
Analytics Everywhere for streaming IoT data
Hung Cao and Monica Wachowicz

People in Motion Lab, University of New Brunswick
Fredericton, NB, Canada
{hcao3, monicaw}@unb.ca

Abstract—Exploring new insights from IoT data means not
only providing higher-level intelligence in a timely way but also
generating long-term predictions and decisions from historical
IoT data. This paper aims to explore the synergy of various data
rates, message passing, and processing algorithms to support
streaming analytics at the edge, fog, and cloud computing
environments. Towards this end, we present an IoT architecture
that is capable of capturing, managing, processing, analyzing, and
visualizing IoT data streams. For validation purposes, a smart
parking scenario is used to evaluate our architecture.

Index Terms—IoT data streams, streaming analytics, smart
parking, IoT architecture, integrated fabric, edge/fog/cloud con-
tinuum.

I. INTRODUCTION

IoT devices are usually equipped with different types of
sensors, ranging from accelerometers and gyroscopes to prox-
imity, light, and ambient sensors, as well as microphones
and cameras. In an IoT application, these sensors/devices
produce a large amount of heterogeneous data, which poses a
challenge for capturing, managing, processing, analyzing, and
visualizing data within an acceptable time.

At the dawn of the IoT evolution, academia and industry
choose a traditional big data processing method which was
suitable for big data applications such as web logs, videos,
images, stock trading, and location updates [1]–[5], to solve
an overwhelming amount of data streams generated by IoT
devices/sensors. When IoT was first being developed, IoT data
streams were continuously pushing to the cloud environment
where they were processed [6]. However, there was a challenge
to determine how to efficiently compute a huge amount of
IoT data streams in the cloud while still preserving the
interpretability and transparency in a dynamic sense. Due to
the latency within an IoT network and the network connection
errors between IoT devices, the order of incoming data tuples
were uncontrollable.

Most of the research in this first phase focused on processing
IoT data streams rather than analyzing them in order to
extract insights which is the most valuable objective and
the ultimate goal for an IoT application. For example, the
Lambda Architecture proposed an architectural pattern that
provides scalability and fault tolerance for processing both
stream and historical data in an integrated manner [7]. The
purpose of this architecture was to cope with both Volume and
Velocity challenges at the same time. Nevertheless, there is an

This is a preprint. It will appear in Proceeding of The 6th IEEE Interna-
tional Conference on Internet of Things: Systems, Management and Security,
Granada, Spain, October 22-25, 2019.

argument over the complexity in development, deployment,
and maintenance [8] that led to another approach, namely
Kappa Architecture [9], in favour of simplicity by dispensing
the batch processor and using a powerful stream processor
to handle data in an extended cache of the data pipeline.
This approach may require larger storage space, so it may
be effective in applications that do not require unbounded
retention times [10].

Efficient retrieval and analysis of IoT data streams require
generating useful intelligence and higher-level information in a
timely manner before the insights become outdated. However,
this is a non-trivial task since we need a completely new
architecture that is capable of handling the arrival data tuples
while still keep the confidentiality, integrity, and availability
of the data streams.

This paper proposes an Analytics Everywhere architecture
that encompasses an edge/fog/cloud continuum to support
streaming analytics using IoT data. This architecture consists
of geographically adjacent compute nodes deployed in the
edge, fog, and cloud environments that are connected through
a plethora of communication networks. These compute nodes
are needed to perform a priori known tasks to collect, con-
textualize, process, and analyze data from IoT devices.

The scientific contributions of this paper can be summarized
as follows:

• Most of the IoT streaming architectures rely on a cloud
environment in which an n-tier of horizontal layers are
designed to perform tasks. Our approach proposes a new
architecture based on an integrated fabric of compute
nodes. These nodes are designed to work together to
perform a network of tasks according to a data flow gen-
erated by IoT devices and responsive to an edge/fog/cloud
continuum.

• Streaming analytics for IoT data is still in its infancy and
applications usually require a diverse number of outputs
having different temporal granularities ranging from real-
time and near-real-time to delayed and historical. Our
approach contributes to this field by developing an analyt-
ical everywhere architecture using a real-world scenario
in order to understand how the edge/fog/cloud continuum
can be exploited to deliver outputs ranging from real-time
at the edge, near real-time at the fog and finally, time-
sensitive at the cloud.

The remainder of this paper is organized as follows: Section
II reviews the existing architectures, processing, and analytics
frameworks for handling IoT data streams. Section III de-

scribes our proposed IoT streaming architecture for analyzing
the incoming data at any place and in any time. Section IV
presents our proposed Analytics Everywhere framework and
the mapping of analytical tasks to the resource capabilities.
Section V describes the implementation of our proposed IoT
architecture. Section VI describes the implementation using
a smart parking scenario and discusses the implementation
results. Section VII concludes our research and discusses
further research.

II. RELATED WORK

It is challenging to handle vast amounts of incoming IoT
data streams meanwhile ingesting and analyzing them at a
high data rate. Over 400 architectures have been proposed
in the literature to handle incoming IoT data streams using
different strategies such as stream, micro-batch, and batch
processing [10], [11]. The most important issue in selecting an
IoT architecture is to balance the trade-off between throughput
and latency. Therefore, most approaches to handle this trade-
off are based on a cloud computing environment where IoT
data streams are pushed to and accumulated over a long period
of time, and are later processed in batches.

Batch-oriented processing frameworks have been efficiently
used for processing large amounts of historical IoT data with
high throughput but also with high latency. For example,
one of the most common and widely used cloud architecture
for batch-oriented processing that supports distributed storage
across many clusters of commodity servers is the Hadoop
MapReduce framework [12]. Another example is Spark [13],
which has the ability to perform large-scale batch processing
in memory using resilient distributed data sets.

Aiming to increase efficiency, micro-batch frameworks
buffer and process IoT data streams in batch. For example,
Spark Streaming restricts batch size in a processor where each
batch contains a set of events that arrived online over the batch
period (regardless of events time). However, it will obviously
increase the time the data streams spend in the data pipeline. In
contrast, stream-oriented frameworks typically provide time-
sensitive computations, but also bring relatively high data
processing costs on a continuous stream of IoT data. Stream-
oriented processing architectures usually avoid putting data at
rest. Instead, they minimize the time a single tuple should
spend in a processing pipeline. Examples of typical stream
processing frameworks are Storm, Samza, Flink [14]–[16].

From an analytics perspective, IoT data streams that are
accumulated for a long period of time can be analyzed
in batch using traditional algorithms in machine learning
and data mining such as clustering, classification, regression,
dimensionality reduction. For example, Ismail et al. [17]
propose a MapReduce based mining algorithm to facilitate
Parallel Productive Periodic Frequent Pattern mining on health
sensor data. Ta-Shma et al. [18] also describe an attempt for
ingesting and analyzing IoT data streams using open source
components. Their simplified architecture is a combination of
several instances which install an event processing framework,

a batch analytics framework, a data storage framework, and a
message broker to handle both batch and streaming data flow.

Recently, a paradigm shift has emerged in the evolution of
IoT architectures for analytics, software, and platform config-
uration [19]. Stream analytics algorithms are being developed
to exploit value from IoT data streams as soon as they arrive
at a computational resource. However, it is a non-trivial task to
extract insights online, since the nature (or distribution) of IoT
data streams change over time [20]. Also, analytical algorithms
must work within limited resources such as time and memory.
Some open source frameworks for IoT data stream analytics
are being developed including MOA, SAMOA, skit-multiflow
[21]–[23] using powerful stream processors.

Our proposed architecture is a step forward to finding a
unique solution that combines the advantages of different
computational resources into an integrated edge/fog/cloud
fabric that is capable of capturing, managing, processing,
analyzing, and visualizing IoT data streams. This fabric of
computational resources is designed to work towards an
asynchronous approach for supporting Analytics Everywhere,
making the development, deployment, and maintenance more
pragmatic and scalable. By breaking down the analytical capa-
bility into a network of analytical tasks and distributing them
into an edge/fog/cloud computing environment, our proposed
architecture can support descriptive, diagnostic, and predictive
analytics. For example, some predictive analytical tasks can be
executed in the cloud while diagnostic analytical tasks can be
performed online (on-the-fly) at an edge or fog node.

III. THE IOT STREAMING ARCHITECTURE

Resource capabilities play an important role in designing
an IoT architecture that relies on an edge/fog/cloud computing
environment. We propose a network of compute nodes which
are implemented to run a combination of modules including
Admin/Control, Stream Processing & Analytics, Run Time,
Provision & Orchestration, and Security & Governance (Figure
1). Our IoT architecture enables micro-services to run at
various compute nodes in such a way that each micro-service
can perform a specific function as well as an analytical task
depending on which module it belongs to. It is important to
point out the essential role of the Admin/Control module of
our IoT architecture in order to reach intelligent decisions,
since this module optimizes the data flow and provides an
intuitive context for the IoT data streams. Therefore, we also
integrate data management, visualization, orchestration, and
security modules in our IoT architecture.

A. Resource Capabilities

In general, IoT applications will require a combination of
different compute nodes running at the edge, fog, or cloud
environments. The main criteria to take into account when
selecting the resource capabilities are as follows:

1) Vicinity: It is necessary to determine how geographically
close the edge and fog nodes are to the source of data (i.e.
IoT device). Since edge/fog nodes can be static (i.e. deployed
inside a building) or mobile (e.g. deployed in a car) and their

Fig. 1. The proposed IoT streaming architecture.

proximity to IoT devices might vary, our IoT architecture
requires an integrated fabric of resource capabilities.

2) Reachability: How easy is to reach a compute node
via a network varies accordingly to the type of IoT device
used. Typically, if a compute node is connected to the Internet
with a fixed IP address, this can be considered a highly
reachable resource, as opposed to a poorly reachable node
that is connected using a private network and behind a NAT.

3) In-memory and storage: This criterion handles how
much data in a compute node should be kept in memory or
should be stored as a single ordinary disk file or in a database.
The IoT data streams are expected to stay only for a limited
period in-memory as needed by an analytical task, and this
decision will also depend on the data rate and data latency
of the compute nodes. The data rate varies from a high rate
of data collected at the edge to a low rate of aggregated and
cleaned data arriving at the cloud. The latency is clearly very
low at the edge due to the proximity to the IoT devices and
increases as we move to the cloud.

4) Computation: How much processing power is available
at a compute node for performing analytical tasks. Taking into
account the IoT application requirements can help in driving
the decision about which computational resource to use in
executing different analytical tasks.

5) Standardization: This criterion represents the strongest
challenge yet to be met in the implementation of IoT architec-
tures. The IoT standards range from network protocols, and
data-aggregation standards to security and privacy.

While computation and memory capabilities can increase as
the analytical tasks are running from the edge to the cloud,
reachability must be always available to an analytical task.
Reachability is a critical dimension that requires analytical
tasks to return well-timed and synchronized results, which

demand a rapid increase in computational resources. Because
fog nodes are intermediary gateways that seamlessly integrate
edge and cloud resources, they can eliminate resource con-
tention in the compute nodes and the communication links.
In contrast, edge nodes can facilitate the necessary scaling
of IoT applications because of their proximity to the IoT
devices, making them an important computational resource for
supporting near or real-time data analytics. However, the lack
of adoption of standards in edge resources and IoT devices is
currently hampering the implementation of IoT applications.

The whole integrated fabric will be executed on the core
resources that are managed throughout the OS, Resource
Manager or Container. The background infrastructure of the
architecture is built based on a network of compute nodes.
Note that provision & orchestration are also deployed to
mitigate difficulties in managing, distributing, and updating
the system. Security is also taken into consideration. In fact,
our IoT architecture aims to monitor and manage IoT data
security across the different compute nodes.

B. Main IoT Modules

The IoT modules can be divided into Run Time, Stream
Processing & Analytics, and Admin/Control.

1) Run Time:
a) Message Broker: In our IoT architecture, the message

broker is a software/middle-ware computer program module
that reliably routes messages between clients using a formal
messaging protocol and providing metadata about connected
clients such as the data they are streaming and/or the ac-
tions they make with guaranteed QoS delivery. They can
also communicate with other modules, such as queries, Data
Flow Editor, In-memory Databases, and applications such as
enterprise services or analytical dashboards.

b) Data Link: A data link is a wrapper with a domain-
specific library or functionality that is exposed to the com-
munication network. Data link provides an interface to access
data from different data sources and sinks into and out of
the compute nodes. It can be a device link, a bridge link or
an engine link. The device data links allow the capability
to connect the specific IoT devices together (e.g. WeMo
devices, beacons, sensors). The bridge data links offer two-
way communications with other publish-subscribe protocols
(e.g. MQTT, AMQP, STOMP). The engine data links contain
logic functions/drivers or provide access to the processes that
provide specific functionality (e.g. JDBC, ODBC).

c) IoT Device Connector: This module manages the
network connection between the IoT devices and compute
nodes. There are two main options to deploy the device
connector modules depending on the requirements of an IoT
application: they can be described as a horizontal or as a
vertical option. Horizontal device connectors mean that the
main components of a data stream management platform are
horizontally deployed across remote nodes. In contrast, vertical
device connectors not only expand their services to the edge
but also scale the data stream management components to the
nodes close to the IoT devices. In our architecture, we combine

both to guarantee a unique environment based on a network
of IoT devices and compute nodes.

2) Stream Processing & Analytics:
a) Data Flow Editor: The data flow editor is a visual

data manipulation environment for wiring together IoT de-
vices, APIs, and services. It allows developers to create a
data-flow model based on a set of programming blocks that
perform the assigned analytical tasks when requirements are
met. A data-flow model can be considered as a broker client
because it can subscribe to data from different data sources
and publishes results to the broker. Therefore, the data flow
editor is designed to support a data-flow model to be deployed
to the run time in a convenient manner.

b) Parser: The IoT data streams can be continuously
bounced from one compute node to another. The goal of the
parser module is to transform or serialize the IoT data streams
into a series of bytes to be stored or transmitted across a
network then reverse or de-serialize them back to the original
form when they reach their destinations. Therefore, the data
streams need a syntax for storing and exchanging data that is
not only convenient for developers to read and write but also
easy for machines to parse and generate.

c) Machine Learning Library: The main element of this
module is the Online Learning Library. In contrast to batch
machine learning which trains the input data, builds and
evaluates the model as a bundle, the Online Learning Library
is used to evaluate the current stream data on-the-fly as they
enter the compute node, and to gradually build the learning
model based on the incoming data tuples over time.

d) Processing Library: This engine mainly deals with the
continuous arrival of IoT data streams. It includes the Complex
Event Processing (CEP) component and Structured Streams
Processing component to manage and transform the raw data
streams. The Structured Streams Processing component is
used to build the programs that implement operations on
data streams (e.g. cleaning, filtering, updating state, defining
windows, aggregating). The CEP component allows us to
detect event patterns in an endless stream of events.

3) Admin/Control:
a) Data Visualization: This module provides two main

services: the monitoring service and exploring service. The
monitoring service is used to plot real-time data whenever it
comes to our system, with the aim of early detection of abnor-
malities. The exploring service plots the processed/historical
data with the aim of assisting us with data analysis and
discovering new insights.

b) In-Memory Data Storage: is the space where the
incoming data streams or the results of the processing and
analytical operations reside. The storage space can be different
types of in-memory databases (e.g. document-based store, key-
value store), or a in-memory file system.

IV. ANALYTICAL CAPABILITIES IN RELATION TO
RESOURCE CAPABILITIES

In our proposed Analytics Everywhere framework [24],
three types of analytical capabilities are provided: descriptive,

diagnostic, and predictive. Descriptive analytics is used to
provide higher-level information about an IoT data stream at
the edge, fog, or cloud environment, which can be either a
representation of the entire population or a sample of it. The
aim is to provide metrics and measures that might answer
the question: “What is happening in the real world? In
contrast, diagnostic analytics aims to provide new insights
related to the question “Why is it happening? The findings
of descriptive and diagnostic analytics can then be used as
an input to predictive analytics in order to build a prediction
model capable of answering “What will happen?” The main
goal of our Analytics Everywhere model is to bring together
an a priori known network of tasks that will be executed at
different computational resources available at the edge, fog,
and cloud to answer these questions over time (Figure 2).

Fig. 2. Network of analytical tasks.

Four major types of methods can be used to support stream-
ing descriptive analytics: frequency measurement, central ten-
dency measurement, dispersion or variation measurement, and
position measurement. Therefore, streaming descriptive ana-
lytics can be performed at the edge, fog, and cloud. However,
we anticipate that it will be more often executed at the edge
because (i) raw IoT data streams have small volume at the
edge, and (ii) many IoT applications will be required to prevent
data from being moved to a cloud in order to address privacy
concerns.

Streaming diagnostic analytics can be executed close to or
far from an IoT device, depending on where it is more feasible
to install relatively powerful computational resources. Stream-
ing diagnostic analytical tasks are usually supported by a few
on-line algorithms, stream clustering algorithms, and ad-hoc
and continuous queries. Fog and cloud resources are expected
to be used to perform streaming diagnostics analytics since
they provide computation, storage, and accelerator resources
that are more suitable to perform these tasks than edge nodes.
Fog and cloud computing can improve the accuracy and reduce
the computational complexity of the automated tasks in near
real-time.

Streaming predictive analytics requires on-demand analyt-

ical tasks with high availability and rapid elasticity through
the virtually unlimited resources of the cloud. New insights
can be achieved by running machine learning algorithms such
as Adaptive Random Forest, or Hoeffding Adaptive Tree.
Auto-scaling, scheduling, and monitoring services can also
be used to handle the data streams received from the edge
and fog nodes. The analytical tasks are expected to use a
massive amount of historical IoT data that need to be processed
according to the nature of IoT applications.

V. ARCHITECTURE IMPLEMENTATION

The core of our proposed architecture is an integrated
edge/fog/cloud fabric of compute nodes. In this section, we
focus on the detailed description of the implementation of
this integrated fabric. We have implemented a variety of open
source modules and commercial software packages to deploy
the the proposed IoT architecture. Each of them plays an
important role as a module in the overall architecture. The
implementation is illustrated in Fig. 3.

Fig. 3. The overview of our architecture implementation.

A. Run Time

1) Message Broker - RabbitMQ: For the implementation,
we have used RabbitMQ to provide a fault-tolerant, scalable,
high-throughput, and low-latency data pipelines of queuing
real-time streams of IoT data. It is an open source streaming
platform that can deploy different message brokers and provide
a publish-subscribe mechanism to deal with the continuous
incoming of data.

2) IoT Device Connector - Cisco Kinetic: The Cisco Ki-
netic platform is a scalable, secure commercial system, and
is adaptable for a variety of IoT applications. It can be used
to extract, compute, and move the data tuples to the right
applications at the right time. There are three integral parts
of the Cisco Kinetic platform: the Edge & Fog Processing
Module (EFM), the Gateway Management Module (GMM),
and the Data Control Module (DCM). EFM provides the
processing capability at the edge of the network to produce
fast decisions close to the point of action, and reduce data
before sending it to higher levels in the network such as the
fog or the cloud. DCM can be used to deploy fog applications
on the gateways to control the data flow from the edge to the
cloud. GMM can be installed across the gateways and cloud as
a unique tool to provide, manage, and monitor IoT gateways.

3) Data Link - Cisco Kinetic Connector: As a feature
of EFM, Cisco Kinetic Connector provides a wide array
of data links developed by Cisco, Third Party, and Open
Source Community. The Cisco Kinetic Connector supports
connectivity between compute nodes and message brokers. It
also supports the communication with IoT devices using their
native protocol. Moreover, different programming languages
such as Java, JavaScript, Scala, Python, and C are supported.

B. Stream Processing & Analytics

1) Data Flow Editor - Cisco Kinetic Dataflow Editor:
To support a visual data programming environment, we have
employed Cisco Kinetic Dataflow Editor, which is also a
feature in EFM, to customize, modify, and manage data flows
with a graphical layout. It also offers a convenient interface
to create and debug data flows.

2) Parser - JSON python parser: We have mainly used
JSON file format to exchange data objects between our net-
work of compute nodes. We have used the JSON python parser
technique to encode the data structures to JSON strings and
decode them back to dictionary, list, tuple, boolean, or other
numerical data types.

3) Stream Machine Learning Library - Scikit-Multiflow:
Scikit-Multiflow is an open source framework for learning
from data streams and multi-output learning in Python. It
offers main packages to assist the users with handling their
data streams such as stream generators, learning methods,
change detectors, and evaluation methods.

4) Processing library - Python: For dealing with structured
incoming data streams and detecting different data patterns, we
have developed the algorithms to take action when an event
occurs by using a variety of built-in Python libraries such as
numpy or scipy. Our algorithm is able to seek the information
from the events and process them to determine a circumstantial
conclusion of the current data streams.

C. Admin/Control

1) In-memory Database - RethinkDB: It is an open-
source, distributed document-oriented database for the real-
time changing feeds. It allows the developers to push the
continuous queries to retrieve the results in real-time using
ReQL query language that offers an internal (embedded)
domain-specific language officially available for Ruby, Python,
and Java.

2) Visualization (Historical Data) - Superset: Aiming to
extract insights from historical/processed data, we have em-
ployed Superset, which is a new ongoing incubation at the
Apache Software Foundation. It provides an interactive inter-
face for exploring and visualizing data. Superset offers a wide
range of visualization methods for historical data such as chart,
tree, and histogram plot. It also allows developers to create,
share, and embed dashboards in to different applications.

3) Visualization (Real-time Data) - Grafana: For the real-
time data, we have implemented Grafana, which is an open
source platform capable of monitoring and analyzing the
dynamic data incoming from IoT devices. With Grafana,

developers can visualize time series data, create the dashboard,
and visually define the threshold data value to trigger an alert
in real-time.

D. Provision & Orchestration

Aiming to mitigate difficulties in managing, distributing,
and updating the system, we have installed Apache Ambari
and Apache Zookeeper in our network of compute nodes. The
Apache Ambari package is then used to configure and install
the other main modules of our IoT architecture.

E. Security & Governance

For the security, we have also configured Wazuh which is
an open source system for integrity monitoring and threat and
intrusion detection to protect our compute nodes. It consists of
many functions such as security analytics, vulnerability detec-
tion, file integrity monitoring, and configuration assessment.

VI. IMPLEMENTATION AND RESULTS

A smart parking scenario was selected to evaluate our
implementation because it combines communication and in-
formation technology to help drivers efficiently find available
parking spaces. Studies have shown that integrating smart
parking into the city framework can shorten parking search
time, reduce emissions and fuel consumption, and decrease
traffic congestion. The scenario consists of IoT data streams
being generated in real-time whenever a driver parks his/her
car and uses the mobile application of the HotSpot Parking
system which is being used in the city of Saint John, NB,
Canada (Fig. 4). The data streams are fetched by the edge
nodes which are geographically installed close to the pay
station facilities in Saint John. Later the data streams are sent
to a fog node located at the City Hall. Finally, the data arrives
at a Data Center provided by Compute Canada West Cloud
as the IaaS resource that is located in Vancouver. They are
configured to communicate together as a network of nodes.
The detail specifications of each compute node is available in
Table I.

TABLE I
THE OVERVIEW OF THE COMPUTE NODES.

Edge node Fog node Cloud node

OS Ubuntu Mate Window Server CentOS 7.0 (x86 64)
CPU ARM Cortex-A53 Intel Xeon E5-2623 v3 Intel Xeon E5-2650 v2
of Core 4 (1.4GHz 64-bit) 4 (3.00GHz 64-bit) 8 (2.60GHz 64-bit)
RAM 1GB 30GB 30GB
Disk 32GB 1TB 1TB
Hardware Raspberry Pi 3 B+ Commodity Server Virtual Machine

In addition to these resource capabilities, we have deployed
our integrated edge/fog/cloud fabric by installing the IoT
modules across the compute nodes. In order to evaluate our
proposed architecture, we have monitored the latency of the
data streams when they arrived to our compute nodes. To
compute the latency metric, we have collected samples every
10 minutes and registered the arrival times of the data streams
at the edge, fog, and cloud. Figure 5 illustrates the pattern of
the arriving time at different compute nodes.

Fig. 4. Overview of the smart transit scenario.

Fig. 5. Latency Patterns.

As we can see, the latency at the edge and fog are not
significantly different. In contrast, there is a significant differ-
ence between them and the latency in the cloud. In fact, the
latency at the edge and fog has fluctuated around 150 → 800
(ms), while the latency in the cloud has ranged from 200 →
1300 (ms). Although we can see similar latency patterns, there
is clearly a delay when the data streams arrive in the cloud.
This can be explained because we have deployed the edge and
fog nodes geographically close to each other using WSN in
our smart parking scenario. The data is streamed to the cloud
later using the core network. These latency outcomes in Fig.
5 have provided us with new insight on the crucial role of a-
priory mapping between analytical tasks with the appropriate
resource capabilities.

Aiming to test the ability of our proposed IoT architecture
to handle the streaming traffic going through different hops in
our architecture, we have computed the memory consumption
details of the brokers in Fig. 6. Note that the memory details
shown here have been updated only on request because they
could be too expensive to calculate every few seconds on a
busy compute node. As we can see, the total amount of mem-
ory used was around 75MB including allocated memory for
queues, binaries, connections, tables, processes, and system.
The total memory was accounted for approximately 76.5%
of run time allocated for this broker during the last updated
request. This result indicates that there is still a lot of room
in our system to perform more heavier tasks. It also shows
the stability of our architecture during the IoT data streaming
operations.

Fig. 6. Memory Consumption Overview

Finally, we have implemented a network of analytical tasks.
We have implemented an algorithm to automatically execute
the data pre-processing tasks at the edge. The algorithm
detected errors, inconsistencies, redundancies, and wrong data
tuples from the incoming IoT data streams. These tuples have
been clean or deleted. We also implemented a data filtering
task at the edge in order to select the data serving the next
analytical tasks running at the fog node.

At the fog node, we have implemented a diagnostic an-
alytical algorithm by combining continuous/adhoc queries
with a data contextualization task. The aim was to infer the
Empty/Occupied event at a specific parking spot. Inferring
these events was challenging since the data tuples were only
generated whenever a driver parked his/her car. In other words,
we did not have Empty events and could only collect Occupied
events. Figure 7 shows a snapshot of our streaming analytics
for all parking spots in Saint Join.

Fig. 7. Temporal patterns of occupied/empty events that were computed at
the fog node.

The contextualized data streams were continuously trans-
ferred to our cloud for further analytics which was aimed to
obtain long-term insights. For example, Fig. 8 shows the long-
term statistical information about the total parking hours of the
top 50 vehicles using the parking service in the city during 2
weeks of observations (May 13th 2019 to May 26th 2019).
More analytical tasks can be performed in the cloud, and this
is discussed further in the conclusions.

Fig. 8. Usage patterns of the top 50 vehicles

VII. CONCLUSIONS

This paper describes our preliminary results in evaluating
an IoT architecture where edge, fog, and cloud resources are
used to support streaming IoT analytics. A real-world scenario
was used to demonstrate the feasibility of IoT architectures
for smart parking by providing information to drivers that
can assist them in the parking process as well as providing
information to parking managers that can assist them in
their strategic plans for a city. The latency and memory
consumption metrics have pointed out that more research is
needed to develop new metrics to evaluate IoT architectures
in the future. These metrics are fundamental to design the
best IoT architecture according to the specific requirements of
IoT applications. We do not expect that one IoT architecture
will fit all IoT applications. The smart parking scenario has
proven that streaming analytics will always require a priori
mapping between streaming analytical tasks and computa-
tional resources. Future research work will also focus on
implementing an online machine learning in the cloud.

ACKNOWLEDGMENT

This work was supported by the NSERC/Cisco Industrial
Research Chair, Grant IRCPJ 488403-1. We would like to
thank Compute Canada for providing us with the cloud re-
sources, the City of Saint John, NB, Canada, and HotSpot
Parking for giving us access to their IoT stream data.

REFERENCES

[1] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[2] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2015, pp.
239–250.

[3] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “Esc: Towards an
elastic stream computing platform for the cloud,” in 2011 IEEE 4th
International Conference on Cloud Computing. IEEE, 2011, pp. 348–
355.

[4] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive rate
stream processing for smart grid applications on clouds,” in Proceedings
of the 2nd international workshop on Scientific cloud computing. ACM,
2011, pp. 33–38.

[5] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G.
Aref, M. Ouzzani, and A. Ghafoor, “M3: Stream processing on main-
memory mapreduce,” in 2012 IEEE 28th International Conference on
Data Engineering. IEEE, 2012, pp. 1253–1256.

[6] H. Cao and M. Wachowicz, “The design of an IoT-GIS platform for
performing automated analytical tasks,” Computers, Environment and
Urban Systems, vol. 74, pp. 23–40, 2019.

[7] N. Marz and J. Warren, Big Data: Principles and best practices of
scalable real-time data systems. New York; Manning Publications Co.,
2015.

[8] J. Lin, “The lambda and the kappa,” IEEE Internet Computing, vol. 21,
no. 5, pp. 60–66, 2017.

[9] J. Kreps, “Questioning the lambda architecture,” Online article, July,
2014.

[10] W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, “Real-time stream
processing for Big Data,” it-Information Technology, vol. 58, no. 4, pp.
186–194, 2016.

[11] H. Cao and M. Wachowicz, “The design of a streaming analytical
workflow for processing massive transit feeds,” in The 2nd International
Symposium on Spatiotemporal Computing, Aug. 2017.

[12] J. Dittrich and J.-A. Quiané-Ruiz, “Efficient big data processing in
Hadoop MapReduce,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 2014–2015, 2012.

[13] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[14] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 147–156.

[15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[16] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream pro-
cessing at LinkedIn,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1634–1645, 2017.

[17] W. N. Ismail, M. M. Hassan, and H. A. Alsalamah, “Mining of
productive periodic-frequent patterns for IoT data analytics,” Future
Generation Computer Systems, vol. 88, pp. 512–523, 2018.

[18] P. Ta-Shma, A. Akbar, G. Gerson-Golan, G. Hadash, F. Carrez, and
K. Moessner, “An ingestion and analytics architecture for iot applied to
smart city use cases,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 765–774, 2018.

[19] L. Hernandez, H. Cao, and M. Wachowicz, “Implementing an edge-
fog-cloud architecture for stream data management,” in 2017 IEEE Fog
World Congress (FWC). IEEE, 2017, pp. 1–6.

[20] G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, and W. Fan, “IoT
big data stream mining,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 2119–2120.

[21] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow: a
multi-output streaming framework,” The Journal of Machine Learning
Research, vol. 19, no. 1, pp. 2915–2914, 2018.

[22] G. D. F. Morales and A. Bifet, “SAMOA: scalable advanced massive
online analysis.” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 149–153, 2015.

[23] A. Bifet, G. Holmes, B. Pfahringer, J. Read, P. Kranen, H. Kremer,
T. Jansen, and T. Seidl, “MOA: a real-time analytics open source
framework,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2011, pp. 617–620.

[24] H. Cao, M. Wachowicz, C. Renso, and E. Carlini, “Analytics every-
where: generating insights from the internet of things,” IEEE Access,
2019.

