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Motivation

 Building Information Management (BIM):
* 65% of Canada energy in operation.
e Contribute to 17% of greenhouse gas emission.

* |oT platforms:
e Open source platforms versus commercial platforms.

. Surrent platforms collect times series data OR event-triggered
ata.

* Create an interoperable and non-intrusive sensing
environment.

e Occupancy Detection Models:

e Current models are focused on using simulated data and
mathematical models.

 Need for data-driven models.

Plageras (2017)



Research Objectives

* Develop an open source loT platform that can efficiently collect time
series and event based raw data.

* Implement non-intrusive sensing units.
* Apply SVM to predict occupancy.
e Evaluate our SVM model using a real-world data driven experiment.
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Proposed Occupancy Prediction Model using of SVM

* Separates objects by maximizing the margins.
* Classifies objects by distance from hyper-plane .

* The parameters Kernel, Gamma and C.

®
Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/ Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
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Implementation
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Experiment

 \Windowless classroom room with

a projector, lecture podium and 12
desks.

* Two NodeMCUs were deployed. =

* Collected entry/exit events and
prologue occupancy.
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e Collected time series data from all
sensors.
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* The duration of the experiment
was 13 days.




Pre-processing and Analytical Tasks

e Summarization tasks:
* Averages of Observations.
» Standard deviations.
* Max. and Minimum values.

* Annotation tasks:
* Convert all categorical data into numerical data.
* Occupancy status labels were created based on event-triggered data.

* Training tasks:

* Applied a Grid search to optimize parameters.
* 80% of the data was used to train the SVM model.



Results

e Overall accuracy of the SVM prediction was 96%.
* Key parameters: Precision, Recall and F-1 score.
* Misclassified values are reflected by False Negatives and False positives.

CONFUSION MATRIX RESULTS.

Precision  Recall FI Score  Support

Free 0.99 0.97 0.98 40353

Occupied 0.87 095 0091 9186 Free Occupied
Micro Average 0.96 .96 .96 49539 TP = 3 9 ‘N = 135§
Macro Average 0.93 .96 ().94 49539 Free Ll 39002 FN 1351

Weighted Average  0.97 0.96  0.96 49539  Occupied FP =474 TN = 8712




Conclusions

* Deployed an open source loT platform capable of integrating non-
intrusive sensing and a SVM model for predicting indoor occupancy in
buildings.

* Indoor loT platforms are key for collecting non-intrusive sensing data
to understand occupancy patterns toward reducing energy emissions.



Conclusions

* The results presented achieved 96% prediction accuracy.
* Retained the privacy of all occupants.

* This experiment provided useful insights for:
 Threshold tuning of sensors.
 Parameter adjustments to optimize the SVM algorithm.



Future Research

* Improve the threshold adjustments according to different rooms: C02
and TVOC.

* Determine the best location for sensors when scaling up.

* Develop an automated method for labeling the occupancy status for
training the SVM model.

* Introduce the time dimension to our SVM model occupancy.
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