AUNB 20

EST. 1785
UNIVERSITY OF NEW BRUNSWICK People in Motion

Edge-Cloud Intelligence in Self-Diagnostic of Land
Mobile Radio Systems

Hung Cao, Monica Wachowicz, James Craig

O
D




Outline

* Introduction

* Related work

* Scientific Contributions

* Self-diagnostic analytics in lloT
* Experiment

* Discussion of results

* Conclusions & Future works



Introduction

e The research chaIIen?e is to
develop architectura

fra meWO rks Ca pable Of Things Communication Networks Cloud
integrating edge and cloud
resources

¢ An Intelllgent platform based Edgecomputingbringsldata
on the widely accepted 3-tier KEY Wosiorea s

h BEN EFITS of to the source of data.

architecture. Bl Computing SrieT

* The goalis to deveIoE a hew |
automated data workflow

capable of performing remote

monitoring and sensing of P
critical infrastructures by & % r

powe rl ng IIOT Sensors Faster Reliable Operations S ecu ty& Cost- Effe tiv Interoperability
Response Time with Intermittent = Compliance Solutio between Legacy
Connectivity & Modern Devices

2021-05-31 3


https://macchina.io/images/EdgeFog.001.png

Intelligent maintenance

Reactive maintenance Manzanilla-Salazar et al. proposed a solution using Key

. . Performance Indicators (KPls) to detect failures
Preventive maintenance
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Scientific Contributions

* An edge-cloud intelligence approach
* achieve an automated self-diagnostic process
* combining edge and cloud analytics
* generating early warnings.

* We propose a new automated data workflow capable of harmonizing
different machine learning models

 collaborate for an automated self-diagnostics of LMR systems.

 Real-world lloT data streams of seven remote sites



Self-diagnostic analytics in lloT

lloT Stream Data Lifecycle

* Two types of lloT data streams: accumulated data streams and
continuous data streams.

e Stream data lifecycle is supported in the proposed platform to:

(1) continuously analyze and monitor incoming data tuples aiming to detect
problems and understand them;

(2) understand component or system behavior under a variety of conditions to
constantly enhance further the current component or system; and

(3) trigger specific actions to respond to changes when certain thresholds in
the system are identified.
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Selt-diagnostic analytics in lloT
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Self-diagnostic analytics in [1oT
lloT Automated Data Workflow
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Experiment

* Architecture Implementation

* Sensors -> general-purpose sensors (motion, temperature, humidity, wind)
and commercial sensors (MOTOTRBO, RF Sensor)

* Edge Nodes -> Cisco IR829 Industrial Integrated Services Routers (IR829)
* Cloud -> AWS services

* |loT Data Streams
* |loT data from site related sensors
* ||oT data from RF sensors



Discussion of results
Scenario 1: Self-diagnostics at the remote site
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Discussion of results
Scenario 1: Self-diagnostics at the remote site
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Discussion of results

Scenario 1: Self-diagnostics at the remote site
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Discussion of results
Scenario 2: Self-diagnostics of the LMR network level
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Discussion of results
Scenario 2: Self-diagnostics of the LMR network level

Visualizing Important Features
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Conclusions and Future Works

* Preliminary results obtained from exploring the integration of lloT sensors with
edge and cloud resources, having as the main goal to develop self-diagnostics of
LMR systems.

* The platform was implemented to generate an intelligent management based
solution for monitoring RF sites.

* The implemented automated data workflow was capable of harmonizing three
machine learning models that collaborate for an automated self-diagnostics of
LMR systems.

* We will also work towards a centralized scheduler which will dynamically
manage the load balance during the entire lloT stream data lifecycle of the
automated data workflow in order to avoid running out of storage and
processing capacity at the edge nodes
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