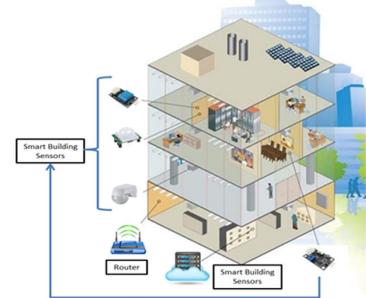


Indoor Occupancy Prediction using an IoT Platform

Alec Parise, Miguel Manso-Callejo, Hung Cao, Marco Mendoca, Harpreet Kholi, Monica Wachowicz

Motivation

- Building Information Management (BIM):
 - 65% of Canada energy in operation.
 - Contribute to 17% of greenhouse gas emission.
- IoT platforms:
 - Open source platforms versus commercial platforms.
 - Current platforms collect times series data OR event-triggered data.
 - Create an interoperable and non-intrusive sensing environment.
- Occupancy Detection Models:
 - Current models are focused on using simulated data and mathematical models.
 - Need for data-driven models.

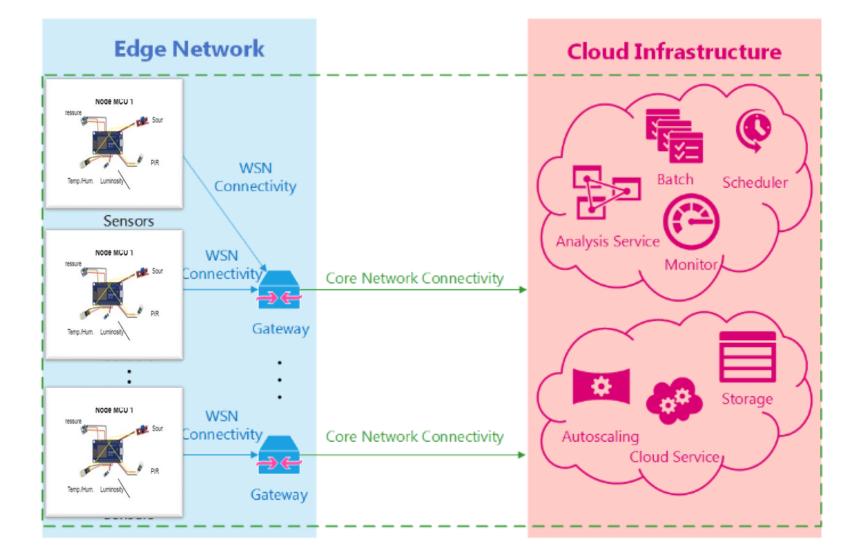


Plageras (2017)

Research Objectives

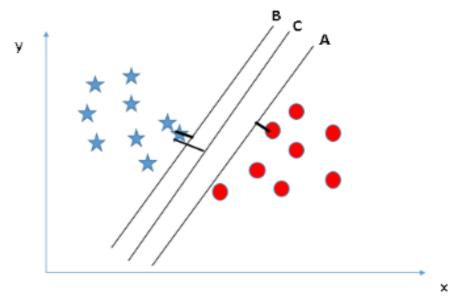
- Develop an open source IoT platform that can efficiently collect time series and event based raw data.
- Implement non-intrusive sensing units.
- Apply SVM to predict occupancy.
- Evaluate our SVM model using a real-world data driven experiment.

Proposed IoT Platform

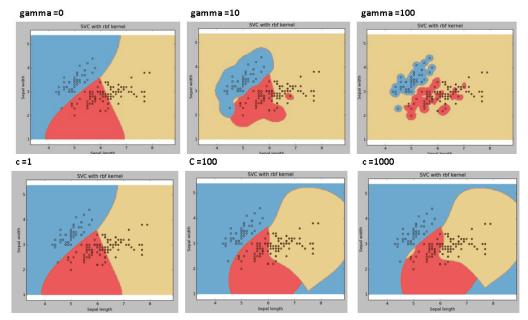


Proposed Occupancy Prediction Model using of SVM

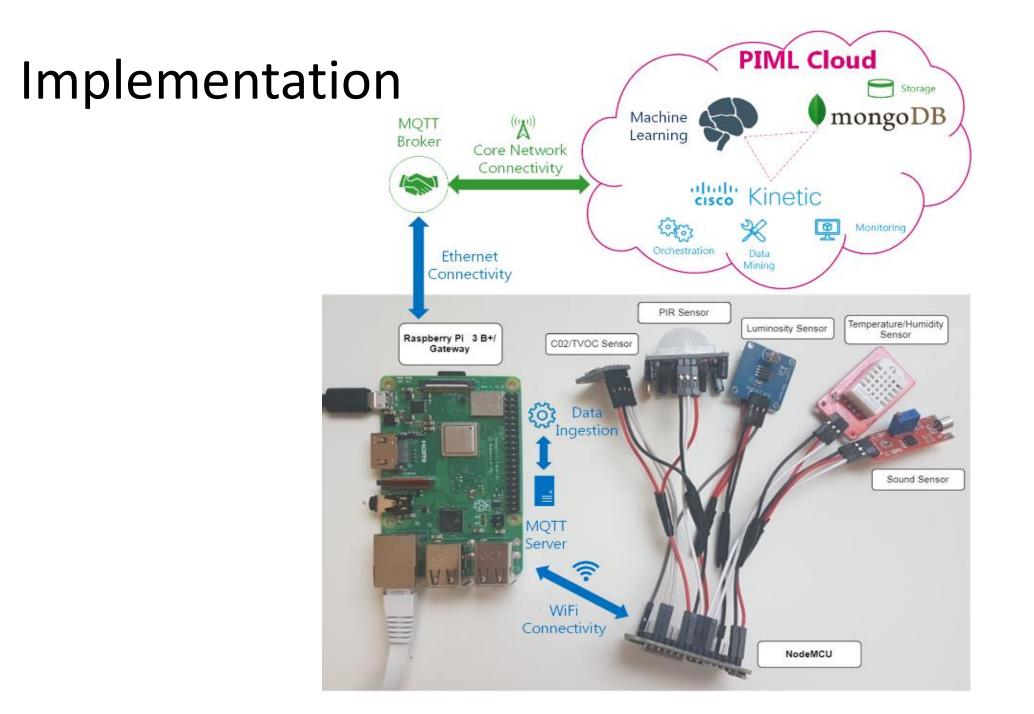
- Separates objects by maximizing the margins.
 - Classifies objects by distance from hyper-plane .
- The parameters Kernel, Gamma and C.



Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/



Source: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/



Experiment

- Windowless classroom room with a projector, lecture podium and 12 desks.
- Two NodeMCUs were deployed.
- Collected entry/exit events and prologue occupancy.
- Collected time series data from all sensors.
- The duration of the experiment was 13 days.

	•	•	•	•	
IoT Sensors	•	•	•	•	
	•	•	•	• IoT Sensors	

Pre-processing and Analytical Tasks

- Summarization tasks:
 - Averages of Observations.
 - Standard deviations.
 - Max. and Minimum values.
- Annotation tasks:
 - Convert all categorical data into numerical data.
 - Occupancy status labels were created based on event-triggered data.
- Training tasks:
 - Applied a Grid search to optimize parameters.
 - 80% of the data was used to train the SVM model.

Results

- Overall accuracy of the SVM prediction was 96%.
- Key parameters: Precision, Recall and F-1 score.
- Misclassified values are reflected by False Negatives and False positives.

	Precision	Recall	F1 Score	Support			
Free Occupied	0.99 0.87	0.97 0.95	0.98 0.91	40353 9186		Free	Occupied
Micro Average Macro Average Weighted Average	0.96 0.93 0.97	0.96 0.96 0.96	0.96 0.94 0.96	49539 49539 49539	Free Occupied	TP = 39002 FP = 474	FN = 1351 TN = 8712

CONFUSION MATRIX RESULTS.

Conclusions

- Deployed an open source IoT platform capable of integrating nonintrusive sensing and a SVM model for predicting indoor occupancy in buildings.
- Indoor IoT platforms are key for collecting non-intrusive sensing data to understand occupancy patterns toward reducing energy emissions.

Conclusions

- The results presented achieved 96% prediction accuracy.
- Retained the privacy of all occupants.
- This experiment provided useful insights for:
 - Threshold tuning of sensors.
 - Parameter adjustments to optimize the SVM algorithm.

Future Research

- Improve the threshold adjustments according to different rooms: CO2 and TVOC.
- Determine the best location for sensors when scaling up.
- Develop an automated method for labeling the occupancy status for training the SVM model.
- Introduce the time dimension to our SVM model occupancy.

References

- S. Ferdoush and X. Li, "Wireless sensor network system design using raspberry pi and arduino for environmental monitoring applications," Procedia Computer Science, vol. 34, pp. 103–110, 2014.
- G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori, and G. Mainetto, "Experimenting an indoor Bluetooth-based positioning service," in23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings.IEEE, 2003, pp. 480–483.
- M. Jin, S. Liu, S. Schiavon, and C. Spanos, "Automated mobile sensing: Towards highgranularity agile indoor environmental quality monitoring," Building and Environment, vol. 127, pp. 268–276, 2018.
- G. Laput, Y. Zhang, and C. Harrison, "Synthetic sensors: Towards general-purpose sensing," in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017, pp. 3986–3999.
- D.Schulte ,"Better buildings for a low carbon future," https://www.ourcommons.ca/Content/Committee/421/ENVI/Reports/RP9989842/envirp17/envir p17-e.pdf, 2018, [Online; Accessed on2019-09-04].

References

- S.H. Ryu and H. J. Moon, "Development of an occupancy prediction model using indoor environmental data based on machine learning techniques, "Building and Environment, vol. 107, pp. 1–9, 2016.
- W. Wang, J. Chen, and T. Hong, "Occupancy prediction through machine learning and data fusion of environmental sensing and wi-fi sensing in buildings, "Automation in Construction, vol. 94, pp. 233–243, 2018.
- A. Fleury, M. Vacher, and N. Noury, "Svm-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results," IEEE transactions on information technology in biomedicine, vol. 14, no. 2, pp. 274–283, 2009.
- N. C. Krishnan and D. J. Cook, "Activity recognition on streaming sensor data, "Pervasive and mobile computing, vol. 10, pp. 138–154,2014.
- Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng, "Occupancy-driven energy management for smart building automation," in Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building. ACM, 2010, pp. 1–6.

References

- [11] B. Abade, D. Perez Abreu, and M. Curado, "A non-intrusive approach for indoor occupancy detection in smart environments, "Sensors, vol. 18, no. 11, p. 3953, 2018.
- [12] C. Brennan, G. W. Taylor, and P. Spachos, "Distributed sensor network for indirect occupancy measurement in smart buildings," in2018 14thInternational Wireless Communications & Mobile Computing Conference (IWCMC). IEEE, 2018, pp. 1290–1295.
- [13] H. Cao, M. Wachowicz, C. Renso, and E. Carlini, "Analytics everywhere: generating insights from the internet of things," IEEE Access, 2019.
- [14] G. Zhang and M. Ravi Shankar, "Exploring vendor capabilities in the cloud environment: A case study of Alibaba cloud computing, "information & Management, vol. 56, no. 3, pp. 343–355, 2019.
- [15] T. Joachims, "Making large-scale svm learning practical," Technical report, SFB 475: Komplexit atsreduktion in Multivariate, Tech. Rep., 1998.

People in Motion Lab www.people-in-motion-lab.org

Thank You!

