m , aj +1 , … , an

Fig. 2. A transposition of A1 = ak , ak+1, . . . , ak+m .

(1) bi = ai , 1� i � min(k, j) or max(k, j) + 1 + m �
i � n

(2) b j+i = ak+i , 1� i � m

(3) bi+m = ai , j + 1� i � k

(note that we assume j � k; the case j > k can be defined
similarly).

The next definition formally introduces the concept of
insertion transformation, which changes the length of the
genome.

DEFINITION 8. Let A = (a1, a2, . . . , an) and B =
(b1, b2, . . . , bn+m), m > 0, be two genomes. A mapping
f : Γ → Γ, where f (A) = B, is called insertion
transformation (for a genome A) of sequence A1 =
(c1, c2, . . . , cm) of genes, or simply ins-transformation,
if there exists k, 1 � k � n, such that:

(1) bi = ai , 1� i � k

(2) bk+i = ci , 1 � i � m

(3) bi+k+m = ai+k, 1 � i � n − k.

The set of all ins-transformations will be denoted as
Φins . The set of all gor- and ins-transformations will be
denoted as Φ.

One should note the use of pronouns ‘for’ and ‘of’ in
the above definitions (and below).

In the next definition, we introduce the evolutionary
version of the concept of genome rearrangement by
adding to the set of gor-transformations the set of ins-
transformations.

DEFINITION 9. A development of genome G termi-
nating in genome Gm is a sequence ( f1, f2, . . . , fm), m �
1, fi∈ 	, defined inductively as follows:

1. f1 is a gor- or ins-transformation for genome G and
G1 = f1(G);

2. ∀i,1 < i � m, fi is a gor- or ins-transformation for
genome Gi−1 and Gi = fi (Gi−1).

We will also need the concept of closest common
ancestor useful from the evolutionary point of view.

DEFINITION 10. A genome C is called a common
ancestor for a set of genomes Γ1, if ∀G∈Γ1 either G = C
or there exists a development of genome C terminating in
G.

Let Γ1A be the set of all common ancestors of Γ1.
A genome C is called a closest common ancestor for
Γ1, if it belongs to set Γ1C ,Γ1C⊆ Γ1A, such that for
any common ancestor G (of Γ1) not in Γ1C there exists
C ′ ∈ Γ1C and a development of G terminating in C .

2.2 Evolutionary genome graph and problem
formulation

The current evolutionary approaches to genome rearrange-
ment have roots in phylogenetic approaches to the study
of protein sequences and have appeared during the last ten
years (Hannenhalli et al., 1995; Sankoff et al., 1992, 1996;
Sankoff and Blanchette, 1998, 1999; El-Mabrouk, 2001).

In our approach, the evolutionary genome graph is
supposed to represent the evolutionary dependencies for
the given set of genomes (see Figure 3).

DEFINITION 11. In a directed graph DG, DG = (V, E),
a vertex from V all edges of which are outcoming will be
called a source node. A vertex from V all edges of which
are incoming will be called a sink node.

DEFINITION 12. Given a finite set of genomes Γ1 ⊆ Γ,
the evolutionary genome graph, or simply EG-graph, for
Γ1 is defined as connected directed labeled graph DG,
DG = (V, E), lV : V → �, lE : E → 	 (See
Defintion 8), such that:

(1) there exists only one source node, V0, V0∈ V

(2) lV is an injective mapping and Γ1⊆lV (V )

(3) if G0 = lV (V0), then G0 is a closest common
ancestor for Γ1.

It is easy to see that, in general, EG-graph may not be a
tree: there could be two or more different paths between
two vertices, e.g., one path obtained by performing the
insertion of a gene g1 for a genome G followed by
a reversal of another gene g2 for G and another path
obtained by performing the reversal of g2 first followed
by the insertion of g1 for the genome G.

Having introduced the concept of EG-graph, we can
formulate the basic problem of genome development
(which is an analogue of the corresponding genome
rearrangement problem).

PROBLEM 1. Given a finite set of genomes Γ1 =
{G1, G2, . . . , Gn}, construct an EG-graph, DG,
DG = (V, E), such that Γ1⊆lV (V ).
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Fig. 3. An evolutionary genome graph.

Next, given an EG-graph, DG, DG = (V, E), in order
to be able to compare a pair of genomes with respect to
the set of transformations lE (E), one needs to specify a
similarity measure

µDG : lV (V ) × lV (V ) →R
+.

In evolutionary approaches, one of the basic and most
natural ways to introduce such a measure is by means
of the evolutionary paths, i.e., by means of the sequence
of transformations to the two genomes from their closest
common ancestor (Figure 4). Since the set lE (E) of
transformations may vary, depending on the EG-graph, we
obtain the family of similarity measures:

M = {µDG |DG = (V, E) is an EG-graph}.
Having specified a similarity measure on a set of

genomes, we can formulate an important, although
computationally more complex, problem (which is
an analogue of the corresponding optimal genome
rearrangement problem).

PROBLEM 2. Given a finite set of genomes, Γ1 = {G1,
G2, . . . , Gn}, and a family of similarity measures, M =
{µDG}, construct an EG-graph, DG, DG = (V, E), such
that Γ1⊆lV (V ) and at which the minimum of the following
function (the mean value) is achieved over all EG-graphs
with Γ1⊆lV (V ):

ρDG (�1) =
∑

Gi ,G j ∈�1

µDG
(
Gi , G j

)
/n.

3 A NOVEL GENOME DEVELOPMENT
MODEL

In this section, we introduce a novel evolution-based
framework for genome development. First, we consider
the case of two basic types of transformations, reversals
and ins-transformations, and discuss their relationships
with gen-transformations. Then, we introduce a similarity

C

A
B

g1
f1

gm
fn

g2
f2

Fig. 4. The closest common ancestor of two genomes, A and B

measure based on these basic types of transformations.
Finally, we briefly discuss a new concept—the context of
transformation—and show how it can be encapsulated in
the model.

3.1 An evolution-based genome development
model

Consider a set of genes S = {g1, g2, . . . , gn}, i.e., a
set of strings over the alphabet �0 = {A, C, G, T }. We
now specify some biologically reasonable restrictions we
impose on the above set Γ of genomes (Definition 1)
and EG-graphs (Definition 12). Set Γ of genomes is now
restricted to those genomes that do not have repeated
genes:

Γ = {G|G = (
gi1, gi2, . . . , gik

)
and i1, i2, . . . , ik

∈ {1, 2, . . . , n}, i1 �= i2 �= . . . �= i k}.
We also specify a particular class of the correspond-
ing EG-graphs (Definition 12). Given a finite set of
genomes Γ1 ⊆ Γ, the restrictions on an EG-graph DG,
DG = (V, E), for Γ1 are specified as follows:

(1) ∀ f ∈ lE (E), f is either a reversal or an insertion

(2) ∀G ∈ Γ1, ∀ genome development of G0 terminating
in G, ∀g ∈S, such that g is present in genome G, g
cannot be reversed twice (back to original form) by
any of the reversals from the genome development

(3) if VS is the set of sink nodes (Def. 11) of DG, then
lV (VS) = Γ1.

Note that the additional restrictions on the EG-graph,
in particular, allow us to avoid the case where a reversal
transformation can be applied infinitely many times for a
genome. Moreover, the following lemma is valid:

LEMMA 1. With the above restrictions, the connected
directed labeled graph DG = (V, E) is also an acyclic
graph.
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The above Lemma implies two related and very impor-
tant properties: first, the genome can never return to one of
its previous states, and, as a consequence of this, second, if
one allows copying (that is, insertion) of each of the genes
only once (in a more general model, several times), then
the process of construction of all possible genomes is fi-
nite.

The model specified above has strong connections with
the traditional genome transformations. Namely, it is
not difficult to obtain the following results. (Henceforth,
when necessary, we will denote a transformation f of a
sequence of genes X as fX .)

LEMMA 2. Let A and B be two genomes, A, B ∈ Γ,
and let genome C be their closest common ancestor. Then:

(1) if B = fX (A), where fX is a transposition of a
sequence X of genes, then there exist two insertions
of this sequence of genes f ′

X and f ′′
X , such that

A = f ′
X (C), B = f ′′

X (C);

(2) if B = f (A), where f is a reversal, then A = C .

In other words, those genomes that are related to each
other in a traditional model by either a reversal or a
transposition, are also related in our model, but now
via the closest ancestor and the corresponding gor- or
ins-transformations. This partly explains the need for an
evolutionary similarity measure for genomes to be based
on the transformations leading to these genomes.

Next, we introduce a similarity measure for the above
model. Before specifying the similarity measure formally,
we want to assign a weight to each of the reversal
and insertion transformations used in the corresponding
EG-graph. There are many ways to assign a weight to
a genome transformation. One of the standard ways is
considering it with the size of the inserted, reversed,
or transposed substring. In our model, we will use the
following weighting scheme.

DEFINITION 13. For any reversal or insertion f A of a
sequence of genes A, the weight of this transformation is
defined as w( f A) = |A|, where |A| is the length of A (see
Definition 1).

Having assigned the weights to transformations, we can
choose the following similarity measure.

DEFINITION 14. Given an EG-graph DG, let A and
B be two genomes, A, B ∈ Γ, and let genome C
be their closest common ancestor. Moreover, let A =
fn

◦ fn−1
◦ . . . ◦ f1(C), B = gm

◦ gm−1
◦ . . . ◦ g1(C) (see

Figure 4). Then, the similarity measure is defined as

µDG(A, B) =
n∑

i=1

w ( fi ) +
m∑

i=1

w (gi ).

Thus, having specified the class of EG-graphs, weight-
ing scheme, and the similarity measure, it becomes pos-
sible to introduce the relationships among the genomes.
Namely, given a set of genomes Γ1, we can, first, con-
struct a particular EG-graph, thus specifying the particular
mutation pathways that lead to each of the genomes in Γ1.
Then, any genome in Γ1 can be compared with any other
genome in Γ1 and their similarity measure, in terms of
similar transformations occurring in the closest common
ancestor of the above genomes, can be calculated.

3.2 The case of context-sensitive gene
transformations

In this section, we discuss the concept of context-sensitive
genome transformations. Why is such a concept useful?
It is natural to assume that the process of a genome
rearrangement (and development) should depend on the
structure of genome being rearranged. In other words, the
transformation for a genome may depend on a particular
region of this genome (the case of a local context), or
it may depend on the regions that are not close to each
other and even on the entire genome (the case of a global
context). Since the concept of a global context-sensitive
transformation is very complex, in this introductory paper,
we will discuss the local context-sensitive transformations
only. We next consider the concept of the local context for
both types of transformations, reversals and insertions.

DEFINITION 15. Given a set of genomes, Γ1, and a
transformation fX , where fX is either reversal or ins-
transformation, the local context of fX is a pair of
sequences (C1, C2), C1, C2 ∈ �*, such that

(1) if fX is a reversal and X′ is the reversed X, then
∀A, B ∈ Γ1, where B = fX (A),

A = A1 ◦ C1
◦ X ◦ C2

◦ A2

and
B = B1 ◦ C1

◦ X′ ◦ C2
◦ B2,

where A1, A2, B1, B2 ∈ �*;

(2) if fX is an ins-transformation, then ∀A, B ∈ Γ1,
where B = fX (A),

A = A1 ◦ C1
◦ C2

◦ A2

and
B = B1 ◦ C1

◦ X ◦ C2
◦ B2,

where A1, A2, B1, B2 ∈ �*.

Note that C1 and/or C2 can be the null string. In the case
when both C1 and C2, are null strings, the corresponding
transformation fX is said to be context-free.
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How does the introduction of context affect the similar-
ity measure? There are different ways to redefine the sim-
ilarity measure to reflect the presence of a context. It goes
without saying that the context-sensitive transformation,
when applied to some genome, acts more discriminatively
than the ‘same’ transformation but without any context.
Therefore, after the application of a context-free operation
fX , the resulting genome B = fX (A) might be consid-
ered farther away from the original genome A than the
one obtained by application of the ‘same’ transformation
fX but with non-empty context. In other words, in view of
the additive nature of the similarity measure, the weight
of a context-free transformation should be larger than that
of the same transformation but with a non-empty context.
Below, we give one of the possible ways to define such
weighting scheme for context-sensitive transformations.

DEFINITION 16. Let fX be a transformation and
(A, B) be its context. Then, the context-sensitive weight
of transformation fX is defined as

wCS(fX) = wCF
|X |

|X | + |A| + |B| ,

where wCF is a ‘standard’ weighting scheme for a
(context-free) transformation introduced in Definition 13.

The weighting scheme in Def. 16 has two important
features. First of all, for any context-free transformation
fX , its context-sensitive weight, wCS( fX ), is equal to the
‘standard’ weight of fX , and the bigger the context of fX ,
the smaller its context-sensitive weight. The latter, as was
already mentioned above, can be explained by the fact
that the bigger the context of a transformation, the more
specific this transformation (when applied to a genome),
and thus, the resulting new genome should be closer to its
ancestor than the one obtained by applying the context-
free version of the same transformation fX . Second, when
solving Problem 2, defined above, a smaller weight of a
context-sensitive transformation makes it preferable, since
the similarity measure between two genomes based on
context-sensitive transformations will also be smaller in
comparison with the same measure based on the same
transformations but without the contexts.

4 IMPLEMENTATION: GENOME
REARRANGEMENT USING
TRANSPOSITIONS ONLY

In this section, we discuss how to reconstruct an EG-
graph, given a set of genomes. We consider a basic type
of rearrangement that uses only transpositions. The EG-
graph reconstruction algorithm, described in this section,
uses the idea of multiple longest common subsequence
(see Definition 5).

4.1 Some basic ideas and assumptions
The basic, and computationally the simplest, is the case
when we restrict ourselves to the set of genomes �, � ⊆
�, possessing the property that any of its genomes can
be obtained from some other of its genomes by applying
a finite set of transpositions of genes from S. In an
evolution-based model, this means that the same set of
genes is to be inserted (possibly in a different order) by the
corresponding ins-transformations into the protogenome.
This assumption results in the following lemmas:

LEMMA 3. Each of genomes from ∆ consists of the
same number of genes from S.

LEMMA 4. Given a finite set of genomes Γ1 ⊆ ∆,
let DG, DG = (V, E), be any EG-graph for Γ1 (see
Section 3.1). Then, for any set V0⊆ V , the MLCS of V0
will contain at least one gene from S.

The last lemma follows from the previous one and
allows us to rely on the concept of MLCS in the algorithm
discussed next.

4.2 Algorithm
The algorithm outputs one of the possible EG-graphs,
DG = (E, V ), given a set of genomes Γ1 composed of
genes from a set S. As a preprocessing stage, to obtain
a string representation for each of the circular genomes,
i.e., to find a common gene along which each of the
given circular genome will be cut, the following simple
algorithm is applied. For each of the genes, all of the
(circular) genomes are cut along this gene and for the
resulting strings the MLCS is constructed. The final cut
is determined by choosing genome cuts associated with
a gene for which the MLCS found is the longest one
(ties are broken arbitrarily). The algorithm consists of
two parts. In the first part, the common ancestor of all
genomes in Γ1 is constructed. In the second (main) part,
the transformations leading to each of the genomes are
consecutively extracted. The pseudocode of the algorithm
is presented below (// . . . // marks the comments).

Algorithm EG-graph

Input: Γ1, |Γ1| = N
Output: DG = (V, E), where V = {v1, v2, . . . , vK } is the set of
labeled vertices and E = {e1, e2, . . . , eM } in the set of labeled
edges.

// 1. Construct ancestor //
Ancestor = v0 = MLCS(Γ1)

// 2. Construct transformations //
cur level = V = {v0};
level = 0; cur Gv(v0) = {1, 2, . . . , N};
// contains indices of all the genomes //
While cur level is not empty do
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{ For all vertices v in cur level
{New level = ∅;
// cur Gv : indices of all current genomes correspond-
ing to a current vertex from Cur level //
cur S = MLCS(cur Gv);
cur Tr = Transform(S);
// Transforms the MLCS cur S to the sequence of
ins-transformations, cur Tr //
For each transformation f in cur Tr
{(V1, E1, cur Gv) = Children v(v, f, cur Gv, V, E);
// Returns new vertices (V1) together with edges
(E1), connecting vertex v and new vertices, based
on the transformation f and the set of genomes
corresponding to vertex v, cur Gv , plus the set of in-
dices Cur Gv(w) corresponding to genomes that are
children of the genome corresponding to a vertex
w in V1//

V = V ∪ V1; E = E ∪ E1;
} // End For //

New level = New level ∪ V1;
// Adds to a new level the vertices, corresponding to the
last transformation in the sequence cur Tr//
} //End For all vertices v //

cur level = new level;
level = level + 1;

} //End While//
END //Algorithm//

The algorithm’s pseudocode presented above depends
on two basic subroutines. While the first subroutine,
MLCS( ), is discussed in Hakata and Imai (1998), the
second one, Children v ( ), can be described as follows.
Given: a vertex vA, corresponding to a genome A, the set
of indices cur Gv (v) of those genomes in Γ1 which have
A as a common ancestor, and an ins-transformation f ; the
subroutine Children v ( ) constructs

(1) the set of vertices V1 = {vA1, vA2, . . . , vAd} corre-
sponding to the set {A1, A2, . . . , Ad} of immediate
descendants of A obtained by applying f to A;

(2) the set of edges E1, each of which is labeled by f ,
connecting each vertex in V1 with vA;

(3) for each of Ai —the set of indices cur Gv(Ai )

corresponding to those genomes in Γ1 which have
Ai as a common ancestor.

4.3 Example
This example is presented for illustrative purposes only.
However, it captures all the necessary aspects of the
algorithm as well as allowing to comparison of the results
of ‘traditional’ genome rearrangement with those for the
evolutionary genome rearrangement represented by the
corresponding EG-graph. Figure 5 and Figure 6 present
the initial data and the resulting EG-graph, respectively.

G1 = D A B E C F G H;

G2 = A D G B C F H E;

G3 = A G B D C F E H;

G4 = G A B D C F E H;

G5 = E G C A F D B H;

G6 = C E A F B G H D.

Fig. 5. The input data, Γ1, consisting of 6 genomes composed of the
following genes {A, B, . . . , H}.

4.4 Complexity
To estimate the computational time complexity of the
algorithm, we use the following result.

LEMMA 5. Suppose |Γ1| = d, |S| = s. Then:

1. The algorithm traverses the EG-graph only once;

2. For each level, the MLCS algorithm is performed no
more than d/2 times;

3. There are no more than s levels in an EG-graph;

4. Transform ( ) is O(dL), where

L = max{|G1|, |G2|, . . . , |Gd |};
5. In the main algorithm, Children ( ) is O(ds).

Based on the above Lemma, it is not difficult to estimate
the time complexity of the EG-graph algorithm. Namely,
let O(T ) be the time complexity for MLCS subroutine.
Then the following result is true.

THEOREM 1. The time complexity of the algorithm EG-
graph is O(sd (T + L)).

Finally, we note that the following estimation of the time
complexity of the MLCS algorithm, based on the domi-
nant point approach (Hakata and Imai, 1998), points to a
substantial advantage of the latter approach as compared
to the known dynamic programming approaches for solv-
ing this problem.

THEOREM 2 (HAKATA AND IMAI, 1998). The MLCS
problem for d(d � 3) strings of length n can be solved
in time

O(nsd + |D|sd(logd−3 n + logd−2s)),

where |D| is the size of the set of all dominant positions.
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G1 G3

CFH

ACFH
CAFH

CABFHABCFH

DABCFH

ADBCFH

ABDCFH

ECABFH
CEABFH

DABECFH

ADBCFHE

ABDCFEH

EGCABFH
CEABFGH

G2 G4 G5 G6

AA

B B

EE

G G

DD

D
D

D

E E
E

GGGG

Fig. 6. An EG-graph for the set of genomes Γ1 in Figure 5.

N Organism Group Our genome cod  

1 
Albinaria 
coerulea 

MOLluscs (FAEOILKCDJBHG) 

2 
Asterina 

pectinifera 
ECHinoderms (JCDFGOBAHEILK) 

3 
Drosophila 

yakuba 
ARThropod  (BHILKJCFDEGOA) 

4 
Homo 
sapiens 

CHOrdat  (ABHILKJCEDFGO) 

5 
Katharina 
tunicata 

MOLluscs (HIKLFDEOGAJCB) 

6 
Lumbricus 
terrestri  

ANNeli  (HILJGOKFEDACB) 

Our abbreviations for the genes

ND1    A ND4   D ND6    G COX3    J CYTB  O
ND2    B ND4L  E COX1   H ATP6    K
ND3    C ND5    F COX2    I ATP8    L

Fig. 7. Mitochondrial genomes and their assumed monophyletic
groupings used in our experiments (adapted from (Blanchette et al.,
1999), Table 1).

5 EXPERIMENTAL RESULTS
Selected results of our experiments are shown in Fig-
ures 7–9. Note that under the assumed constraints the
corresponding EG-graph must be a tree. The resemblance
of our tree with those shown in Figure 8 is quite apparent.
However, instead of being an unrooted tree, the resulting
EG-graph is always a rooted tree whose root is a common
ancestor of all six genomes and encapsulates all their
common conserved parts.

(a)

(b)

ANNMOL ART ECH CHO

ECH CHOANNART MOL

Fig. 8. Two alternative evolutionary trees for the species in
Figure 7(a) currently most widely accepted view (b) a minimal
breakpoint tree (adapted from Blanchette et al. (1999, Figures 1,
4)).

BHILKJCDFGOA

BHILC

5 6 1 3 2 4

BHILDC BHILCD

BHILKCBHIKLD

ANNMOL2

BHGOILKC BHILKCDG

MOL1

BHILKJCDGO

BHILKJCFDG BHILKJCDFG

ART ECH

BHILKD

BAHILKJCDFGO

CHO

Fig. 9. The constructed evolutionary genome graph for the species
in Figure 7.

6 DISCUSSIONS AND FUTURE RESEARCH
In this paper, we introduced an alternative, evolution-
based, approach to the study of genome rearrangements.
Within the approach, the development of genomes can
be represented by a special directed graph, called an
EG-graph, with labeled edges and vertices. One of the
main advantages of the evolution-based approach is that
it allows one to reconstruct other than just binary relations
among the genomes: e.g., an EG-graph can represent three
genomes that have one closest common ancestor. In order
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to represent such relationships, we relied on the idea of
a multiple longest common subsequence. Although the
classical dynamic programming methods for computing
MLCS can be used, practically, for the case of only two
or three strings, the dominant-points based method allows
one to obtain a MLCS for a much larger set of genome
sequences.

As far as the future research directions are concerned,
there are many that one can choose to follow. First of all,
as the next step, one can consider the reconstruction of
an EG-graph for more complex models of genome rear-
rangement, e.g., models based on the following genome
transformations:

(1) transpositions and reversals of genes
(2) transpositions and insertions of genes

These models are not obvious and need careful study.
Next, one can consider the computationally more com-

plex problem of reconstructing an optimal EG-graph (see
Problem 2 in Section 2.B).

Another direction is the reconstruction of the context-
sensitive transformations. One of the possible approaches,
when the optimal EG-graph is not necessary, is to search
for the context of transformations on the basis of the
context-free EG-graph. Finally, one can consider a model
of genome rearrangement with the presence of noise, i.e.,
point mutations. The weighting scheme should take this
fact into consideration in such a way that the presence
of some point mutations affects the similarity measure
between the two genome sequences.
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