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Abstract— The growth of Internet of Things (IoT) brings the 
promise of a wide range of new recommender systems due to the 

expected 57 billion smart connected devices by 2025. In this 

paper, we propose a new IoT platform for supporting a real-time 

recommender system. To illustrate the effectiveness of our 

proposed IoT platform, we present a prototype implementation 

and a tourism application to demonstrate the entire process from 

user event data collection to notification/recommendations 

provision. We conducted several experiments including 

notification and system performance tests to illustrate the use 

and performance of our real-time recommender system. 
 

Keywords—IoT platform; recommender system; tourism; 

cloud computing. 
 

I. INTRODUCTION  
The Internet of Things (IoT) has been largely recognized 

as a global network interconnecting humans with RFIDs, 
sensors, actuators, smartphones, computers, buildings, 
home/work appliances, cars and any other device with the goal 
of unlocking a new combination of applications and services 
in the near future[1,2]. From a conceptual point of view, IoT is 
about devices acting as providers and consumers of data 
related to a specific user context. From a networking point of 
view, an IoT is a system architecture that supports point-to-
point communications, preferably in real-time.  

Due to the large device heterogeneity, IoT is also about 

exchanging and analyzing massive amounts of data and 

generating information users need at the right time and on the 

move [3]. In general, IoT applications require to be adaptable to a 

highly diversity of contexts, by responding in an intelligent way 

to the presence of users, as well as to their location, time of the 

day, and tasks at hand. This requires the support of IoT platforms 

for generating context intelligence that will discover new user-

centric interests and provide personalized information associated 

with them. While devices would be able to support limited and 

lightweight services, one key aspect of IoT is the need for a cloud 

architecture which can leverage big data streaming from millions 

of devices and at the same time, generate mobility patterns, and 

provide value-added services to end users according to their 

specific context.  
In [4], Jiang et al. propose a Hadoop system as suitable data 

storage for IoT devices since they generate data very rapidly. 

They argue that any cloud architecture would be able to process 

massive structured and unstructured data efficiently. Tyagi et al. 

also propose a cloud computing infrastructure for 

 
 
 
 
IoT data [5]. They assert that a Hadoop & NoSql are the 

dominant massive data technologies in use today.  
Many general purpose IoT platforms with specific 

technologies such as Representational State Transfer (REST) 

[6], Software Defined Radio (SDR) [7], and plug and play 

module connection [8] have been previously developed. 

Additionally, there are many specialized IoT platforms such as 

health-IoT platform [9, 10] and IoT-lab experiment platform 

[11]. However, no research has been found in the literature 

that deploys IoT platforms for real-time recommender 

systems, and in particular for tourism applications. Most of the 

solutions for these systems have been focused on planning an 

itinerary prior to traveling and supporting a search based on 

keywords and preferences of places to visit [12-15].  
This paper aims to describe the design of an IoT platform for 

a real-time recommender system that enables streaming data 

collection from smartphones in order to recommend new items on 

the fly using geofencing as a user context. Geofencing is a virtual 

circle defined by a centre point and a radius. The geofencing can 

be generated by using two approaches: (a) without IoT devices: 

using the Google Location API for defining a-priori coordinates 

of a point of interest and its radius; or (b) with IoT devices: using 

the physical position of IoT devices and their signal range as the 

radius. In this research we have applied both approaches. The first 

approach is used to identify regions of interest around Points of 

Interest (POI) located outdoors. When users are carrying a 

smartphone with a GPS sensor, the system detects when their 

current geographical coordinates are within the geofence 

boundaries. The second approach is applied for regions of interest 

around POIs, but in this case, they are located indoors. The 

Bluetooth technology available in the users’ smartphones can be 

used to detect the signal of IoT devices such as beacons, allowing 

the system to know whether or not their current locations are 

within the geofence boundaries. 
 

One of the main challenges when developing an IoT 
platform for a real-time recommender system is choosing the 
cloud architecture that would allow scalability, resiliency to 
failure, and fast processing of massive data sets according to a 
user context such as a user current location in relation to other 
users, where users are heading to, staying at and leaving from 
a geofence boundary as well as the means of transportation, 
weather conditions, and time of the day. Towards this 
challenge, we have chosen the cloud-based Apache Hadoop 
cluster for our proposed IoT platform. 

 
 
 

 



 
The remaining of this paper is structured as follows. 

Section 2 presents related work. Section 3 describes the 

proposed system architecture. The experiments for evaluating 
the proposed real-time recommender system are described in 
Section 4. Section 5 provides the concluding remarks. 
 

II. RELATED WORK 
 

IoT has been recognized as a revolution in ICT during the 

past few years and the number of IoT developments such as 

mobile applications, wireless networking protocols and IoT 

platforms has grown in an unprecedented rate [16]. As part of 

an IoT platform, many devices such as smartphones, RFID 

tags, sensors, and actuators have been transformed to 

“connected things” and various applications such as smart 

homes, environmental monitoring, health care and smart cities 

have emerged in the market [9,17]. This requires IoT 

platforms to be responsive in nature, anticipate users’ needs 

according to different contexts they are in by means of 

intelligent components, devices, and applications.  
It is strategic to design a specialized IoT platform that 

supports proper data collection, data interpretation/analysis, and 

data visualization. Furthermore, it is important that this IoT 

platform is able to provide personalized recommendations in real-

time. At this point, there is a lack of research on designing 

specialized IoT platforms for providing real-time 

recommendations when users are moving around visiting a tourist 

destination. In its most common design, the recommender 

systems are reduced to the problem of estimating ratings for the 

items that have not been seen by a user [18].  
One of the main disadvantages of previous approaches is 

that of only being capable of recommending items that score 
highly against a user’s profile. As a result, the users are 
limited to being recommended items that are similar to those 
already rated. Our research proposes a user context-based 
recommendations such as a user current location in relation to 
other users, where users are heading to, staying at and leaving 
from a geofence boundary as well as the means of 
transportation, weather conditions, and time of the day. For a 
tourism application, our approach will improve how tourists 
explore tourist attractions. 
 

III. THE SYSTEM ARCHITECTURE 
 

As mentioned in [19], there are two perspectives in the 
vision of IoT. They are “Internet” centric or “Thing” centric. 
In this research, we have developed a system architecture 
based on the “Thing” centric perspective, mainly because 
geofencing has the potential of modelling a user context in 
space and time since it can combine awareness of a user’s 
current location and proximity to a particular POI, as well as 
of a group of users and POIs. We are making use of geofences 
to represent virtual circles around Points of Interest (POI) such 
as sites, monuments, paintings, and museums, both indoors 
and outdoors. Indoors POI are represented using geofences 
with IoT devices (e.g. beacons), which work using Bluetooth 
technology. Outdoors POI are represented using geofences 
without IoT devices, which work using Google Location API 
and smartphones with GPS sensors.  
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The overall architecture it represented in Figure 1. It 

consists of a mobile application for Android smartphones, a 
Notification Server and a Recommendation System. This 
architecture supports four different user events: (E1) enter 
geofence with IoT devices, (E2) exit geofence with IoT 
devices, (E3) enter geofence without IoT devices, (E4) exit 
geofence without IoT devices. Each of these user events is 
related to a task that the system run when events occur: (T1) 
Get Recommendations and notifications from the notification 
server (http request), (T2) Post user event E1 and E2 data to 
the cloud, (T3) Post user event E3 and E4 data to the cloud.  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The overview of the proposed system architecture 

 
There are two additional task, (T4) which is running in the 

background in order to collect GPS sensing data from the 
smartphone, posting the data to the cloud; and (T5), which 
creates an interface in the mobile application to show the 
notifications received. This interface can be a simple Android 
notification or a Card created by Google Cards library. 
 
A. Mobile Application 
 

There are ten components in the architecture of our mobile 
application (Figure 2): one related to location data, three 

related to geofences with IoT devices (beacons), two related to 
geofences without IoT devices and two to handle the 
recommendations.  
 
 
 
 
 
 
 
 

 
Fig. 2. Mobile Application Architecture 

 
The Location Data Handler (LDH) has two functionalities, 

which are collecting GPS sensing data from the smartphone 

each ten seconds and conducting T4, transmitting these data to 

the FluentD of our cloud system.  
The Beacon Signal Monitor (BSM) is monitoring the 

geofences generated by beacons (without IoT devices). Each 

geofence is monitored creating a region, which is identified by 

three numbers:  
 UUID: a string, e.g. “B9407F30-F5F8-466E-AFF9-

25556B57FE6D”.
 Major number: an unsigned short integer, i.e. an integer 

ranging from 1 to 65535.

 

 
 



 
 Minor number: an unsigned short integer, like the major

number. 

These numbers allow to monitor beacons with the same 

UUID, and major or adding the minor number too. Therefore, 

it is possible to define regions containing more than one 

beacon in order to increase the signal range, and as a result, 

the radius of geofencing. However, this approach was not 

considered in the proposed architecture and we have only used 

the UUID+major+minor to create one region for each beacon, 

monitoring them individually. 

The Beacon Signal Distinguisher (BSD) is responsible for 

distinguishing the user events enter a geofence (E1) and exit a 

geofence (E2). It detects all the geofences the user is entering 

to or exiting from, retrieving them as an array of beacons. The 

Beacon Data Transmitter (BDT) transmits user event data to 

the FluentD of our cloud system, conducting T2. 

The Geofence Handler (GH) is responsible for monitoring 

the geofences generated by the Google API and detecting the 

user’s events enter a geofence (E3) and exit from a geofence 

(E4) . The Geofence Data Transmitter (GDT) transmits these 

data to the FluentD of our cloud system, conducting T3.  
The Recommendation Receiver (RR) receives 

recommendations associated with user’s specific events 

generated by the recommender system and pre -defined 

notifications, conducting T1. The Recommendation Creator 

(RC) conducts T5, creating a user interface based only on text 

recommendations if it is an Android notification, or adding 

also a multimedia associated, if it is a Google Card. 
 
B. Notification Server 
 

As illustrated in Figure 3, there are five components in the 

architecture of the notification server. The Notification Receiver 

(NR) receives initial recommendations from the RT via HTTP 

Post method. There is a pre-defined text notification associated to 

each recommendation about a POI. The Notification Modifier 

(NM) produces proper recommendations by combining the 

predefined text based notifications and recommendations. The 

Notification Store (NS) stores modified recommendations into the 

database, in this case, the MySQL database. The Text 

Notification Provider (TNP) and Image Notification Provider 

(INP) provides text and image notifications to the mobile 

applications.  
 
 
 
 
 
 
 
 
 

 
Fig. 3. Notification Server Architecture 

 
C. Recommender System 
 

Once the data have been stored in the HBase for a certain 

period time, we can explore mobility patterns to provide 

personalized recommendations to users in real-time. As 

  
illustrated in Figure 4, there are four components of our 

proposed real-time recommender system.  
 
 
 
 
 
 
 
 

 
Fig. 4. Recommender System Architecture 

 
The Data Processor (DP) extracts data from the HBase 

using a time window, which is represented as a sequence of 

visiting POIs geographical coordinates that a user is visiting 

and the duration time that a user is spending at each POI. The 

Mobility Pattern Analyzer (MPA) runs a spectral clustering 

algorithm to partition users into groups based on their mobility 

patterns. Consider we are given a set of POIs. Then the 

mobility of users can be represented by an un-directed graph. 

The set of POIs is the set of vertices of the graph. Each vertex 

(i.e. POI) of the graph is connected to all of its adjacent 

vertices by edges. The Recommendation Generator (RG) 

generates recommendations based on collaborative filtering 

for each cluster of users. In this research, we propose the 

frequency of a user visiting each POI and the duration of time 

spent in each POI as a rating. 
 

IV. EXPERIMENT DESIGN AND RESULTS 
 

In the recent tourism literature there is an increasing 

emphasis on the quality of tourist’s experiences when 

exploring a tourism destination. From a marketing perspective, 

it is well known that a key component is to offer a unique and 

differentiated service that can lead to memorable experiences 

that add value for visitors. Our proposed real-time 

recommendation system is aimed to support new services in 

the near future that will create new experience concepts 

through the use of user contexts that intensify engagement of a 

tourist with his/her surroundings and emotional connections 

with POIs. We have selected for our experiment the city of 

Saint John in New Brunswick, Canada, mainly because 

tourism is critical to Saint John’s culture, heritage, arts, 

recreation, and entertainment industries, and it also contributes 

significantly to city’s service industries including 

transportation and travelling services, accommodations, and 

food and beverage services. It is a 20 billion industry, with the 

Port Authority expecting over 60 cruises with a total of 

140,000 passengers and 50,700 crew members in 2016.  
We have selected the existing self-guided Art in Public Places 

walking tour. The tour consists of 9 POIs where features such as 

sculptures, figures, paintings, buildings are located outdoors and 

indoors. The geofences were designed to create virtual circles 

around these features. The POIs are shown on the map and can be 

described as one of the following: 
 

 St. Andrew’s Bicentennial Square (Barbour’s General 

Store) People Waiting, by John Hooper These life-sized

 
 
 
 
 

 



 
figures were originally installed at the Saint John main 

branch of Canada Post on Rothesay Avenue.  
 Market Square Boardwalk The Moosehead Challenger, 

by Forest Hart This life-sized bronze moose was 

commissioned by Moosehead Breweries Ltd. and given 

as a gift to the City.
 Market Square Entrance Timepiece,1984, by John 

Hooper This intricate carving acts as both a symbol of 

time and a functioning clock.
 Saint John Trade & Convention Centre, 1st Level 

Market Square. Several pieces are featured at this 

location, including: Strata I, 1983, by Peter Powning; 

Ocean Bone, 1983, by Marie-Hélène Allain, and 

People Apart Moving Together, 1983, by John Hooper.
 Harbour Passage Along Harbour Passage, with 3 pieces 

of public art.
 Free Public Library, 2nd Level Market Square. It 

features a number of sculptures and paintings.

 City Hall (Level L) City Hall boasts two prominent 

pieces of art, both inside and outside the building.
 Saint John Arts Centre, Peel Plaza: A number of pieces 

are installed inside and outside this former library, 

which also houses the City of Saint John Gallery.
 Bell Aliant Building. This work was commissioned by 

Parks Canada in 1985, for the 200th anniversary of the 

City.
 Saint John City Market. The concept for this piece 

came from the market itself. The ceiling timbers 

supporting the markets roof are similar to the hull of 

bygone wooden vessels. The artist designed a 

figurehead, such as those placed on these historic ships.
 

We are planning to mount twenty beacons and ten 
geofences through the tour, covering all the places and 
sculptures. The experiment was chosen to evaluate the 
functional requirements of the mobile application, the real-
time recommender system and the notification server, as well 
as the system performance. 
 
A. Functional Requierements 
 

The first functional evaluation is to test if the mobile 

application could create a Google card based on received 

JSON formatted data from the notification server, when user’s 

events E1, E2, E3 or E4 occurs. This process includes the 

following tasks: T1 (get the notification from notification 

server) and T5 (to display the notification in the smartphone). 

The second functional evaluation is to test if the cloud 

receives the data of user’s events (E1, E2, E3 or E4) and GPS 

data. This process includes the following tasks: T2 and T3 

(post geofence data) and T4 (post GPS data). 
 
B. System Performance 
 

The ssystem performance is evaluated by conducting a non-

functional test comparing the average time taken for receiving a 

notification and creating a Google card after users generate events 

on geofences. The test was performed using debug mode and 

logcat/monitoring from Android Studio 2.1.1, and the mobile 

device to load the application. Table 1 describes 

  
the specifications for the cloud app, mobile device used, the 

IDE, the gateway and the Images. 

 
 

TABLE I. SPECIFICATIONS OF THE EXPERIMENT ENVIRONMENT  
 

Specifications  

Cloud App 
 -Running on 4 virtual machine (8 VCPUs, 30 RAM) through 

 

 FluendD 0.4 and Kafka 0.9.  

  
 

  -Operating System: Android 6.0 (Marshmallow). 
 

Mobile 
 -CPU: Quad-Core Processor 2.5 GHz Krait 400. 

 

 -Memory : 32 GB eMMC, RAM 3G.  

device  
 

 -Wi-Fi 802.11 a/b/g/n/ac (Dual Band).  

  
 

  -Sensors: Bluetooth 4.0 LE (APT-x) and A-GPS. 
 

  -JRE: 1.8.0_31-b15 amd64 
 

IDE  -JVM: Java Hot Spot™ 64-bit server VM by Oracle 
 

  Corporation 
 

Gateway 
 -WiFi:LinkUpBandwidth>=1048576Kbps 

 

 LinkDnBandwidth>=1048576Kbps  

  
 

  -Image1People-Waiting.jpg 
 

  (http://pim.gge.unb.ca/sjserver2/picture/timepiece.jpg). 
 

        

Images 
 Image-size: 253.962 bytes 

 

 -Image2Timepiece.jpg  

  
 

  (http://pim.gge.unb.ca/sjserver2/picture/People- 
 

       

  Waiting.jpg). Image-size: 124.297 bytes 
 

     

Beacon  Estimote SDK as a 3rd party API 
 

SDK       
 

 
In this environment we performed four experiments 

described in Table 2. The experiments test the performance of 

the different tasks developed for architecture elements. The 

last experiment (4) is conducted one time per each image 

described. 
 

 TABLE II. DESCRIPTIONS OF THE EXPERIMENTS  
 

     
 

ID 
Architecture 

Tasks 
 

Trials 
 

elements Description  

tested  

 tested   
 

    
 

   Time taken to post  
 

   geofence (without IoT  
 

  T3 devices) data to cloud  
 

   after generating  
 

   enter/exit event (E3, E4)  
 

 
Cloud, 

 Time taken to post  
 

  geofence (with IoT 
30 

 

1 application  
 

T2 devices) data to  

 performance  
 

  cloudafter generating  
 

    
 

   enter/exit event (E1, E2)  
 

   Time taken to post user  
 

  
T4 

location data to cloud  
 

  after the thread is run  
 

    
 

   each 10 seconds  
 

   Time taken to perform  
 

  
T3 

the http connection to  
 

  send geofence (without  
 

    
 

   IoT devices) data to cloud  
 

   Time taken to perform  
 

2 
Network 

T2 
the http connection to 

30  

connection send geofence (with IoT  

   
 

   devices) data to cloud  
 

   Time taken to perform  
 

  
T4 

the http connection to  
 

  send user location data  
 

    
 

   to cloud  
 

 

 
 
 

 



 
   Time taken to notify the  

 

   user after generating  
 

  T1,T5 enter/exit event for  
 

 Notification  geofences (without IoT  
 

3 
Server,  devices; E3, E4) 

15  

Application  Time taken to notify the  

   
 

 performance  user after generating  
 

  T1,T5 enter/exit event for  
 

   geofences (with IoT  
 

   devices; E1, E2)  
 

   Time taken to display  
 

   Google card after  
 

  
T1,T5 

generating enter/exit  
 

 

Notification 
event for geofences  

 

   
 

  (without IoT devices; E3,  
 

 

Server,   
 

4  E4) 12  

application  
 

  Time taken to display  
 

 

performance 
  

 

  Google card after  
 

    
 

  T1,T5 generating enter/exit  
 

   event for geofences (with  
 

   IoT devices; E1, E2)  
 

 
After running each experiment, we have compared the 

results, analyzing the minimum, maximum, average and 

standard deviation. Tables 3 to 6 present these comparisons. 
 
 TABLE III. RESULTS FOR EXPERIMENT 1 (IN SECONDS) 

 

       
 

Tasks 
 

Min. 
 

Max. Avg. 
Standard 

 

  Deviation  

      
 

T3  0.224  2.884 2.199 1.000 
 

T2  0.065  2.670 0.866 0.950 
 

T4  0.160  2.566 0.4762 0.581 
 

 
The results in Table 3 show that the geofence times are 

higher without IoT devices than with them. However, 
maximum and minimum values are similar between them. The 
standard deviation is high in both cases. We are expecting a 
maximum value of approximately 3 seconds of delay between 
when a user moves or enters a geofence and the data are 
posted, which could have real-time data implications. User 
location data take an average time of less than half a second. 
 

TABLE IV. RESULTS FOR EXPERIMENT 2 (IN SECONDS) 
 

      
 

Tasks Min. 
 

Max. Avg. 
Standard 

 

 Deviation  

     
 

T3 0.112  2.822 2.120 1.005 
 

T2 0.054  2.653 0.878 0.982 
 

T4 0.047  0.413 0.0863 0.081 
 

 
The results in Table 3 are lower than the results in Table 4 

which is reasonable since one is inside the other. The patterns 
are repeated, in average, it takes more time to post without IoT 
devices data to the server than with IoT devices after a user 
event occurs. The reason why the results are variable and the 
standard deviation is high is because this experiment relies on 
the network connection and in this case, the connection is not 
stable. 
 

TABLE V. RESULTS FOR EXPERIMENT 3 (IN SECONDS) 
 

      
 

Tasks 
 

Min. Max. Avg. 
Standard 

 

 Deviation  

     
 

T1, T5 
 0.005 0.028 0.012 0.006 

 

 

0.037 1.755 0.575 0.700  

  
 

  
The results in Table 5 show that the average time with IoT 

devices is higher than without. This can be due to 
implementation differences. In the case of geofence without 
IoT devices, the notifications are triggered inside the geofence 
service, while geofences with IoT devices, the notifications 
are triggered in the main thread, not in the service. The service 
is running in the background and it triggers a method in the 
main thread each time an event occurs. Therefore, the method 
runs after the service and as a result, it takes more time. It is 
also remarkable the differences between standard deviations. 
Geofences without IoT devices are stable, with less 
differences between minimum and maximum values and less 
standard deviation. However, the average time for both is 
under seconds unit, which can be considered satisfactory 

 
 TABLE VI. RESULTS FOR EXPERIMENT 4 (IN SECONDS) 

 

        
 

Tasks Img 
 

Min. Max. Avg. 
 Standard 

 

  Deviation  

       
 

 
1 

0.580 3.064 2.643 0.714 
 

T1,T5 0.126 1.905 0.519  0.559  

  
 

 
2 

0.306 3.063 2.409 0.939 
 

 
0.089 1.986 0.735  0.721  

   
 

 
The results in Table 5 show that in average, it takes more time 

for geofences without IoT devices to display Google Cards than 

with IoT devices. Here again, network connection is a variable to 

consider. Images and JSON files have to be downloaded and after 

that, it is needed to build the Google Card. The implementation to 

build the Google Card is the same in both cases. We are expecting 

a maximum of approximately 3.3 seconds after a user event to 

display the Google Card.  
The overall results reveal that it takes more time for 

geofences without IoT devices than without IoT devices to 

display google cards and to post data. This could indicate that 

a geofence service is slower than a beacon service, due to the 

differences when using GPS rather than Bluethooth. However, 

for improving the results, we should also monitor the network 

connection (WiFi) during the experiment, to be able to 

subtract this variable to analyze the performance differences 

between Bluetooth and GPS. 
 

V. CONCLUDING REMARKS 
 

We have developed a prototype of our proposed real-time 

recommender system with pre-defined notifications/ 

recommendations and have demonstrated its effectiveness. 

However, there are some considerations for deploying the 

mobile application on the target mobile devices. First, the 

mobile application needs to be running in the background of a 

smartphone in order to detect user events and transmit data 

regularly to the cloud, it can rapidly consume the battery. 

Second, it is of paramount importance to have a high 

bandwidth wireless network infrastructure at a tourist 

destination in order to be able to transmit streaming data in 

real-time.  
In order to cope with the battery consumption on mobile 

devices and network bandwidth, we need to reduce 

background monitoring to detect Bluetooth signal from 

beacons and transmitting data to our cloud system. There 

could be many approaches to solve this battery issues. 
 

 
 
 

 



 
However, cost-benefit analysis should be conducted before we 

choose the right approach, since there are always pros and 

cons of each approach. 

Also, both GPS and Bluetooth sensing are services running 

in the background in order to detect user events, reducing the 

battery life of the phone. However, geofencing using GPS has 

more impact on the battery life of mobile devices than beacons 

as it determines the location using satellites services. Beacons 

do not need to know the exact location of a mobile user; it just 

uses proximity detection to estimate if a mobile user is within 

the range of its signal. Moreover, Bluetooth 4.0 is a low 

energy technology which is optimized for long battery life. In 

order to copy with the battery limitations, the use of beacons 

should be preferred against GPS. Also, the experiments shows 

that the wireless network is of paramount importance in the 

performance of the system. In order to be able to transmit 

notifications in real time is necessary to have a high 

bandwidth wireless network infrastructure at a tourist 

destination. Future research work will focus on conducting 

more experiments, monitoring the use of network and the use 

of battery, to be able to get more conclusions.  
Another issue is that provided recommendations need to 

be meaningful to the end users. A way to measure this 

satisfaction could be to analyze if the users are actually 

following the recommendations we give to them. This would 

be easy since we have the GPS coordinates of their path. 

Recommendations could be updated in real time, changing the 

ones that the users do not follow. We need to consider the 

followings for our future research. Furthermore, we need to 

consider the followings for our future research.  
a. Personalized recommendations 

b. Context-aware (i.e. weather, a number of visitors, etc) 

recommendations  
Currently, we have been evaluating our proposed IoT 

platform. Future research work will focus on improving the 

clustering and recommendation algorithms for finding clusters 

of users moving around a tourist destination in real-time. The 

recommendations will then be sent to a group of users moving 

with similar mobility patterns. With respect to the 

collaborative filtering for our real-time recommender system, 

we aim to introduce other rating factors rather than the visiting 

time in each POI and the frequency of visits of a POI. Finally, 

we will include more information about a user context such as 

transportation, weather conditions, and time of the day. 
 

ACKNOWLEDGMENTS 
 

This research is being funded by the NSERC/Cisco 

Industrial Research Chair in Real Time Mobility Analytics. 
 

REFERENCES 
 
[1] A. R. Biswas, “IoT and cloud convergence: Opportunities and 

challenges,” in 2014 IEEE World Forum on Internet of Things (WF-

IoT), 2014, pp. 375-376  
[2] E. Welbourne, L., Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. 

Balazinska, and G. Borrielle, “Building the internet of things using 

RFID: The RFID ecosystem experience,” in the journal of IEEE internet 

computing, Vol 13, Issue 3, 2009, pp. 48-55. 

  
[3] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative location 

and active recommendations with GPS history data,” in Proceedings of 

the 19th international conference on World Wide Web, 2010, pp. 1029-

1038.  
[4] L. Jiang, L. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented 

data storage framework in cloud computing platform,” in IEEE 

transactions on industrial information, Vol. 10, No. 2, pp. 1443-1451, 

2014.  
[5] S. Tyagi, S. Darwish, and M. Y. Khan, “Managing computing 

infrastructure for IoT data,” in the advances in Internet of Things, pp. 

29-35, 2014.  
[6] X. Zhang, Z. Wen, Y. Wu and J. Zou, “The implementation and 

application of the internet of things platform based on the REST 

architecture,” in the international conference on business management 

and electronic information (BMEI), 2011, pp. 43-45.  
[7] Y. Lin, Q. Wang, J. Wang, L. Shao and J. Tang, “Wireless IoT Platform 

based on SDR technology,” in IEEE international conference on green 

computing and communications and IEEE Internet of Things and IEEE 

cyber, physical and social computing, pp.2245-2246.  
[8] K. Mikhaylov, J. Petajajavi, M. Makelainen, Anton, Paatelma, and T. 

Hanninen, “Extensible modular wireless sensor and actuator network 
and IoT platform with plug & play module connection, “ in the 

proceedings of the 14th international conference on information 

processing in sensor networks, 2015, pp. 386-387.  
[9] G. Yang, L Xie, M. Mantysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-

Walter, Q. Chen, and L. Zheng, “A health –IoT platform based on the 

integration of intelligent packaging, unobtrusive Bio-sensor, and 

intelligent medicine box,” IEEE transactions on industrial informatics, 

Vol. 10, No. 4, 2014, pp. 2180-2191.  
[10] B. Lee, “Design requirements for IoT healthcare model using an open 

IoT platform,” in the proceedings of advance science and technology 

letters, 2014, pp. 69-72.  
[11] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noel, and G. Schreiner, 

“Adding value to WSN simulation using the IoT-LAB experimental 

platform,” in 9th international conference on wireless and mobile 

computing, networking and communications (WiMob), 2013, pp. 485-
490.  

[12] H. Yoon, Y. Zheng, X. Xie, and W. Woo, “Social itinerary 

recommendation from user-generated digital trails,” in the journal of 

personal and ubiquitous computing, Vol. 16, Issue 5, pp. 469-484, 2011.  
[13] I. R. Brilhante, J. A. Macedo, F. M. Nardini, R. Perego, andC. Renso, 

“On planning sightseeing tours with TripBuilder,” in the journal of 

information processing and management, Vol. 51, Issue 2, pp.1-15, 

2015.  
[14] J. M. Noguera, M. J. Barranco, R. J. Segura and L. Martinez, “A mobile 

3D-GIS hybrid recommender system for tourism,” in the journal of 

information sciences, Vol. 215, pp. 37-52, 2012.  
[15] H. Yoon, Y. Zheng, X. Xie and W. Woo, “Smart itinerary 

recommendation based on user-generated GPS trajectories,” in 

Proceedings of the 7th international conference , 2010, pp.19-34.  
[16] K. Vandikas and V. Tsiatsis, “Performance evaluation of an IoT 

platform,” in the 8th international conference on next generation mobile 

apps, services and technologies, pp.141-146.  
[17] G. Broll, E. Rukzio, M. Pallucci, M. Wagner, A. Schmidt, and H. 

Hussmann, “Perci: Pervasive service interaction with the Internet of 

Things,” IEEE Internet Comput, Vol. 13, No. 6, pp. 74-81, Nov. 2009.  
[18] D. Gavalas, V. Kasapakis, C. Konstantopoulos, G. Pantziou, N. Vathis, 

and C. Zaroliagis,“The eCOMPASS multimodal tourist tour planner,” in 

Expert systems with Applications, 42(21), 7303–7316, 2015. 

 

 
 
 
 


