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Abstract: The proliferation of Internet of Things (IoT) systems has received much attention from
the research community, and it has brought many innovations to smart cities, particularly through
the Internet of Moving Things (IoMT). The dynamic geographic distribution of IoMT devices enables
the devices to sense themselves and their surroundings on multiple spatio-temporal scales, interact
with each other across a vast geographical area, and perform automated analytical tasks everywhere
and anytime. Currently, most of the geospatial applications of IoMT systems are developed for
abnormal detection and control monitoring. However, it is expected that, in the near future,
optimization and prediction tasks will have a larger impact on the way citizens interact with smart
cities. This paper examines the state of the art of IoMT systems and discusses their crucial role in
supporting anticipatory learning. The maximum potential of IoMT systems in future smart cities can
be fully exploited in terms of proactive decision making and decision delivery via an anticipatory
action/feedback loop. We also examine the challenges and opportunities of anticipatory learning
for IoMT systems in contrast to GIS. The holistic overview provided in this paper highlights the
guidelines and directions for future research on this emerging topic.
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1. Introduction

The Internet of Things (IoT) has received significant attention from the research community since
its first introduction by Kevin Ashton in 1999 [1–3]. The basic concept of IoT is that every physical thing
in a smart city is connected, and can function as a sensor embedded in tiny computers, which are then
geographically distributed over a vast area of a smart city. An IoT device is always connected through
a communication network, ranging from short range networks (e.g., Bluetooth, Zigbee, near-field
communication (NFC)), to medium range networks (e.g., Wi-Fi, Digi Mesh), to large range networks
(e.g., LoRaWan, cellular, WiMax). Today, IoT devices are usually expected to collect sensor data,
communicate with each other, and make decisions without human intervention [4–7]. Some examples
of IoT devices include smart traffic lights, smart parking meters, smart home meters, smartphones,
and wearable devices [8–13].

The IoT market in smart cities has not really taken off yet due to a number of technical, political,
and financial barriers; however, previous survey papers have already shown different points of view
regarding the role of IoT in smart cities. These are mainly related to IoT architecture concerns such as
elements, facilities, protocols, and standards for IoT [14–19], as well as the development of new IoT
applications such as smart factories [20], smart homes [21], and smart hospitals [22].

The Internet of Moving Things (IoMT) takes this a step further, and can be defined as
“the extension of the concept of the IoT to moving things, which is essentially any IoT device that
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moves”. Instead of having a fixed location in a smart city, an IoMT device can be anything people
wear or carry around, such as clothes, smartphones, and wearables; or things used for transportation,
such as cars, trucks, trains, bikes, and planes. When these IoMT devices are connected to each other,
not only can they sense themselves (e.g., speed, acceleration, and direction) and their surrounding
environment (e.g., temperature, noise, and air pollution), they can also exploit the resources made
available by edge, fog, and cloud computing.

Therefore, IoMT devices generate unbounded data streams from a vast amount of indoor and
outdoor locations that require a low-latency database for storing and exploring data in space. Time
is an important dimension because different time windows used to handle IoMT data streams have
an impact on preprocessing, analytical, and visualization tasks. Some examples include landmark
windows [23], sliding windows [24], damped widows [25], and tilted windows [26]. Different time
windows have been proposed to cope with transporting data streams where the data rate could
overwhelm the processing power of the computation resources at the edge, fog, and cloud. In contrast,
the space dimension has been overlooked until now, despite the fact that the data streams are being
generated by IoMT devices moving over large geographical areas, with a fine spatial granularity.
There is now a growing interest and demand for developing IoT-GIS platforms that can handle data
streams generated by IoMT devices. This paper is one step in this direction, mainly because IoMT is
paving the way for anticipatory learning.

As indicated in [27], anticipatory learning is an often misused term. Rosen defined it as “a system
whose current state is determined by a (predicted) future state”, while Nadin has defined it as “a system
whose current state is determined not only by a past state, but also by possible future states” [28–31].
Nevertheless, both authors agree that prediction and anticipation are not interchangeable concepts.
The consensus is that an anticipatory system makes a decision to impact the future in order to benefit
a user; meanwhile, a predictive system uses a predictive model that can foresee the future state of
the system itself.

In this paper, anticipatory learning for IoMT is defined as “a system where the current state
is determined by the past and future behavior of IoMT devices that is represented by the dynamic
geographical distribution of IoMT devices over time”. This is critical for building context intelligence
for anticipatory learning models. Mainly because IoMT devices are equipped with different sensors,
which generate data streams of spatio-temporal information used to infer contextual intelligence on
what is happening, where and why it is happening, and what should be done about it. In other words,
contextual intelligence requires that anticipatory learning models have: (1) a context sensing strategy of
relevant past events detected or monitored by IoMT devices; (2) spatio-temporal awareness of present contextual
variables being continuously used for gathered IoMT data; and (3) user-driven awareness of the preferred future
so the system can exert influence and help a user to make appropriate decisions.

Current edge–fog–cloud computing is the technology which allows us to run machine learning
algorithms and build anticipatory learning models [32,33]. In contrast, our current GIS technology
has been primarily developed for supporting predictive systems. Recent attempts at designing
IoMT-GIS have shown the main limitations of GIS in processing IoMT data streams [34,35]. Adding
the functionalities of an anticipatory learning model to GIS will only create more barriers to using GIS
for running streaming machine learning for building anticipatory learning models.

Since a fairly systematic overview of IoT systems has been recently published elsewhere [36], our
paper focuses on IoMT systems. Our purpose is not only to give a holistic overview of IoMT research
that is relevant to each stage of an anticipatory learning model but also to provide some guidelines
and future research directions for building anticipatory learning models for IoMT systems.

The rest of the paper is organized as follows. Section 2 introduces the main concepts of IoMT
systems and compares the data collection strategies currently being used in research projects. Section 3
describes the main steps involved in building anticipatory models for IoMT systems. Section 4 describes
the research being carried out on context sensing at the edge of a network, while Section 5 introduces
context intelligence using fog computing. Section 6 delineates the prediction and intelligent actions for
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anticipatory learning. Section 7 gives a a holistic overview of the challenges and opportunities for building
anticipatory learning for IoMT systems. Finally, conclusions and future research are given in Section 8.

2. Internet of Moving Things

In general, IoMT devices are equipped with many types of sensors, from accelerometers and
gyroscopes to proximity, light, and ambient sensors, as well as microphones, and cameras. They also
have the capability of computing by using a wide range of communication interfaces, such as Wi-Fi,
Bluetooth, or NFC. The ability to sense themselves and their surrounding environments is key to
generating “small data streams” over space and time in such a way that they share many characteristics
of big data, including the five V’s: variety, velocity, volume, veracity, and value [37–41].

The nature of IoMT data streams is multimodel, diverse, heterogeneous, and voluminous; often
supplied at high speed, and with a degree of uncertainty. In general, these data streams also have
distinctive characteristics that make the traditional storage, management, and processing of current
GIS obsolete [42]. These characteristics can be described as one of the following:

• Data in motion: The IoMT devices have the ability to sense themselves using context variables
such as velocity, acceleration, and direction at a specific location and time. However, they can
also sense their surrounding environments using context variables such as temperature, noise,
and air pollution, and depending on the type of sensor deployed inside an IoMT device, these
variables might have a variety of spatial ranges (e.g., from 1 and 10 m to 100 m and 1 km) as well
as time granularities (e.g., from milliseconds and seconds to hours and days). Overall context
sensing data are constantly moving from the IoMT devices to edge and fog nodes, up to the cloud
depending on the processing power and storage resources available;

• Data in many forms: Depending on the context intelligence envisaged for an anticipatory learning
model, each IoMT device can perform different sensing functions for collecting time-series and
event triggered data. This leads to different data types including structured, semistructured,
unstructured, and mixed data streams;

• Data at rest: It is indisputable that IoMT devices produce a large amount of data streams that
are always tied with a location over time. This poses a challenge to capturing, processing, and
managing the data within an appropriate spatio-temporal scale that is needed to be known a priori
when developing anticipatory learning models;

• Data in suspicion: The uncertainty refers to the biases, noise, and abnormalities in the data streams
for reasons such as data inconsistency and incompleteness, latency, ambiguity, deception, and
approximation;

• Data of many values: The potential context hidden deep in the IoMT data streams is significant
and has not yet been fully exploited. By processing, computing, analyzing, and making decisions
based on this context could help us support decision-making actions. Anticipatory computing is
considered in this paper as a key approach to exploiting that potential.

Table 1 compares some selected research projects where the data from IoMT devices were collected
using several different sensors, such as GPS, radio-frequency identification (RFID) tags, and cameras.
They have been categorized into four common types: structured, unstructured, semistructured, and
mixed. Structured data are the information that complies with a formal schema and data models;
meanwhile unstructured data do not follow any predefined data model. Semistructured data do not
reside in a data model, but do have some organizational structures that make them easier to analyze
(e.g., CSV, XML, JSON file). Mixed data are the combination of many types of data together. It is argued
that a large part of IoMT data produced today is either semistructured or unstructured data [38]. Our
literature review of selected projects confirms this hypothesis, and it also reveals the following main
issues in GIS:

• Uniqueness: The IoMT data streams are a unique type of spatio-temporal data because they
represent an immense cloud of location points over time in such a way that current spatial
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representations (e.g., trajectories, time geography, and layers) cannot handle the volume of these
data points and their assigned semistructured and unstructured data;

• Propagation: We consider propagation as a discrete-time process starting from one data point to
another data point that is able to accumulate context information and is governed by the progress
speed between the two or more data points. Spatio-temporal progress matrices have been used in
the past, but they cannot handle nonstructured and unstructured data streams. More research
work is needed in this domain;

• Multiprocessing: It is easy to see from Table 1 that accumulated data streams can arrive and
require processing at various speeds from batch to near real-time or real-time processing. Most
of the research projects have used batch processing to analyze their data. The development of
streaming GIS is needed for analyzing the data streams as they arrive.

Table 1. Overview of Internet of Moving Things (IoMT) research projects.

Data in Many
Forms Data at Rest Goal Sensors/IoMT Devices Reference

Mixed

Batch

Moving Object Map
Analytics (MOMA) for
connected vehicles

GPS, Camera,
Environmental Sensors [43]

Location Prediction GSM traces, Cellular calls,
survey data [44]

Real-time

Mobility-aware trustworthy
crowdsourcing (MATCS) Crowdsourced data [45]

Urban Trajectory Data
Analytics System

GPS, Rain Gauge Data, Road
Incident Report, Social
Media

[46]

Semistructured Real-time
Smart Object framework Sensors [47]

Traffic Monitoring Traffic lights [48]

Structured Batch

Clustering of IoT devices UAVs [49]

CityPulse framework Bus [50]

IoT-Based Smart Parking Ultrasonic [51]

Real-time Analyzing people’s activities RFID tags [52]
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Table 1. Cont.

Data in Many
Forms Data at Rest Goal Sensors/IoMT Devices Reference

Unstructured

Batch

Ambient intelligence with
adaptive decisions Internet Packet [53]

Ambient intelligence with
adaptive decisions Internet Packet [54]

Media-aware security RFID tags, IPTV, VoIP, VoD [55]

Locationing phone Wifi Scanner, Bluetooth
Scanner [56]

UBICON (Anticipatory
Ubiquitous Computing) RFID tags, Bluetooth Signal [57]

Traffic Congestion Prediction GPS [58]

Complex Event Processing RFID, GPS [59]

Mode Transportation
Prediction Crowdsourced data [60,61]

Mobility Prediction Smart Card [62]

Mining the semantics of
origin-destination flows GPS, Mobile Phone [63]

Optimizing the mobility
models and communication
performance

GPS [64]

CarStream Services

driving data including
vehicle status, driver activity,
and passenger-trip
information

[65]

Traffic monitoring and alert
notification Geo-location and speed data [66]

Transportation Network
Optimization

GIS and the Internet of
multimedia [67]

Emissions and traffic-related
impacts Crowdsourced data [68]

Multi Access Physical
Monitoring System wearable smart-log data [69]

Wearable health monitoring
system

RFID, ECG Sensor, Body
Temperature Sensor, Blood
Pressure Sensor

[70]

Early detection of Alzheimer
disease Motion Sensor data [70]

Near real-time Transportation Planning Bluetooth Signal [71]

Real-time Pedestrian Safety Detection Phone Camera [72]

3. Anticipatory Learning Model

“Anticipation pertains to change, that is, to a sense of the future” [30]. From an IoMT perspective,
we need to be able to acquire data streams that can be used to sense a comprehensive context in space
and time, and infer anticipatory actions based on predictions of the future state of this context. To that
end, Figure 1 illustrates four main steps in building anticipatory learning models which are: (1) context
sensing; (2) context intelligence; (3) context prediction; and (4) anticipatory action/feedback loop, as previously
proposed in [73,74]. Most state of the art research is currently limited to the first three steps. Pejovic
and Musolesi [27] stated that the main barrier to further proliferation of anticipatory computing is
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the inability of IoMT devices (and IoT in general) to seamlessly interact with humans and generate
feedback, which is vital to guiding an anticipatory learning process. The literature review presented in
this paper also reveals another barrier to the proliferation of anticipatory learning models, which is
the lack of approaches to represent a priori spatio-temporal knowledge of a particular context. This is
crucial for avoiding an Internet of “Useless” MobileThings in guiding anticipatory learning processes
in the near future.
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Figure 1. Overview of the main steps involved in building anticipatory learning models using IoMT systems.

4. Context Sensing at the Edge of a Network

For an anticipatory learning model, sensing plays an important role in delivering the data used
to generate context intelligence. Context may be divided into various categories (location, identity,
activity, time) [75] and may have numerous aspects, such as geographical, physical, social, and
temporal aspects [76]. Contextual sensing aims to provide an interface between IoMT devices (things)
in the physical world and a person or a group of people.

In vehicular context sensing, IoMT devices in a vehicle can detect important aspects of driver
behavior and the surrounding environment over time. On-board sensors in the vehicle, as well as
sensors built into mobile devices carried by the driver, can also be used to gather IoMT data streams.
Furthermore, IoMT data streams from different cars can provide increased spatial coverage to better
understand the context, and can also help to reduce disambiguation. Context sensing can provide
information on drivers changing lanes, stop signs, obstructions, and potholes. These features can be
further used to infer a context that will be used within an anticipatory learning model to improve
driver safety and engine efficiency.

In order to achieve this, data preprocessing is necessary to extract features from IoMT data
streams and use those features to provide context intelligence. The availability of edge computing
power promisingly allows us to run many preprocessing techniques near to an IoMT device, rather
than having all IoMT data streams sent to a data center [77–81]. The correct choice of preprocessing
techniques will be vital in the later steps of building an anticipatory learning model. A brief description
of each preprocessing step is presented as follows:
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• Dealing with missing data: For a large accumulated data streams, deleting observations based on
missing values is usually not considered as being a problem, but for a continuous data stream, it
may affect our later steps in anticipatory learning. Therefore, missing values could be replaced
based on predictive models [82,83];

• Filtering: IoMT devices usually produce noise data streams. In order to minimize the impact on
succeeding steps, a clear set of automated tasks are needed to define, detect, and correct errors.
Some new approaches can be found in [84,85];

• Summarization and aggregation: For some applications, the summary form of accumulated data
streams might be enough for statistical analysis [86,87]; other applications may require data
aggregation to diminish the bandwidth consumption as well as the data latency [88];

• Cleaning: IoMT data streams sometimes originate irrelevant or inaccurate data. Cleaning
techniques are needed to reduce computational time and complexity, and to improve
the performance of the predictive model, as a result of fewer data features [83,89];

• Transforming: To deal with the complexity of the IoMT data streams, principal component analysis
(PCA) is a commonly used technique to reduce the number of the data features [90]. Another
technique, latent Dirichlet allocation (LDA), is used to find a linear combination of features
that characterize or separate two or more classes [91,92]. Recently, pattern reduction (PR) was
presented in [93] for reducing the number of patterns.

It is of paramount importance that IoMT data streams are preprocessed before passing to the next
step (i.e., context intelligence). Should we, therefore, stream all of our IoMT data to the cloud (data
centers)? Our answer to this question is no. The closer to the data source the preprocessing is
performed, the more advantages the IoMT system has. With the huge volume of IoMT data streams
produced by a variety of sensors, it is highly possible to flood and overwhelm the networks and data
centers (i.e., the cloud). In addition, some preprocessing tasks can be implemented using a specific set
of IoMT devices which can help to improve the interactions between devices and improve the efficiency
of the whole system.

5. Context Intelligence at the Fog Layer of a Network

Context intelligence requires inductive reasoning to infer higher-level concepts from preprocessed
IoMT data streams. With academic references from as early as the 1980s, this is not a new theory;
however, IoMT systems have revealed that context intelligence requires anticipatory learning models
which understand the limitations of our algorithms in generating new knowledge, and are able to
adapt this knowledge to an environment different from the one in which the learning model was
trained. Contextual intelligence requires moving far beyond an analysis of economic, urban, rural,
and many other spaces. It is common to rely on simple explanations for complex high-level concepts
(i.e., complex phenomena such as human behavior). The most difficult task in this step is adjusting
our persistent mental models and learning to differentiate between universal beliefs and their specific
patterns and standards.

Our vision of context intelligence is to distribute streaming analytics into a hierarchical order,
starting with descriptive analytics, which can be processed on edge nodes themselves (i.e., gateways),
and perform more complex diagnostic analytics on fog nodes. Bonomi et al. [77,78] previously
proposed a hierarchical distributed architecture based on fog computing to process IoT data with low
latency, location awareness, and mobility support. We extended this distributed architecture with
the following elements:

• Scalability: By distributing automated analytical tasks, context intelligence depends on
the scalability of IoMT devices. Many context models will require simple machine learning
algorithms such as the linear Spanish inquisition protocol (L-SIP) which has been applied to
reduce data transmission; filtered state classification (ClassAct) as a human posture/activity
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classifier based on decision tree; and time-discounted histogram encoding (Bare Necessities)
which is used for summarizing the relative time spent in given contexts [94];

• Mobility and geographic distribution: These are indispensable requirements for context intelligence;
however, an anticipatory learning system also requires a rich scenario of communication and
interaction between all available computational resources. To achieve this, a priori data pipelines
must be designed that will support an analytics everywhere framework [95–97];

• Heterogeneity and interoperability: Obviously, terminal devices in the IoMT system can collect data
with different timestamps, formats, and locations. Additionally, the edge network computing
devices which deploy the IoT gateways could seamlessly support the interoperability between
terminal devices. For example, an array of devices including an armband sensor, a Bluetooth
headset, a smartphone, an external antenna for a GPS receiver, and a light laptop with a transceiver
[98] were combined to collect human activity data, which were then processed to predict
the context around them.

6. Context Prediction and Anticipatory Actions

Context prediction and anticipatory action are the two important steps for anticipatory learning
models. Anticipatory action refers to the act (behavior), including actual decision making; internal
preparatory mechanisms; or learning that is dependent on predictions, expectations, aims, or beliefs
about future states. According to [31], anticipation focuses on the impact of a prediction or expectation
of current behavior. Stated in another way, anticipatory actions are not only about predicting the future
or expecting a future event but also about changing behavior (or behavioral biases and predispositions)
according to this prediction or expectation. For anticipatory learning models to assist citizens in
changing their behavior, context prediction and intelligence-driven actions must play a major role.

Previous research has described different prediction models used to predict the behavior of people
or IoMT devices. Tsai, Chun-Wei, et al. [99] give a brief review of data mining techniques for IoT
systems. Figure 2 illustrates the state of the art research for context prediction using different analytical
algorithms and a variety of data sources, while Table 2 below summarizes the approaches used for
building a prediction model based on supervised and unsupervised prediction techniques [100–102].
Supervised techniques rely on labeled data and training to find a model that can afterwards be applied
to a new dataset. Unsupervised techniques, in contrast, use unlabeled data and attempt to predict
common patterns.

Table 2. State-of-the-art projects using approaches in Figure 2.

Analytical Algorithms References Data Sources References

(1) [103] (i) [48,49,104–107]
(2) [53] (ii) [48,57,108,109]
(3) [60,109] (iii) [43,110,111]
(4) [46] (iv) [112]
(5) [46,48,61,113] (v) [60,61,110,113–116]
(6) [58] (vi) [104,117]
(7) [71] (vii) [118]
(8) [71,111,117] (viii) [103,111,119]
(9) [58,112] (ix) [120]
(10) [121] (x) [122]
(11) [63,109] (xi) [63,108,109,121–124]
(12) [49] (xii) [62]
(13) [57,115,119] (xiii) [57,104]
(14) [108] (xiv) [43,46,58,63,103,106,108,114,117,125–127]
(15) [48,103] (xv) [49]
(16) [109] (xvi) [46]
(17) [124,128] (xvii) [43]
(18) [123] (xviii) [118]
(19) [118] (xix) [46,122]
(20) [62,126] (xx) [43,117,129]
(21) [43,105,107,114] (xxi) [53]
(22) [106] (xxii) [46]
(23) [127]
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Context 
Prediction

Data Source

Analytical 
Algorithms

(iii) Spatial-Temporal Data

(xx) Camera

(xxi) Internet Packet

(xv) Survey data

(xiii) RFID tags

(viii) Sensors

(xvii) Traffic lights

(v) Crowdsourced data

(xvi) Rain Gauge Data

(xxii) Road Incident 
Report

(xii) Smart Card

(xi) Mobile Phone

(vi) Ultra-Wide Band 

(x) Online location-based 

(xix) social networks

(ii) Bluetooth and WLAN 
history

(i) WiFi and GSM radio 
fingerprints

(vii) Community well-
being census data

(xviii) Public transport 
mobility data

(xiv) GPS data

(ix) Passenger-side-facing 
ultrasonic rangefinder

(iv) Trace of the mobility 
patterns  

(2) Bayesian coalition game based on 
the concepts of game theory and 

Learning Automata (LA)

(12) Emperical Study, Bayesian

(5) Support Vector Machine (SVM)

(6) Deep Restricted Boltzmann 
Machine

(8) Markov Chain Monte Carlo in 
Bayesian Model Averaging

(4) Kernel Regression

(3) Gradient Boosting Trees

(10) Mobile probability tree

(13) Decision Tree Algorithms

(14) Multivariate nonlinear time 
series prediction techniques

(15) Naïve Bayes

(17) Regression

(18) Bayesian Network

(19) Pearson correlation coefficient

(20) Conditional Random Fields

(22) Nonlinear time series analysis

(21) Markov-based and compression-
based predictors (LZ-based 

predictors)

(23) T-pattern Tree

 (11) Artificial Neural Networks (ANN)

(16) Dynamical Bayesian Network 
(DBN)

(1) Linear Discriminant Analysis (LDA)

 (9) Recurrent Neural Network

(7) Gaussian Mixture Models with 
Expectation Maximization

Figure 2. Overview of different approaches developed for prediction models.

7. Research Challenges and Opportunities

While the principles of anticipatory learning modeling have been studied for several
decades [28,130], IoMT is actually in its infancy. Although recently, researchers attempted to integrate
an anticipatory process into artificial learning systems [131–135], few attempts can be found on research
applications that apply the theory of anticipatory computing to building context intelligence in IoMT
devices [136,137]. We advocate that the proliferation of IoMT devices has created a unique opportunity
to explore anticipatory learning models using the vast amount of IoMT data streams. This section
discusses the research challenges in applying anticipatory computing for IoMT systems.

7.1. Research Challenges

Anticipatory learning for IoMT systems is reliant on multidisciplinary research fields such as
the Internet of Things, big data analytics, geospatial data science, cloud computing, edge computing,
machine learning, and data mining. Inherent challenges to this are discussed below.

• Privacy: One of the main concerns about deploying IoMT devices around a smart city is how
to generate anticipatory actions from IoMT data streams without violating user privacy. Some
examples of sensitive information gathered by IoMT devices include locations, activities, and
emotions. For example, anticipatory computing can be misused to predict the future user locations
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or activities of an individual. Preserving privacy becomes even more complex when it comes to
considering the inconsistent privacy policies among multiple users. One example includes the case
of one user who may only want to donate one type of data (i.e., Bluetooth data), while another
one donates two types (e.g., Bluetooth and Wi-Fi usage data). When these data are combined and
co-location patterns are found, the information of the first user can be unintentionally exposed;

• Security: The diversity of IoMT devices that we expect in smart cities poses a significant challenge
to ensuring the security of the entire anticipatory learning process, especially regarding wearable
devices, body sensor networks, or carried items (such as smartphones). IoMT devices may pose
a threat to users due to susceptibility to hacking. Although there is currently some attention on
the issue of security for the IoMT systems [138–140], there is no common standard, protocol, or
security framework for IoMT devices. Therefore, addressing security issues for IoMT is now an
urgent concern in our research work;

• Connection: One of the key factors to making IoMT devices work effectively is the communication
networks used by them. Mobility poses a challenge in terms of always maintaining a stable
connection among IoMT devices in a smart city. In the future, new networking technology is
expected to be used to keep IoMT devices collecting data seamlessly, regardless of their location,
over short and long periods of time [141–145];

• Turbulence: Different from the fixed-location-based IoT devices, the mobility of the devices
usually creates chaotic and unstable interactions between these devices. For example, IoT
devices deployed at a fixed location always know to which neighbors they are communicating.
In contrast, IoMT devices do not know a priori about their close neighbors. The first law
of geography needs to be further explored in terms of the potential impact of geographical
proximity on the interoperability, power usage, automation of analytical tasks, data pipelines, and
communication protocols of IoMT devices;

• Management: Selecting the right type of IoMT device to support a specific anticipatory task is not
an easy choice. If we choose many IoMT devices it may cause many problems such as power
drains, noise, and data latency, to mention a few. Alternatively, if fewer devices, edge nodes,
and fog nodes are deployed over a large geographical area, there may be gaps in data collection.
Another challenge is how to efficiently manage the energy usage patterns of IoMT devices as
they move;

• Information loss: Processing data streams at the edge of a network brings potential information loss,
a risk that must be balanced between the efficiency of the system and the value of the contextual
information lost. It also raises an important question about the possible geographical divide, where
regions of a smart city will determine which data streams should be processed at the edge nodes,
and which data streams should be processed in a cloud computing environment. Determining
which types of data streams and mobility behavior of IoMT devices and where they should be
used for data processing remains an interesting research challenge;

• Steaming geospatial analytics: the spatial relationship among the locations of the measured
contextual variables using a sequence of accumulated data streams is demanding new methods
that do not rely on density and proximity, but on the connectivity of a massive cloud of data
points. The research challenge is threefold: (1) How to develop new spatial interpolation processes
for determining which data points from the current data streams should be used to estimate values at
other unknown points; (2) how to select the type of time windows that should be used for streaming
geospatial analytics; and (3) geospatial summarization where the connectivity of the IoMT devices is used
to summarize accumulated data streams over space and time;

• Analytics everywhere frameworks: From our literature review, there are over 400 architectures
that were developed to handle the incoming IoT data streams using different strategies such
as streaming, microbatch, and batch processing. These strategies have been designed to work
towards an asynchronous approach for static IoT devices. For developing anticipatory learning
models using IoMT systems, we identified the need for analytics everywhere frameworks that are
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capable of breaking down the processing and analytical capabilities into a network of streaming
tasks and distributing them into different compute nodes in an edge–fog–cloud continuum.
The research challenge is to develop location aware analytical capabilities to support streaming
descriptive, diagnostic, and predictive analytics.

7.2. Opportunities

Along with the above-mentioned challenges, there are always some opportunities. We illustrate
some of these in terms of anticipatory computing for IoMT systems.

• Locations offer many opportunities for geospatial research: The context sensing ability of an
IoMT system usually produces data streams that bring the opportunity for developing new
location-aware applications. The mobility of these devices can also be examined using different
spatial and temporal scales. New location prediction and mobility prediction models are needed
to support anticipatory learning models, especially in the case for smart cities;

• Real-time anticipatory actions: Having a learning engine close to an IoMT device, and combining
the knowledge and insight which is computed in a cloud environment, can anticipate the needs
of citizens in real time. As delineated in [146], “if this real-time analytics is fed into some kind of
a predictive model and the results are used to take the user current decisions, then we have what
is defined as anticipatory computing. If the output of the predictive model is directly fed into an
automated decision-making process, it ensures a desired outcome. This is prescriptive analytics.
This roadmap essentially is shaping the future.”

• Integration with opportunistic computing: There is a concern for how users carrying IoMT devices
could interact with each other opportunistically [147]. IoMT could be an enabler by providing
more interaction between users through moving devices. Some typical applications might include
human-centric sensing, and data sharing;

• Combination of different research fields to mimic human anticipatory actions: Recently, some digital
assistants, such as Apple Siri, Google Now, Microsoft Cortana [148], have become able to help
people do things such as sending a text, playing a song, adding a reminder, etc. None of these
tasks required anticipatory actions. Researchers are looking for a tool that can give instantaneous
delivery, understand surrounding context, and be able to analyze a huge amount of streaming
data [149]. To achieve this, anticipatory computing needs to combine many fields of research
such as geography, deep learning, humanoid robots, artificial general intelligence, and big
data analytics.

8. Conclusions

This paper discusses anticipatory computing, which refers to systems that are focused on
anticipating what is most relevant to users and acting accordingly, rather than only reacting to user
commands. Anticipatory actions rely on different predictive models by combining processing levels
such as cloud, edge, and fog nodes deployed around a smart city. It is important to point out that
anticipatory computing and IoMT systems are continuously changing. In addition, the proliferation of
IoMT devices offers many related research challenges and opportunities as discussed in this paper.

The promising trend toward IoMT (and IoT in general) has already attracted researchers from
different industries, academic fields, research groups, government departments, etc., who are laying
the foundation for smart cities. We have identified a gap in this foundation: the anticipation actions,
which are expected to have a strong impact on the way smart cities will operate in the future. Hopefully,
the path laid out in this paper will give useful guidelines for further research in this emerging topic.
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66. Celesti, A.; Galletta, A.; Carnevale, L.; Fazio, M.; Ĺay-Ekuakille, A.; Villari, M. An IoT cloud system for traffic
monitoring and vehicular accidents prevention based on mobile sensor data processing. IEEE Sens. J. 2017,
18, 4795–4802.

67. Yang, J.; Han, Y.; Wang, Y.; Jiang, B.; Lv, Z.; Song, H. Optimization of real-time traffic network assignment
based on IoT data using DBN and clustering model in smart city. Future Gener. Comput. Syst. 2017. [CrossRef]

68. Tafidis, P.; Teixeira, J.; Bahmankhah, B.; Macedo, E.; Coelho, M.C.; Bandeira, J. Exploring crowdsourcing
information to predict traffic-related impacts. In Proceedings of the 2017 IEEE International Conference on
Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe
(EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6.

69. Manogaran, G.; Shakeel, P.M.; Fouad, H.; Nam, Y.; Baskar, S.; Chilamkurti, N.; Sundarasekar, R. Wearable
IoT smart-log patch: An edge computing-based Bayesian deep learning network system for multi access
physical monitoring system. Sensors 2019, 19, 3030.

70. Wan, J.; Al-awlaqi, M.A.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time
health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298.

71. Herrera-Quintero, L.F.; Banse, K.; Vega-Alfonso, J.; Venegas-Sanchez, A. Smart ITS sensor for
the transportation planning using the IoT and Bigdata approaches to produce ITS cloud services. In
Proceedings of the 2016 8th Euro American Conference on Telematics and Information Systems, EATIS 2016,
Cartagena, Colombia, 28–29 April 2016; doi:10.1109/EATIS.2016.7520096. [CrossRef]

72. Wang, T.; Cardone, G.; Corradi, A.; Torresani, L.; Campbell, A.T. WalkSafe: A pedestrian safety app for
mobile phone users who walk and talk while crossing roads. In Proceedings of the HotMobile 2012-13th
Workshop on Mobile Computing Systems and Applications, San Diego, CA, USA, 28–29 February 2012;
pp. 1–6, doi:10.1145/2162081.2162089. [CrossRef]

https://doi.org/10.1109/TVT.2014.2356231
http://dx.doi.org/10.1109/TVT.2014.2356231
https://doi.org/10.1109/MNET.2011.5772059
http://dx.doi.org/10.1109/MNET.2011.5772059
https://doi.org/10.1109/IoTDI.2015.41
http://dx.doi.org/10.1109/IoTDI.2015.41
https://doi.org/10.1145/2968219.2968438
http://dx.doi.org/10.1145/2968219.2968438
https://doi.org/10.1371/journal.pone.0119044
http://dx.doi.org/10.1371/journal.pone.0119044
https://doi.org/10.1155/2013/723260
http://dx.doi.org/10.1155/2013/723260
https://doi.org/10.3390/s150715974
http://dx.doi.org/10.3390/s150715974
https://doi.org/10.7225/toms.v05.n02.002
http://dx.doi.org/10.7225/toms.v05.n02.002
https://doi.org/10.1007/s10115-014-0763-x
http://dx.doi.org/10.1007/s10115-014-0763-x
https://doi.org/10.1145/2370216.2370425
http://dx.doi.org/10.1145/2370216.2370425
http://dx.doi.org/10.1016/j.future.2017.12.012
https://doi.org/10.1109/EATIS.2016.7520096
http://dx.doi.org/10.1109/EATIS.2016.7520096
https://doi.org/10.1145/2162081.2162089
http://dx.doi.org/10.1145/2162081.2162089


ISPRS Int. J. Geo-Inf. 2020, 9, 272 16 of 19

73. Meurisch, C. Intelligent personal guidance of human behavior utilizing anticipatory models. In Proceedings
of the 2016 UbiComp 2016 Adjunct ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Heidelberg, Germany, 12–16 September 2016; pp. 441–445, doi:10.1145/2968219.2971355.
[CrossRef]

74. Meurisch, C.; Janssen, F.; Naeem, U.; Schmidt, B.; Azam, M.A.; Möhlhäuser, M. Smarticipation-intelligent
personal guidance of human behavior utilizing anticipatory models. In Proceedings of the 2016
UbiComp 2016 Adjunct ACM International Joint Conference on Pervasive and Ubiquitous Computing,
Heidelberg, Germany, 12–16 September 2016; pp. 1227–1230, doi:10.1145/2968219.2968436. [CrossRef]

75. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a Better Understanding
of Context and Context-Awareness. In Handheld and Ubiquitous Computing; Gellersen, H.W., Ed.; Springer:
Berlin, Germany, 1999; pp. 304–307.

76. Turner, E.H.; Turner, R.M.; Phelps, J.; Neal, M.; Grunden, C.; Mailman, J. Aspects of context for understanding
multi-modal communication. Lect. Notes Comput. Sci. 1999, 1688, 523–526, doi:10.1007/3-540-48315-2_54.
[CrossRef]

77. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog Computing: A Platform for Internet of Things and Analytics.
In Big Data and Internet of Things: A Roadmap for Smart Environments; Springer International Publishing:
Cham, Switzerland, 2014; pp. 169–186, doi:10.1007/978-3-319-05029-4_7. [CrossRef]

78. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; pp. 13–16, doi:10.1145/2342509.2342513. [CrossRef]

79. Maduako, I.; Cao, H.; Hernandez, L.; Wachowicz, M. Combining edge and cloud computing for mobility
analytics. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA,
12–14 October 2017; pp. 1–3.

80. Ning, Z.; Huang, J.; Wang, X. Vehicular fog computing: Enabling real-time traffic management for smart
cities. IEEE Wirel. Commun. 2019, 26, 87–93.

81. Bellavista, P.; Berrocal, J.; Corradi, A.; Das, S.K.; Foschini, L.; Zanni, A. A survey on fog computing for
the Internet of Things. Pervasive Mob. Comput. 2019, 52, 71–99.

82. Larose, D.T.; Larose, C.D. Discovering Knowledge in Data: An Introduction to Data Mining; John Wiley & Sons:
Hoboken, NJ, USA, 2014; Volume 4.

83. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin, Germany, 2013; pp. 1–600,
doi:10.1007/978-1-4614-6849-3. [CrossRef]

84. Sáez, J.A.; Galar, M.; Luengo, J.; Herrera, F. INFFC: An iterative class noise filter based on the fusion
of classifiers with noise sensitivity control. Inf. Fusion 2016, 27, 19–32, doi:10.1016/j.inffus.2015.04.002.
[CrossRef]

85. Sáez, J.A.; Luengo, J.; Herrera, F. Predicting noise filtering efficacy with data complexity measures for nearest
neighbor classification. Pattern Recognit. 2013, 46, 355–364, doi:10.1016/j.patcog.2012.07.009. [CrossRef]

86. Barnaghi, P.; Sheth, A.; Henson, C. From data to actionable knowledge: Big data challenges in the web of
things. IEEE Intell. Syst. 2013, 28, 6–11.

87. Liu, L.; Hou, A.; Biderman, A.; Ratti, C.; Chen, J. Understanding individual and collective mobility
patterns from smart card records: A case study in Shenzhen. In Proceedings of the IEEE Conference
on Intelligent Transportation Systems, ITSC, Shenzhen, China, 19–20 December 2009; pp. 842–847,
doi:10.1109/ITSC.2009.5309662. [CrossRef]

88. Cao, H.; Brown, M.; Chen, L.; Smith, R.; Wachowicz, M. Lessons learned from integrating batch and stream
processing using IoT data. In Proceedings of the 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; pp. 32–34.

89. Tuv, E.; Borisov, A.; Runger, G.; Torkkola, K. Feature selection with ensembles, artificial variables, and
redundancy elimination. J. Mach. Learn. Res. 2009, 10, 1341–1366.

90. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdisplinary Rev. Comput. Stat. 2010, 2, 433–459.
91. Prince, S.J.; Elder, J.H. Probabilistic linear discriminant analysis for inferences about identity. In Proceedings

of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–20 October 2007;
doi:10.1109/ICCV.2007.4409052. [CrossRef]

92. Liu, Y.; Zeng, J.; Bao, J.; Xie, L. A unified probabilistic monitoring framework for multimode processes based
on probabilistic linear discriminant analysis. IEEE Trans. Ind. Inf. 2020.

https://doi.org/10.1145/2968219.2971355
http://dx.doi.org/10.1145/2968219.2971355
https://doi.org/10.1145/2968219.2968436
http://dx.doi.org/10.1145/2968219.2968436
https://doi.org/10.1007/3-540-48315-2_54
http://dx.doi.org/10.1007/3-540-48315-2_54
https://doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
https://doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.1007/ 978-1-4614-6849-3
https://doi.org/10.1016/j.inffus.2015.04.002
http://dx.doi.org/10.1016/j.inffus.2015.04.002
https://doi.org/10.1016/j.patcog.2012.07.009
http://dx.doi.org/10.1016/j.patcog.2012.07.009
https://doi.org/10.1109/ITSC.2009.5309662
http://dx.doi.org/10.1109/ITSC.2009.5309662
https://doi.org/10.1109/ICCV.2007.4409052
http://dx.doi.org/10.1109/ICCV.2007.4409052


ISPRS Int. J. Geo-Inf. 2020, 9, 272 17 of 19

93. Chiang, M.C.; Tsai, C.W.; Yang, C.S. A time-efficient pattern reduction algorithm for k-means clustering.
Inf. Sci. 2011, 181, 716–731, doi:10.1016/j.ins.2010.10.008. [CrossRef]

94. Gaura, E.I.; Brusey, J.; Allen, M.; Wilkins, R.; Goldsmith, D.; Rednic, R. Edge mining the internet of things.
IEEE Sens. J. 2013, 13, 3816–3825, doi:10.1109/JSEN.2013.2266895. [CrossRef]

95. Cao, H.; Wachowicz, M.; Renso, C.; Carlini, E. Analytics everywhere: generating insights from the internet
of things. IEEE Access 2019, 7, 71749–71769, doi:10.1109/ACCESS.2019.2919514. [CrossRef]

96. Cao, H.; Wachowicz, M. An Edge-Fog-Cloud Architecture of Streaming Analytics for Internet of Things
Applications. Sensors 2019, 19, 3594, doi:10.3390/s19163594. [CrossRef]

97. Cao, H.; Wachowicz, M. Analytics Everywhere for streaming IoT data. In Proceedings of the 2019 Sixth
International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada,
Spain, 22–25 October 2019; pp. 18–25, doi:10.1109/IOTSMS48152.2019.8939171. [CrossRef]

98. Krause, A.; Smailagic, A.; Siewiorek, D.P. Context-aware mobile computing: Learning context-dependent
personal preferences from a wearable sensor array. IEEE Trans. Mob. Comput. 2006, 5, 113–127,
doi:10.1109/TMC.2006.18. [CrossRef]

99. Tsai, C.W.; Lai, C.F.; Chiang, M.C.; Yang, L.T. Data mining for internet of things: A survey. IEEE Commun.
Surv. Tutor. 2014, 16, 77–97, doi:10.1109/SURV.2013.103013.00206. [CrossRef]

100. Burbey, I.; Martin, T.L. A survey on predicting personal mobility. Int. J. Pervasive Comput. Commun. 2012,
doi:10.1108/17427371211221063. [CrossRef]

101. Ali, N.A.; Abu-Elkheir, M. Data management for the Internet of Things: Green directions. IEEE Globecom
Workshops GC Wkshps 2012, doi:10.1109/GLOCOMW.2012.6477602. [CrossRef]

102. Bin, S.; Yuan, L.; Xiaoyi, W. Research on data mining models for the internet of things. In Proceedings
of the IASP 10-2010 International Conference on Image Analysis and Signal Processing, Zhejiang, China,
12–14 April 2010; pp. 127–132, doi:10.1109/IASP.2010.5476146. [CrossRef]

103. Gruenerbl, A.; Osmani, V.; Bahle, G.; Carrasco, J.C.; Oehler, S.; Mayora, O.; Haring, C.; Lukowicz, P.
Using smart phone mobility traces for the diagnosis of depressive and manic episodes in bipolar patients.
In Proceedings of the 5th Augmented Human International Conference, Kobe, Japan, 7–9 March 2014; p. 38,
doi:10.1145/2582051.2582089. [CrossRef]

104. Anastasiou, N.; Horng, T.C.; Knottenbelt, W. Deriving generalised stochastic Petri Net performance models
from high-precision location tracking data. In Proceedings of the VALUETOOLS 2011-5th International ICST
Conference on Performance Evaluation Methodologies and Tools, Paris, France, 16–20 May 2011; pp. 91–100,
doi:10.4108/icst.valuetools.2011.245715. [CrossRef]

105. Bhattacharya, A.; Das, S.K. LeZi-update: An information-theoretic framework for personal mobility tracking
in PCS networks. Wirel. Netw. 2002, 8, 121–135, doi:10.1023/A:1013759724438. [CrossRef]

106. Scellato, S.; Musolesi, M.; Mascolo, C.; Latora, V.; Campbell, A.T. NextPlace: A spatio-temporal
prediction framework for pervasive systems. Lect. Notes Comput. Sci. 2011, 6696, 152–169,
doi:10.1007/978-3-642-21726-5_10. [CrossRef]

107. Song, L.; Kotz, D.; Jain, R.; He, X. Evaluating location predictors with extensive Wi-Fi mobility data. In
Proceedings of the IEEE INFOCOM, Hong Kong, China, 7–11 March 2004; Volume 2, pp. 1414–1424,
doi:10.1145/965732.965747. [CrossRef]

108. De Domenico, M.; Lima, A.; Musolesi, M. Interdependence and predictability of human mobility and social
interactions. Pervasive Mob. Comput. 2013, 9, 798–807, doi:10.1016/j.pmcj.2013.07.008. [CrossRef]

109. Etter, V.; Kafsi, M.; Kazemi, E.; Grossglauser, M.; Thiran, P. Where to go from here? Mobility prediction
from instantaneous information. Pervasive Mob. Comput. 2013, 9, 784–797, doi:10.1016/j.pmcj.2013.07.006.
[CrossRef]

110. Kong, F.; Li, J.; Jiang, B.; Song, H. Short-term traffic flow prediction in smart multimedia system for Internet
of Vehicles based on deep belief network. Future Gener. Comput. Syst. 2019, 93, 460–472.

111. Atif, Y.; Kharrazi, S.; Jianguo, D.; Andler, S.F. Internet of Things data analytics for parking availability
prediction and guidance. Trans. Emerg. Telecommun. Technol. 2020. [CrossRef]

112. Liu, W.; Shoji, Y. DeepVM: RNN-based vehicle mobility prediction to support intelligent vehicle applications.
IEEE Trans. Ind. Inf. 2019. [CrossRef]

113. Semanjski, I.; Gautama, S. Crowdsourcing mobility insights–Reflection of attitude based segments on high
resolution mobility behaviour data. Transp. Res. Part C Emerg. 2016, 71, 434–446. [CrossRef]

https://doi.org/10.1016/j.ins.2010.10.008
http://dx.doi.org/10.1016/j.ins.2010.10.008
https://doi.org/10.1109/JSEN.2013.2266895
http://dx.doi.org/10.1109/JSEN.2013.2266895
https://doi.org/10.1109/ACCESS.2019.2919514
http://dx.doi.org/10.1109/ACCESS.2019.2919514
https://doi.org/10.3390/s19163594
http://dx.doi.org/10.3390/s19163594
https://doi.org/10.1109/IOTSMS48152.2019.8939171
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939171
https://doi.org/10.1109/TMC.2006.18
http://dx.doi.org/10.1109/ TMC.2006.18
https://doi.org/10.1109/SURV.2013.103013.00206
http://dx.doi.org/10.1109/SURV.2013.103013.00206
https://doi.org/10.1108/17427371211221063
http://dx.doi.org/10.1108/17427371211221063
https://doi.org/10.1109/GLOCOMW.2012.6477602
http://dx.doi.org/10.1109/GLOCOMW.2012.6477602
https://doi.org/10.1109/IASP.2010.5476146
http://dx.doi.org/10.1109/IASP.2010.5476146
https://doi.org/10.1145/2582051.2582089
http://dx.doi.org/10.1145/2582051.2582089
https://doi.org/10.4108/icst.valuetools.2011.245715
http://dx.doi.org/10.4108/icst.valuetools.2011.245715
https://doi.org/10.1023/A:1013759724438
http://dx.doi.org/10.1023/A:1013759724438
https://doi.org/10.1007/978-3-642-21726-5_10
http://dx.doi.org/10.1007/978-3-642- 21726-5_10
https://doi.org/10.1145/965732.965747
http://dx.doi.org/10.1145/965732.965747
https://doi.org/10.1016/j.pmcj.2013.07.008
http://dx.doi.org/10.1016/j.pmcj.2013.07.008
https://doi.org/10.1016/j.pmcj.2013.07.006
http://dx.doi.org/10.1016/j.pmcj.2013.07.006
http://dx.doi.org/10.1002/ett.3862
http://dx.doi.org/10.1109/TII.2019.2936507
http://dx.doi.org/10.1016/j.trc.2016.08.016


ISPRS Int. J. Geo-Inf. 2020, 9, 272 18 of 19

114. Chen, X.; Xu, S.; Han, J.; Fu, H.; Pi, X.; Joe-Wong, C.; Li, Y.; Zhang, L.; Noh, H.Y.; Zhang, P. PAS: Prediction
Based Actuation System for City-scale Ride Sharing Vehicular Mobile Crowdsensing. IEEE Internet Things J.
2020.

115. Perera, K.; Dias, D. An intelligent driver guidance tool using location based services. In Proceedings of
the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services,
Fuzhou, China, 29 June–1 July 2011; pp. 246–251, doi:10.1109/ICSDM.2011.5969041. [CrossRef]

116. Wu, F.; Lei, T.K.H.; Li, Z.; Han, J. MoveMine 2.0: Mining object relationships from movement data.
Proc. VLDB Endow. 2014, 7, 1613–1616, doi:10.14778/2733004.2733043. [CrossRef]

117. Wang, H.; Gu, M.; Wu, S.; Wang, C. A driver’s car-following behavior prediction model based on
multi-sensors data. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–12.

118. Lathia, N.; Quercia, D.; Crowcroft, J. The hidden image of the city: sensing community well-being from
urban mobility. In International Conference on Pervasive Computing; Springer: Berlin, Germany, 2012; pp. 91–98.

119. Brodie, M.A.D.; Coppens, M.J.M.; Lord, S.R.; Lovell, N.H.; Gschwind, Y.J.; Redmond, S.J.; Del Rosario, M.B.;
Wang, K.; Sturnieks, D.L.; Persiani, M.; et al. Wearable pendant device monitoring using new wavelet-based
methods shows daily life and laboratory gaits are different. Med. Biol. Eng. Comput. 2016, 54, 663–674,
doi:10.1007/s11517-015-1357-9. [CrossRef]

120. Mathur, S.; Jin, T.; Kasturirangan, N.; Chandrashekharan, J.; Xue, W.; Gruteser, M.; Trappe, W. ParkNet:
Drive-by sensing of road-side parking statistics. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 123–136,
doi:10.1145/1814433.1814448. [CrossRef]

121. An, J.; Gui, X.; Zhang, W.; Jiang, J. Nodes social relations cognition for mobility-aware in the internet
of things. In Proceedings of the 2011 IEEE International Conferences on Internet of Things and Cyber,
Physical and Social Computing, iThings/CPSCom 2011, Dalian, China, 19–22 October 2011; pp. 687–691,
doi:10.1109/iThings/CPSCom.2011.118. [CrossRef]

122. Cho, E.; Myers, S.A.; Leskovec, J. Friendship and mobility: User movement in location-based social networks.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, 21–24 August 2011; pp. 1082–1090, doi:10.1145/2020408.2020579. [CrossRef]

123. Horvitz, E.; Apacible, J.; Sarin, R.; Liao, L. Prediction, expectation, and surprise: Methods, designs, and
study of a deployed traffic forecasting service. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, UAI 2005, Edinburgh, UK, 26–29 July 2005; pp. 275–284.

124. Isaacman, S.; Becker, R.; Cáceres, R.; Kobourov, S.; Martonosi, M.; Rowland, J.; Varshavsky, A. Identifying
important places in people’s lives from cellular network data. Lect. Notes Comput. Sci. 2011, 6696, 133–151,
doi:10.1007/978-3-642-21726-5_9. [CrossRef]

125. Munoz-Organero, M.; Ruiz-Blaquez, R.; Sánchez-Fernández, L. Automatic detection of traffic lights, street
crossings and urban roundabouts combining outlier detection and deep learning classification techniques
based on GPS traces while driving. Comput. Environ. Urban Syst. 2018, 68, 1–8.

126. Liao, L.; Fox, D.; Kautz, H. Extracting places and activities from gps traces using hierarchical conditional
random fields. Int. J. Robot. 2007, 26, 119–134.

127. Monreale, A.; Pinelli, F.; Trasarti, R. WhereNext: A Location Predictor on Trajectory Pattern Mining.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining—KDD ’09, Paris, France, 28 June–1 July 2009; pp. 637–645, doi:10.1145/1557019.1557091. [CrossRef]

128. Chung, Y.W.; Khaki, B.; Li, T.; Chu, C.; Gadh, R. Ensemble machine learning-based algorithm for electric
vehicle user behavior prediction. Appl. Energy 2019, 254, 113732.

129. Kwon, D.; Park, S.; Baek, S.; Malaiya, R.K.; Yoon, G.; Ryu, J.T. A study on development of the blind spot
detection system for the IoT-based smart connected car. In Proceedings of the 2018 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–4.

130. Nadin, M. Anticipatory computing. Ubiquity 2000, 2000, 2-es, doi:10.1145/356503.357520. [CrossRef]
131. Volodymyr, M.; Koray, K.; David, S.; Rusu Andrei A.; Joel, V.; Bellemare Marc G.; Alex, G.; Martin, R.;

Fidjeland Andreas K.; Georg, O. Human-level control through deep reinforcement learning. Nature
2015, 518, 529.

132. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that
matters. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, 2–7 February 2018.

https://doi.org/10.1109/ICSDM.2011.5969041
http://dx.doi.org/10.1109/ICSDM.2011.5969041
https://doi.org/10.14778/2733004.2733043
http://dx.doi.org/10.14778/2733004.2733043
https://doi.org/10.1007/s11517-015-1357-9
http://dx.doi.org/10.1007/s11517-015-1357-9
https://doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.1145/1814433.1814448
https://doi.org/10.1109/iThings/CPSCom.2011.118
http://dx.doi.org/10.1109/iThings/CPSCom.2011.118
https://doi.org/10.1145/2020408.2020579
http://dx.doi.org/10.1145/2020408.2020579
https://doi.org/10.1007/978-3-642-21726-5_9
http://dx.doi.org/10.1007/978-3-642-21726-5_9
https://doi.org/10.1145/1557019.1557091
http://dx.doi.org/10.1145/1557019.1557091
https://doi.org/10.1145/356503.357520
http://dx.doi.org/10.1145/356503.357520


ISPRS Int. J. Geo-Inf. 2020, 9, 272 19 of 19

133. Radu, V.; Tong, C.; Bhattacharya, S.; Lane, N.D.; Mascolo, C.; Marina, M.K.; Kawsar, F. Multimodal
deep learning for activity and context recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
2018, 1, 1–27.

134. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444, doi:10.1038/nature14539.
[CrossRef]

135. Butz, M.V. Learning classifier systems. In Springer Handbook of Computational Intelligence; Springer: Berlin,
Germany, 2015; pp. 961–981, doi:10.1007/978-3-662-43505-2_47. [CrossRef]

136. Holmberg, S.C. Anticipatory computing with a spatio temporal fuzzy model. AIP Conf. Proc. 1998, 437,
419–432, doi:10.1063/1.56315. [CrossRef]

137. Pejovic, V.; Musolesi, M. Anticipatory mobile computing for behaviour change interventions. In Proceedings
of the UbiComp 2014-Adjunct Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 1025–1034,
doi:10.1145/2638728.2641284.

138. Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT security: An exhaustive
survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun.
Surv. Tutor. 2019, 21, 2702–2733.

139. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas,
security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743.

140. Butun, I.; Österberg, P.; Song, H. Security of the internet of things: vulnerabilities, attacks and
countermeasures. IEEE Commun. Surv. Tutor. 2019, 22, 616–644.

141. Lu, N.; Cheng, N.; Zhang, N.; Shen, X. Connected vehicles: Solutions and challenges. IEEE Internet Things J.
2014, 1, 289–299.

142. Tuohy, S.; Glavin, M.; Jones, E.; Trivedi, M.; Kilmartin, L. Next generation wired intra-vehicle networks,
a review. In Proceedings of the IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 23–26 June 2013;
pp. 777–782, doi:10.1109/IVS.2013.6629561. [CrossRef]

143. Bas, C.U.; Ergen, S.C. Ultra-wideband channel model for intra-vehicular wireless sensor networks
beneath the chassis: From statistical model to simulations. IEEE Trans. Veh. Technol. 2013, 62, 14–25,
doi:10.1109/TVT.2012.2215969. [CrossRef]

144. Luan, T.H.; Shen, X.; Bai, F. Integrity-oriented content transmission in highway vehicular ad hoc
networks. In Proceedings of the-IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2562–2570,
doi:10.1109/INFCOM.2013.6567063. [CrossRef]

145. Tang, F.; Kawamoto, Y.; Kato, N.; Liu, J. Future Intelligent and Secure Vehicular Network Toward 6G:
Machine-Learning Approaches. Proc. IEEE 2019. [CrossRef]

146. Nicoletti, B. Digital Insurance: Business Innovation in the Post-Crisis Era; Springer: Berlin, Germany, 2016.
147. Conti, M.; Kumar, M. Opportunities in opportunistic computing. Computer 2010, 43, 42–50,

doi:10.1109/MC.2010.19. [CrossRef]
148. Strayer, D.L.; Cooper, J.M.; Turrill, J.; Coleman, J.R.; Hopman, R.J. The smartphone and the driver’s cognitive

workload: A comparison of Apple, Google, and Microsoft’s intelligent personal assistants. Can. J. Exp.
Psychol. 2017, 71, 93–110, doi:10.1037/cep0000104. [CrossRef] [PubMed]

149. Reed, D.; Larus, J.; Gannon, D. Imagining the future: Thoughts on computing. Computer 2012, 45, 25–30,
doi:10.1109/MC.2011.327. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-662-43505-2_47
http://dx.doi.org/10.1007/978-3-662-43505-2_47
https://doi.org/10.1063/1.56315
http://dx.doi.org/10.1063/1.56315
https://doi.org/10.1145/2638728.2641284
https://doi.org/10.1109/IVS.2013.6629561
http://dx.doi.org/10.1109/IVS.2013.6629561
https://doi.org/10.1109/TVT.2012.2215969
http://dx.doi.org/10.1109/TVT.2012.2215969
https://doi.org/10.1109/INFCOM.2013.6567063
http://dx.doi.org/10.1109/INFCOM. 2013.6567063
http://dx.doi.org/10.1109/JPROC.2019.2954595
https://doi.org/10.1109/MC.2010.19
http://dx.doi.org/10.1109/ MC.2010.19
https://doi.org/10.1037/cep0000104
http://dx.doi.org/10.1037/cep0000104
http://www.ncbi.nlm.nih.gov/pubmed/28604047
https://doi.org/10.1109/MC.2011.327
http://dx.doi.org/10.1109/MC.2011.327
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Internet of Moving Things
	Anticipatory Learning Model
	Context Sensing at the Edge of a Network
	Context Intelligence at the Fog Layer of a Network
	Context Prediction and Anticipatory Actions
	Research Challenges and Opportunities
	Research Challenges
	Opportunities

	Conclusions
	References

