
Lessons learned from integrating batch and stream
processing using IoT data

Hung Cao, Marcel Brown*, Lizhi Chen*, Riley Smith*, Monica Wachowicz
People in Motion Lab, University of New Brunswick

Fredericton, NB, Canada
{hcao3, marcel.brown, lizhi.chen, riley.smith, monicaw}@unb.ca

Abstract—The unbounded data streams generated by IoT
sensors/devices are posing many technical challenges and requires
a one-size-fits-all solution to cope with the massive amount and
the high speed of the incoming IoT data arriving simultaneously.
In this study, we try to integrate batch and stream processing in a
unique system as a premise to handle Volume and Velocity aspects
of IoT data simultaneously. In order to handle current, outdated,
and historical IoT data streams, we built a cloud architecture to
execute the analytical workflows using both batch and stream
processing in a synergetic manner. A smart parking case study
is used to evaluate the architecture and two experiments are
implemented to demonstrate a web application for predicting
parking spot availability. Herein, we learned our lessons that
there are several hindrances to finding a middle ground where
current, outdated and historical IoT data streams can be used
in a strategic way.

Index Terms—IoT data streams, batch processing, streaming
processing, smart parking, cloud architecture

I. INTRODUCTION

With the advent of the Internet of Things (IoT), a large
number of sensors and devices are expected to interact and
generate a massive amount of unbounded data streams. The
insights generated from analyzing these IoT data streams
can bring potential opportunities in sectors such as agri-
culture, health care, manufacturing, retail, marketing, smart
cities, transportation, telecommunications, and tourism [1]–
[3]. However, there is a trade-off between the completeness of
observed data with respect to event times and the correctness
of the analytical results since analytical tasks can either be
executed with current available stream data or must wait
until the completed stream data has arrived. This requires
a complex data flow capable to extract value from different
data streams at different points in time as well as integrate
multiple analytical results over time in order to generate new
insights. This challenge is further aggravated when fusing
the extracted knowledge from historical IoT data to reach
intelligent decisions in real-time.

Our research premise is that batch processing can deal with
a large volume of IoT data, though it has not been traditionally
designed to deal with the velocity of the incoming IoT data.
In contrast, stream processing can cope with the very high
data rate of the IoT data streams to yield the low-latency or

This is a preprint. It will appear in Proceeding of The 6th IEEE Interna-
tional Conference on Internet of Things: Systems, Management and Security,
Granada, Spain, October 22-25, 2019.

* M. Brown, L. Chen, and R. Smith contributed equally to this work.

speculative results, though it can not handle a massive amount
of data in a short processing time. This paper proposes a
cloud architecture for an IoT data flow where batch and stream
processing are integrated to run analytical tasks in synergy by
handling current, outdated, and historical IoT data streams.

The scientific contribution of this paper is to improve
our understanding of the trade-off between completeness and
correctness when using current, outdated and historical IoT
data streams. A real-word case study, consisting of two im-
plemented experiments, shows an IoT data flow (batch and
stream processing) in smart parking and is used to describe
the progress of our research work.

The remainder of this paper is organized as follows: Section
II describes different components of our cloud architecture for
IoT data; Section III is dedicated to implementing the archi-
tecture and describing our experiments on the smart parking
as well as some preliminary results. Section IV discusses the
lessons that we learned from the real-world experiments.

II. OUR CLOUD ARCHITECTURE

This section describes the main modules of our proposed
cloud architecture as shown in (Fig. 1). Each module is
delivered by virtual machines running tools and data flows
with persistent disk storage and consistent performance for
both stream and batch processing.

Three types of data streams have been identified in our
architecture:

• current IoT data streams are those with timestamps be-
longing to the the current time (i.e. now).

• outdated IoT data streams are when sometime has elapsed
(i.e. just now).

• historical IoT data streams are those with timestamps
belonging to the past.

In general, IoT applications will be developed based on the
combination of different engines in our system. Depending on
a specific scenario, the IoT applications can be implemented
using different methods such as web apps, operational services,
or 3rd party integrated applications. The whole system will be
executed on core run times, which are managed throughout the
OS, Resource Manager, or Container. There are several options
to deploy our architecture such as stand alone or cluster
deployment. Note that provision and orchestration are also
deployed to mitigate difficulties in managing, distributing, and
updating the system. Security is also taken into consideration.

Fig. 1. The proposed cloud architecture for handling current, outdated, and
historical IoT data streams.

In fact, our system aims to monitor and manage IoT data
security across the different engines in the future.

The main engines of our IoT architecture can be described
as one of the following:

1) Data management: There are two elements to manage
the data flow in our cloud architecture: Device Connectors
and Data Connectors. Device Connectors are the platforms
to manage the network connection between the IoT devices,
while Data Connectors are protocols to manage the flow of
IoT data streams.

2) Stream Processing: This engine mainly deals with the
continuous incoming of IoT data streams. It includes the
Complex Event Processing (CEP) API and Structured Streams
Processing API to manage and transform the raw data streams.
The Structured Streams Processing API is used to build
the programs that implement operations on current IoT data
streams (e.g. filtering, updating state, defining windows, ag-
gregating). The CEP API allows us to detect event patterns in
an outdated IoT stream of events.

3) Streams Analytics: The main elements of this engine are
the Online Learning Library and Graph Computation Library.
The Online Learning Library is used to train the current stream
data whenever they come to the system and it gradually builds
the learning model. The Graph Computation Library builds
graphs on the outdated data streams and analyzes them.

4) Stream Data Visualization: It is used to plot data when-
ever it comes to our system, with the aim of early detection
of abnormalities for monitoring services.

5) Batch Processing: This component mainly deals with
stream data that are accumulated in our data storage compo-
nent. It includes the Data Sets Processing API. It is leveraged

to build programs that implement operations on IoT historical
IoT data (e.g., filtering, mapping, joining, grouping).

6) Batch Analytics: The Offline Learning Library is utilized
to analyze the historical IoT data.

7) Batch Data Visualization: It plots the historical IoT data
with the aim of assisting users with analysis and finding new
insights through exploring services offered.

8) Data Storage: is the space where the incoming data
streams or the results of the processing and analytical tasks
reside. The storage space can be different types of databases
(e.g. Document-based Store, Key-Value Store), a distributed
file system, or an in-memory database.

III. IMPLEMENTATION RESULTS

We built our cloud architecture using three virtual machines
(VMs), which were provided by Compute Canada East Cloud
as the IaaS resource. Each of them is a node, forming a cloud
cluster. The detail specifications of each VM is available on
Table I.

TABLE I
THE OVERVIEW OF THE CLOUD CLUSTER.

VM1 VM2 VM3

Hostname master.eastcloud slave1.eastcloud slave2.eastcloud
OS CentOS 7.0 (x86 64)
CPU Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
of Core 8 4 4
RAM 30GB 8GB 8GB
Disk (Main/Ephemeral) 20GB/1.15TB 20GB/800GB 20GB/800GB
IPv4 192.168.45.2 192.168.45.7 192.168.45.12

We have implemented a variety of open source software to
deploy the main engines that were envisaged for our cloud
cluster. Each of them plays an important role as a compo-
nent in the overall cloud architecture. The implementation is
illustrated in Fig. 2.

In this section, a smart parking scenario is used to evaluate
our cloud architecture. The IoT data streams were generated
in real-time whenever a driver parked his/her car and used the
HotSpot Parking Application, combined with the pay station
facilities of Saint John, NB, Canada. They were published to
our Kafka broker as shown in Fig. 2.

We designed two experiments using a streaming and a batch
processing workflows. The main goal was to improve the
parking services. They are described below.

Experiment 1: The aim was to support the processing
of IoT data streams on-the-fly, and then built an Online
Machine Learning (ML) Random Forest model. The steps
of the analytical workflow were: Ingest data streams every
5 seconds from Kafka broker → Perform data cleaning/pre-
processing on-the-fly (using Flink) → Find patterns from data
streams in that time window (using Flink CEP API) → Train
an Online ML model (Tree/Random Forest using MOA) →
Visualize for monitoring service (using Grafana).

Experiment 2: This experiment aimed to exploit the long
term value from the IoT data by building a ML Random Forest
model in batch. Therefore, we have used 2-year historical IoT
data from our persistent database. The steps of our analytical

Fig. 2. Experiments of our smart transit scenario.

workflow were: → Train a ML Random Forest model in batch
→ Predict near future available parking spots (using H2O.ai,
MXNET) → Visualize the results for users (using Kibana).

Experiment 1 & 2 have successfully implemented and
obtained preliminary results that were made available to users
through a web application. We were able to predict parking
availability using a Batch ML RF model and pre-process/clean
incoming data tuples in batch and on-the-fly (Fig. 3).

(a) (b)

Fig. 3. Preliminary results from the smart parking scenario: (a) Parking portal
interface; (b) Web Application: Parking Availability in the next 2 hours (red:
occupied; green: free)

IV. LESSONS LEARNED

Certainly there exists a continuum between stream pro-
cessing and batch processing, and indeed our proposed IoT
architecture is a step towards this direction. However, our

overall argument is that finding a middle ground where current,
outdated, and historical IoT data streams can be used in a
strategic way is definitely not a trivial task. The challenges
encountered are not related to an IoT architecture being better
or worse than another, or that we should always seek for
a minimum latency, or we should aim at one-size-fits-all
solution.

In fact, our two experiments, although generating prelim-
inary results, have provided us with new insights on the
challenges ahead. They can be described as follows:

8 We should avoid duplicating our development efforts (i.e.
modules) in order to support batch OR stream process-
ing. Always having a pipeline (data flow) specific for
streaming and another one for batch processing is not the
best strategy when the aim is to support data analytics.
Automated analytical tasks will require IoT architectures
capable of handling one pipeline only, capable of both
stream AND batch processing.

8 The hurdles to be overcome in implementing and main-
taining two systems as a unique solution is going to be
unbearable for data scientists, especially in complex real-
world scenarios.

8 It is unclear how to identify the semantics of the com-
putations from both batch and streaming processing in
IoT. But one thing is clear, it will not only depend on
the IoT application to define which streams are current,
outdated, and historical. Networking latency needs to be
studied in more depth in the near future, as well as how it
will impact the semantics of the analytical computations.

8 Unfortunately, the correctness of the results from batch
and stream processing can fluctuate unpredictably. The
completeness and correctness of both processing keep
changing which makes it impossible to join the results
before serving them in a visualization.

ACKNOWLEDGMENTS

This work was supported by the NSERC/Cisco Industrial
Research Chair, Grant IRCPJ 488403-1. We would like to
thank Compute Canada for providing us with the cloud re-
sources, the City of Saint John, NB, Canada, and HotSpot
Parking for giving us access to their IoT stream data.

REFERENCES

[1] R. K. Lomotey, J. Pry, and S. Sriramoju, “Wearable iot data stream
traceability in a distributed health information system,” Pervasive and
Mobile Computing, vol. 40, pp. 692–707, 2017.

[2] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Sid-
diqa, and I. Yaqoob, “Big iot data analytics: architecture, opportunities,
and open research challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017.

[3] H. Cao and M. Wachowicz, “The design of a streaming analytical
workflow for processing massive transit feeds,” in 2nd International Sym-
posium on Spatiotemporal Computing. Harvard University, Cambridge,
MA, USA, 2017.

