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Motivation

• Building Information Management (BIM):
• 65% of Canada energy in operation.
• Contribute to 17% of greenhouse gas emission.

• IoT platforms:
• Open source platforms versus commercial platforms.
• Current platforms collect times series data OR event-triggered 

data.
• Create an interoperable and non-intrusive sensing 

environment.

• Occupancy Detection Models:
• Current models are focused on using simulated data and 

mathematical models.
• Need for data-driven models.
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Research Objectives 

• Develop an open source IoT platform that can efficiently collect time 
series and event based raw data.

• Implement non-intrusive sensing units. 

• Apply SVM to predict occupancy.

• Evaluate our SVM model using a real-world data driven experiment.
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Proposed IoT Platform
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Proposed Occupancy Prediction Model using of SVM

• Separates objects by maximizing the margins.
• Classifies objects by distance from hyper-plane .

• The parameters Kernel, Gamma and C.

Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/ Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
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Implementation



Experiment

• Windowless classroom room with 
a projector, lecture podium and 12 
desks.

• Two NodeMCUs were deployed.

• Collected entry/exit events and 
prologue occupancy.

• Collected time series data from all 
sensors.

• The duration of the experiment 
was 13 days.
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Pre-processing and Analytical Tasks

• Summarization tasks: 
• Averages of Observations.

• Standard deviations.

• Max. and Minimum values.

• Annotation tasks:
• Convert all categorical data into numerical data.

• Occupancy status labels were created based on event-triggered data.

• Training tasks:
• Applied a Grid search to optimize parameters.

• 80% of the data was used to train the SVM model.
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Results

• Overall accuracy of the SVM prediction was 96%.

• Key parameters: Precision, Recall and F-1 score.

• Misclassified values are reflected by False Negatives and False positives.
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Conclusions

• Deployed an open source IoT platform capable of integrating non-
intrusive sensing and a SVM model for predicting indoor occupancy in 
buildings.

• Indoor IoT platforms are key for collecting non-intrusive sensing data 
to understand occupancy patterns toward reducing energy emissions.
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Conclusions

• The results presented  achieved  96% prediction accuracy.

• Retained the privacy of all occupants.

• This experiment provided useful insights  for:
• Threshold tuning  of  sensors.

• Parameter  adjustments  to  optimize  the SVM algorithm.
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Future Research

• Improve the threshold adjustments according to different rooms: C02 
and TVOC.

• Determine the best location for sensors when scaling up.

• Develop an automated method for labeling the occupancy status for 
training the SVM model.

• Introduce the time dimension to our SVM model occupancy.
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