
Abstract. The Internet of Things is a multi-sensor
technology with the unique advantage of support-
ing non-intrusive and non-device occupancy detec-
tion, while also allowing us to explore new forecasting
occupancy models. However, forecasting occupancy
presence is not a trivial task, since it is still unknown
the main criteria in selecting a forecasting modelling
approach according to a non-intrusive sensing strat-
egy. Towards this challenge, this paper proposes an
analytical workflow developed to support the Prophet
model for forecasting occupancy presence in indoor
spaces throughout the tasks of sensing, processing, and
analysing event triggered data generated from ten non-
intrusive sensors, including motion, temperature, lu-
minosity, CO2, TVOC, sound, pressure, accelerome-
ter, gyroscope, and humidity sensors. The usefulness
of this analytical workflow is demonstrated with the
implementation of an IoT platform for an experiment
operating non-intrusive sensing in a classroom. The as-
sessment is made at different time intervals and the re-
sults confirm that there is a relationship between the
event-count and occupancy presence in such a way that
the larger the number of events triggered in an indoor
space, the higher the probability of an indoor space be-
ing occupied.

Keywords. Internet of Things, occupant behavior,
non-intrusive sensing, Prophet forecasting model

1 Introduction

Forecasting occupant behavior in indoor spaces pro-
vides relevant information for planning building au-
tomation, evaluating energy efficiency scenarios, and
simulating emergency protocols (Jia et al., 2017;
Trivedi and Badarla, 2020). Occupant behavior refers
to the presence and numbers of occupants in indoor
spaces, and their various interactions that can take
place over time such as opening/closing windows and
doors, or turning on/off lighting in a room. These inter-
actions can also be associated with activities, includ-
ing meeting someone, giving a lecture, or working on
a desk. Due to the stochastic nature of occupant be-
havior, previous occupancy forecasting models consid-
erably diverge in terms of the types of sensors being
used to gather occupancy data; the complexity level of
single versus multi-occupant forecasting; and the arbi-
trary selection of short versus long-term forecast hori-
zons (Hutchins et al., 2007; Chen et al., 2018; Alawadi
et al., 2020).

With the advent of the Internet of Things (IoT), a
wider spectrum of non-intrusive sensors and network-
ing communication technologies are available for im-
proving the collection, transportation, and analysis of
time-series (i.e. recorded timestamped readings at suc-
cessive and equal time intervals) and event triggered
data (i.e. recorded timestamped readings when a sensor
is triggered due to an activity or interaction happening
in an indoor space). These non-intrusive sensors are
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generally easier to install, and they can also be cheaper
than intrusive sensors (Laput et al., 2017).

Overall, we can distinguish three levels of non-
intrusive sensing strategies in indoor spaces (Zou et al.,
2017; Saha et al., 2019). At the most basic level of non-
intrusive sensing, a selection of sensors such as Pyro-
electric InfraRed Sensors (PIR) motion, CO2, tempera-
ture, luminosity, acoustic, and humidity sensors can be
used for occupancy detection. A variety of data min-
ing approaches have been proposed for analysing the
time-series data generated by these sensors, includ-
ing random forest, Hidden Markov Models (HMM),
Support Vector Machine (SVM), Convolution Net-
works (CNN), and Long Short Term Memory (LSTM)
(Rueda et al., 2020).

The second strategic level aims at occupancy count-
ing where occupancy-count estimations in a predefined
zone are obtained through sensor fusion using oppor-
tunistic sensor data from Wi-Fi access points, CO2 sen-
sors placed in a room, PIR motion detectors at doors,
and plug and light electricity load meters. Multiple lin-
ear regression models and deep learning models have
been explored to merge individual readings from dif-
ferent sensors in an exhaustive number of permutations
(Hobson et al., 2019).

Finally, the highest strategic level consists of estimat-
ing the location of each occupant using RFID, Blue-
tooth, and WiFi communication technologies that are
usually available in indoor spaces, but requiring occu-
pants to carry a device or an additional tag (Bai et al.,
2020; Rohei et al., 2020). In the case of WiFi position-
ing, the fingerprinting and trilateration methods based
on WiFi signal strength measurements are usually em-
ployed (Mok and Retscher, 2007; Zhang et al., 2020).

Independently of the strategy being used in sensing oc-
cupant presence an indoor space, analysing time-series
with high sampling rates containing a large volume of
redundant readings can cause unnecessary noise and
increase the computational costs in forecasting models.
Moreover, different sampling intervals might be used
depending on the type of non-intrusive sensors being
deployed, the feature selection, and the indoor space
in which they are sensed. Therefore, selecting an ap-
propriate non-intrusive sensing strategy is still of great
concern and remains as a main challenge for adopting
new forecasting occupancy models.

Towards this challenge, we propose a synergy of levels
one and two of non-intrusive sensing in indoor spaces.
Our overall strategy relies on accurately inferring oc-
cupancy presence by deploying complementary non-
intrusive sensors. But instead of processing their actual
time-series data or performing sensor fusion, we pro-
pose to create a new time-series data based on counting
the events triggered by these sensors due to any activ-

ity or interaction that have occurred in an indoor space
(i.e. occupancy counting level). The rule of thumb is
that there is a ratio between the event-count and occu-
pancy presence in such a way that the larger the num-
ber of events triggered in an indoor space, the higher
the probability of an indoor space being occupied.

This paper describes an analytical workflow devel-
oped to forecast occupancy presence in indoor spaces
by sensing, processing, and counting the total number
of triggered events generated from non-intrusive sen-
sors. The Prophet model previously proposed by Tay-
lor and Letham (2018) is selected for forecasting occu-
pancy presence using three time intervals (i.e. 30 min-
utes, one hour, and two hours). Our aim is to evaluate
whether the Prophet model would equally perform in-
dependently from the duration of a time interval.

The remainder of this paper is organised as follows: re-
lated work is described in Section 2, and Section 3 in-
troduces our proposed analytical workflow. Section 4
will outline the proposed IoT Architecture and Section
5 describes the experiment that took place at a com-
puter lab. Section 6 discusses the results, and lastly in
section 7 the conclusions and future work are consid-
ered.

2 Related Work

Significant research work can be found in the literature
on detecting occupancy in indoor spaces using intru-
sive and device-based approaches (Chen et al., 2018;
Rueda et al., 2020). Fewer attempts have been found on
detecting occupancy using non-intrusive sensors, de-
spite the availability of cheap off-the-shelf sensors that
are key to collecting time-series data needed for fore-
casting models.

Saha et al. (2019) provide an extensive review on
the main models developed for occupancy detection,
counting and tracking in indoor spaces using CO2 sen-
sors, PIR motion detectors, and optical counting sen-
sors. Examples of models developed for occupancy de-
tection include random forest, Hidden Markov Models
(HMM), Support Vector Machine (SVM), Convolution
Networks (CNN), Long Short Term Memory (LSTM),
clustering analysis and statistical learning methods.
One major finding in this review is that when using
non-intrusive sensors, feature selection plays an im-
portant role in reducing the vast amount of time-series
data when no valuable information is actually added to
a forecasting model as well as handling sensor readings
conflicting each other and occurrence of rare readings.

Therefore, it should not come as a surprise that pre-
vious models used for occupancy detection have also
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been explored for occupancy forecasting in indoor
spaces. Alawadi et al. (2020) provide a comprehen-
sive comparison of 36 offline machine learning mod-
els applied for forecasting the indoor temperature by
combining temperature sensor data from an indoor
space and the meteorological conditions from a nearby
weather station. Using the Friedman rank and the R-
coefficient to evaluate the accuracy of three forecast
horizons, they conclude that the neural network mod-
els (e.g. avNNET) were more sensitive to outliers and
the inherited noise in temperature sensor data. The re-
gressors with less sensitivity were ExtraTRees, cubist
and random forest. The Prophet model was not consid-
ered in this comparison study.

Previous research has also pointed out the importance
of using non-intrusive sensing due to privacy concerns
and inaccurate measurements from cameras. For ex-
ample, the HMM model was proposed to predict occu-
pancy presence using indoor and outdoor CO2 concen-
tration ratios, indoor CO2 concentration 15-min mov-
ing average, and the total energy consumption of the
lighting system and appliances (Ryu and Moon, 2016).
The results demonstrate the suitability of the HMM
model to forecast daily high occupancy rather than low
daily occupancy.

Towards a non-intrusive sensing strategy for building
occupancy forecasting models, Hutchins et al. (2007)
explore the Markov Chain Monte Carlo (MCMC)
probabilistic model using a sample of occupant-count
data gathered from optical sensors positioned at an en-
trance/exit door of a building that were capable of reg-
istering a count when an optical beam was interrupted.
The model includes the occupancy-counts measured
by the optical sensors, non-measured variables repre-
senting the true occupancy at a specific timestamp,
and parameters such as Poisson rates. In the exper-
iments, the MCMC model and a baseline model are
compared daily, revealing the imbalanced larger num-
ber of entering predictions in comparison to the exit-
ing predictions. This problem has raised due to the ex-
pected noise in sensor readings corresponding to both
over and under-counting.

In contrast, alternative forecasting models, such as
ARIMA, SARIMA, and Prophet models, are poten-
tial new methods for forecasting indoor occupancy
using non-intrusive sensing, but they have been ne-
glected so far. They have been successfully applied for
forecasting hourly traffic volume and pollutant values
(Chikkakrishna et al., 2019). Using the mean square
error and mean absolute square error (MAPE), the pre-
dictions show that the SARIMA model generated the
most accurate predicted traffic volume. However, the
Prophet model produced more accurate trends in the

predicted traffic, allowing the non-smooth data to fit
into the model the best.

The SARIMA and Prophet models have also been used
for finding annual forecasts using historical data from
2005 to 2015 containing information about hazardous
pollutants such as RSPM (Respirable Suspended Par-
ticulate Matter), NO2, SO2, and SPM (Suspended Par-
ticulate Matter) (Samal et al., 2019). In this research
work, the Prophet model has generated the most accu-
rate predictions based on their RMSE and MSE values.

Alternatively, the Croston method has been proposed
for forecasting irregular demand patterns when they
are not representing a normal distribution (Syntetos
et al., 2011). This method suggests that the demand
of Stock Keeping Units (SKUs) is sporadic and oc-
curs at random, meaning there can be no demand at
all or a constant demand, and likewise there might be
instances that demand is not a single unit during some
periods. Occupancy behaviour exhibits the same spo-
radic demand, where some indoor spaces will be un-
occupied most of the time, but in other periods, they
may vary in the number of people occupying a space.
Assuming class and work schedules introduce season-
ality to the sporadic nature of occupancy; individual
occupancy demand may be random but group occu-
pancy should occur regularly. Therefore, seasonality
should be included when building a forecasting occu-
pancy model.

Our research premise is that our proposed non-
intrusive strategy requires generalized additive mod-
els such as the Prophet model, where linear trends
are fit with hourly, daily, and weekly seasonality. The
forecasting of event-counts are considered a power-
ful proxy for forecasting occupancy presence, avoid-
ing gathering large volumes of time-series data from
multi-sensors having and sensor readings conflicting
each other.

3 Analytical Workflow

Developing the tasks of an analytical workflow is
a crucial process for sensing, preprocessing, and
analysing non-intrusive sensor data. Figure 1 provides
an overview of the main tasks of our proposed analyti-
cal workflow, described as follows:

• Sensing: The aim is to select the type of sensors
(e.g. CO2 sensor) and their respective thresholds
(e.g. any recording changing in 50ppm for a CO2

sensor will be registered as an event). The out-
come of this task is a data set containing all the
events triggered by any sensor at a specific times-
tamp.
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• Preprocessing: This task consists of generating a
series of the total number of events y that have
been triggered over a period of time in a particular
indoor space. The outcome of this task is a time-
series of event-counts according to a fixed time
interval.

• Forecasting: This task consists of applying
the Prophet model for predicting future event-
counts.The outcomes of this task are forecast ŷ
values and their respective MAPE error.

• Labelling: The aim is to compute Z-score values
for labelling the forecast ŷ values as occupied or
unoccupied indoor spaces.

These tasks are further explained in in the sections be-
low.

Sensors

Sensors

Sensors

IoT Sensing

Observed
triggered 

events

Pre-Processing

Forecasting

Labelling

Time-series of 
event-counts

Predicted 
Event Counts

Occupied 
Presence

Figure 1. Overview of the proposed analytical workflow

3.1 Sensing

This task aims to collect event-triggered data from
a sensor node deployed in an indoor space. A sen-
sor node may include many types of sensors, such

as temperature, humidity, motion, sound, luminosity,
pressure, accelerometer, gyroscope, CO2, smoke, and
TVOC sensors.

Independently of the sensor being used, events are
triggered by an individual sensor when its recording
reaches a value higher than an a-priori defined thresh-
old, which can be associated to interactions and activi-
ties happening in an indoor space. Some examples in-
clude an occupant entering a classroom and switching
on lights, starting a meeting, or giving a lecture.

However, each individual sensor requires different ap-
proaches to set up their thresholds. With numerical
recordings from sensors, such as temperature, hu-
midity, and luminosity, events are triggered using a
delta threshold: if temperature, humidity or luminos-
ity recordings increase or decrease by a factor of X,
the recordings will be registered as an event. In con-
trast, for CO2 and TVOC recordings, a fixed threshold
X is used because CO2 and TVOC recordings have a
regulated base value of 400 ppm and 0 ppm. Record-
ings from motion and sound sensors are binary record-
ings (i.e. motion detected or not detected). If motion or
sound is detected within an indoor space, an event is
registered.

The outcome of this task is a set of timely ordered tu-
ples representing an event-triggered by a sensor,which
consists of a timestamp, the sensor recordings from all
sensors at a particular timestamp, and the type of a trig-
gered event as illustrated in Table 1. Types of triggered
events include motion was detected; temperature has
changed above the threshold; or noise was detected.

Table 1. Data tuples of recorded triggered events

Tuple Sensor Recordings Event Timestamp
t1 S1, S2 ... Sn EventS1 ts1
t2 S1, S2 ... Sn EventS2 ts1
t3 S1, S2 ... Sn EventS2 ts2
t4 S1, S2 ... Sn EventS3 ts2
.... ..., ... ... ... ..... ....
tn S1, S2 ... Sn EventSn tsn

3.2 Preprocessing

The event-triggered data is usually noisy and requires
either removing tuples with missing categorical val-
ues or replacing missing numerical values using the
mean (Raschka, 2014). Another important step is the
creation of a time-series containing the total number
of triggered events within a time interval. Depending
on the required data rate, and the expected latency and
bottlenecks of the communication network to trans-
port the sensor data, we partition the data by gener-
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ating timeframes of ordered event-counts for an indoor
space, as shown in Table 2.

Table 2. Time-series of event-counts

Timeframe Event-Count
T1 E1

T2 E2

T3 E3

.... ...
Ti Ei

3.3 Forecasting

This task aims to apply the Prophet model for forecast-
ing future event-counts using different time intervals
for the time-series. The Prophet model was first intro-
duced by Taylor and Letham (2018) and consists of
three main model components: trend, seasonality, and
holidays, which are combined in the following equa-
tion:

y(t) = g(t)+ s(t)+h(t)+ ξ(t) (1)

where, g(t) is the trend function used for modelling
non-periodic changes, s(t) represents the periodic
changes (e.g., hourly or daily seasonality), h(t) repre-
sents the effects of holidays which occur on potentially
irregular schedules, and ξ(t) is the error term which ac-
counts for any idiosyncratic changes which are not ac-
commodated by the model.

The time-series of event-counts generated in the pre-
vious task of the proposed analytical workflow is ex-
pected to display seasonality with multiple periods,
and have strong linear trend changes, outliers, and hol-
iday effects. Therefore, the Prophet model allows us to
define the forecasting of occupancy presence in indoor
spaces as a curve-fitting exercise, which is inherently
different from previous forecasting models that explic-
itly rely on the temporal dependence structure in time-
series data such as the SARIMA model.

The linear trends changes are represented as a piece-
wise constant rate of growth, which is defined in the
following equation:

g(t) = (k+ a(t)T δ)t+(m+ a(t)T γ) (2)

where k is the growth rate, δ serves as the rate at which
a(t)T is adjusted, m is the offset parameter, and to
make the function continuous γj is set to −sjδj .

The changepoints (sj) are usually related to growth-
altering events such as the beginning of a class. To cal-
culate the changepoints, the Laplace transformation is

applied on the prior δj such that δj ∼ Laplace(0,τ ).
The parameter τ directly determines the flexibility of
the model. However, linear growth occurs when τ ap-
proaches 0 standard. This happens when the adjust-
ments made on δ results in having no impact on the
growth rate k.

The future changepoints are randomly sampled so that
the average changepoints over time match those that in
the historical data, defined as:

∀j > T,

{
δj = 0(w.p.)T−S

T ,

δj Laplace(0,λ)(w.p.)ST
(3)

The uncertainty for the forecast trend is based on the
assumption that the future will see the same average
frequency and magnitude of rate changes that were
seen in the historical data. It is estimated with a con-
stant trend rate, creating a generative model. The gen-
erative model is based on S changepoints over a history
of T event-counts. In essence, the future rate changes
at each δj ∼ Laplace(0,τ ) is done by replacing τ with
a variance inferred from data. This is done by using the
maximum likelihood estimate (MLE) of δj :

λ=
1

S

S∑
j=1

∣∣∣δj∣∣∣ (4)

The Prophet model relies on standard Fourier series
to provide a flexible generative model for representing
seasonality. The arbitrary smooth seasonal effects can
be computed using the Equation 5.

s(t) =

N∑
i=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(5)

where P is the regular period we expect the time se-
ries to have, n is the coefficient for seasonal smooth-
ing, and t is time. The Akaike Information Criterion
(AIC) can be applied to automatically determineN for
reducing the effects of over/under-fitting. However, the
default values such as N = 10 or N = 3 have proven to
be accurate to represent yearly and weekly seasonality,
having a P = 354.25 for yearly seasonality or P=7 for
weekly seasonality respectively.

Furthermore, holidays can have a negative impact on
a forecasting model because their effects are not well
modelled by a smooth cycle. But a list of holidays can
straightforward be incorporated to the Prophet model
by assuming the impacts of holidays are independent.
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This is carried out in a similar way as seasonality by
generating a matrix of regressors

Z(t) = [1(tεD1)...,1(tεDL)] (6)

where Di is a set of past and future dates for holidays
i, and later assigning a parameter κi for each holiday
by taking the indicator function

h(t) = Z(t)k (7)

with a prior κ ∼ Normal(0, ν2 ).

Finally, forecasts in the Prophet model are made over a
certain forecast horizonH , which represents the period
of future event-counts that will each be associated with
some error. Let ŷ(t|T ) represent the forecasts made at
time t based on the historical data up to time T . The
d(y,y′) serves as a distance metric, which can be used
to calculate MAPE, which is defined as:

M =
1

n

n∑
t=1

∣∣∣At−Ft

At

∣∣∣ (8)

where At is the actual value and Ft is the forecast
value.

However, to apply this metric for assessing the empiri-
cal accuracy of a forecast of hε(0,H] periods ahead of
time T , the following formula is derived:

θ(T,h) = d(ŷ(T +
h

T
),y(T +h)) (9)

A non-parametric approach is used to estimate out-
of-sample error that is comparable to the well-known
cross-validation approach. The model is then fit with
the expected errors at the different horizons h shown
in Equation 10:

ξ(h) = E[φ(T,h)] (10)

The procedure known as Simulated Historical Fore-
casts (SHF) is used to generate historical forecast er-
rors to fit the model. This was achieved by produc-
ing k forecasts at various cutoff points in the historical
data, which allows for the total error to be evaluated
based on a rolling origin evaluation that uses a small
sequence of cutoff points, rather than using the entire
historical data set. The advantage of using a rolling
origin is that it generates fewer correlated errors and

higher performance computation (Taylor and Letham,
2018). In essence, SHF simulates the errors at each
cutoff point as if the horizon lied within the histori-
cal data. The simulated errors were then fit to the fore-
cast model and the MAPE score is calculated for the
predicted event-counts. The output is the ŷ forecasts at
each rolling cutoff, which were used to create the fu-
ture event-count forecasts.

3.4 Labelling

The objective of this task is to add an occupancy pres-
ence label for each forecast event-counts. The Z-score
is selected to determine how close a forecast event-
count value ŷ is to the population mean µ, as defined
in Equation 11.

z =
x−µ
σ

(11)

where x is the forecast ŷ value, µ is the population
mean, and σ is the population variance.

It is an exceptional statistical measure for determin-
ing outliers based on how many standard deviations a
forecast ŷi value is away from the mean of its data set.
For example, a Z-score of 0 indicates that an ŷi value
is identical to the mean. Alternatively, a Z-score equal
to 2.0 indicates that an ŷi value is two standard devi-
ations from the mean. The Z-scores can be positive or
negative, depending on whether their ŷ values are be-
low or above the mean. Therefore, if Z-score values
are greater than 0, their respective ŷ values are labelled
occupied (On); otherwise they are labelled unoccupied
(Un).

4 IoT Platform

This section describes the implemented three-layer ar-
chitecture for supporting the proposed analytical work-
flow. They are: Sensing, Network Communication, and
Cloud Access and Processing layers. The overall IoT
platform is illustrated in Figure 2.

4.1 Sensing Layer

The sensor nodes were designed to collect event-
triggered tuples from nine sensors: motion (HC-
SR501), temperature (BMP280), luminosity (SI1145),
humidity (HC1080), CO2/TVOC (SGP30), sound
(KY-038), accelerometer, gyroscope, and infrared.
The sensors were connected to a NodeMCU micro-
controller using Arduino. The Arduino script was de-
signed to gather tuples of triggered events containing
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Figure 2. Overview of the proposed IoT platform

the multi-sensor recordings, the type of event which
has occurred, and the timestamp as shown in Table 1.

4.2 Network Communication Layer

Wi-Fi operating in 802.11 protocol with Wi-Fi fre-
quency band of 2,4 GHz was selected due to its wide
availability and ability to transfer large amounts of
data. For data exchange, a public MQTT broker, Hive
MQ was used for IoT communication. This protocol
relies on a publish/subscribe method: the NodeMCU
client publishes the event-triggered data to the MQTT
broker, then subscribes to that topic by another device,
such as the cloud, where the data is stored. MQTT of-
fers flexibility because it supports three levels of qual-
ity enforcement, which are message sending without
an acknowledgement request; message sending once
with an acknowledgment request; and message send-
ing through a handshake mechanism.

4.3 Cloud Access and Processing Layer

As the raw event-triggered streams were passed on
by the broker, they were stored in the MongoDB,
a document-oriented database because it was cost-
effective and easier to set up, configure, and run in
comparison to a commercial GIS. It was also suitable
for storing event-triggered data as documents using
JavaScript frameworks (i.e. JSON). After the data was
acquired and stored it was then extracted from Mon-
goDB using MobaXterm, for serving as input into the
analytical workflow.

5 Experiment

5.1 Sensing

The indoor space was a lab classroom with unique
features, including 32 computers, a projector, lecture
podium, two entrances, two heat pumps, and multiple
windows. Environmental sensors were selected to col-
lect the ambient room temperature, humidity, luminos-
ity, CO2, and TVOC. Meanwhile, PIR motion, sound,
accelerometer, and gyroscope sensors were selected to
record physical activity in the in the lab classroom.
The experiment aimed at collecting events triggered by
all the sensors connected to a sensor node, which was
placed in the middle of the room and tested for maxi-
mum coverage as shown in Figure 3.

Figure 3. The location of the sensor node unit in the lab
classroom (red circle)

Events were triggered by a delta threshold (i.e. temper-
ature, humidity and luminosity), fixed thresholds (i.e.
CO2 and TVOC) and binary thresholds (i.e. motion and
sound). The delta, fixed, and binary thresholds were
manually programmed in the Arduino script. When a
threshold was exceeded, the type of event would be
registered and the data tuples, containing all sensor
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measurements and timestamps, were sent to the cloud.
Each threshold value was determined during a pre-
liminary experiment to evaluate the measured sensor
values for when the room was free or occupied. The
adopted threshold values are shown in Table 3.

Table 3. Threshold values used for the deployed sensors

Sensor Type Threshold
Temperature +/- 0.2◦C

Humidity +/- 2 RH
Luminosity +/- 20 lux

CO2 50 ppm
TVOC 20 ppm
Motion motion detected
Sound sound detected

Accelerometer 0.05 m/s2

Gyroscope 10 RPS

5.2 Preprocessing

The following steps were implemented for the prepro-
cessing task:

• Cleaning the raw triggered-event data: The tu-
ples containing missing values were removed.
The data set did not contain any duplicate tuples;
however, there were delays in fetching the record-
ings from the PIR motion sensor.

• Converting the timestamps: This step was in-
cluded to convert a timestamp to the datestamp
Pandas format YYYY-MM-DD HH:MM:SS,
which is required by the Prophet algorithm.

• Creating a time-series: The groupby function in
Python was used to group the events per hour.
Once the hourly timeframes were created, a count
of events was executed. The result consists of a
dataframe with two columns: ds (datestamp) and
y (event-counts). The y is the variable (i.e. num-
ber of events) that we aim to forecast ŷ. Table
4 illustrates a dataframe generated for the time-
series. It is important to point out that event-
counts do not represent a real-world occupancy
event.

5.3 Forecasting

The Prophet model is available as open source software
in Python at https://github.com/facebook/prophet).
This algorithm had a a single dataframe consisting of
two columns: the timeframe (ds) and the event-count
(y). Figure 4 illustrates the observed trend and season-
ality found in the time series.

Table 4. Dataframe used as an input to the Prophet model

Ti(ds) Ei(y)

1 400
2 480
3 501
4 650
5 760
6 810

Figure 4. Observed trend and seasonality

It was reassuring to observe that the actual trend was
actually linear, and due to the regular class schedules
on Tuesday and Thursdays, this strong weekly season-
ality was also observed in the time series. For repre-
senting this seasonality, a Fourier order of N = 3 was
selected for modelling the smooth seasonal effects.

Only 80 percent of the time series data was used for
computing the changepoints in order to have plenty of
runway for projecting the trend forward and to avoid
over-fitting fluctuations at the end of the time series.
Figure 5 shows the 13 changepoints that were selected
for our Prophet model and their respective change
rates.

Figure 5. The rate of change per checkpoint
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The training period was carried out for 15 days, and
the forecast horizon period was 6 days. Three time in-
tervals were used (i.e. 30 minutes, 1 hour, and 2 hours)
for the training, and the cutoff was made after 14 days.
The output of the forecasting was a dataframe contain-
ing the forecast values ŷ, at each time interval. The
MAPE was computed for each timeframe to evaluate
the accuracy of the forecasting.

5.4 Labelling

The labels were generated using a conditional state-
ment that calculated Z-score values for every ŷ value.
Depending of its Z-score value, an ŷi value was la-
belled as being either unoccupied (Un) or occupied
(On), as shown in the algorithm below. The rule is that
if Zi > 0 for an ŷi value, the lab classroom was consid-
ered to be occupied during that timeframe; otherwise
the lab classroom was unoccupied.

In total, there were 87 hours out of the 20 days that
the lab classroom was scheduled for a class (Figure 6).
A total of 12 hours were wrongly annotated as occu-
pied hours, meaning that the overall accuracy of the
On class was 84%. When evaluating the times when
the lab classroom was not scheduled for a class, the la-
belling task achieved 68% accuracy for the Un class.
In other words, the lab classroom was labelled as be-
ing occupied even when there was no class in session.
Assuming that occupancy only occurs during sched-
uled class times, the model has achieved an acceptable
accuracy.

6 Discussion of the Results

6.1 Low and High Occupancy Presence

The raw event triggered data contained over 400,000
tuples during a 20 day period. The time-series gener-
ated 480 timeframes containing hourly total number of

Figure 6. Distribution of Z-score values

event-counts. They provided empirical evidence on the
low/high occupancy presence in the lab classroom.

Figure 7(b) illustrates the changes in the frequency of
hourly event-counts during one day when three classes
have taken place at 8h, 11h, and 16h. For example, low
frequency number of event-counts (dark blue) were
found from 1h to 5h in the morning, which have in-
creased between 6h to 7h, until a high-frequency of
event-counts has occurred at 8h (dark/light red).

In between classes, a medium frequency of event-
counts (light blue) was observed until 11h when the
second class started. After the end of the third class at
16h, the same low frequency pattern was observed in
the next couple of hours. The same pattern was also
observed with the 30-minute (Figure 7(a)) and 2-hour
intervals (Figure 7(c)).

Overall, it is important to point out that similar data
distributions have been found throughout the duration
of the experiment, confirming the suitability of using
event-counts as a proxy measure to represent high and
medium levels of occupancy presence in the lab class-
room. However, there were always a lower frequency
of number of event-counts occurring during the time-
frames when the lab classroom was known to be unoc-
cupied.

Looking at the types of triggered events that have gen-
erated such a low frequency of event-counts, we were
able to identify three sensors that have predominantly
triggered the events. They were the PIR motion, sound,
and luminosity sensors. One hypothesis is that the pro-
jector and the computers might have contributed to
triggering these events. Moreover, sensors can behave
erratically at times. We have also observed that high
temperature recordings were found in the classroom
when there were no classes taking place. The daily evo-
lution of the luminosity (daily cycle) or the entry of
the cleaning staff in the classroom have also triggered
events. Therefore, more research is needed to study the
impact of the location of a sensor node has on false/true
triggered-events.
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(a) 30 minutes interval

(b) 1 hour interval

(c) 2 hours interval

Figure 7. Event-counts distribution during different time in-
tervals

6.2 Model Performance

The Prophet model has a number of hyperparameters
that were consider for tuning. They were:

• changepoint prior scale: This is probably the
most influential parameter because it defines the
trend flexibility. In other words, it determines how
much a trend changes at the changepoints. The
value of 0.05 has been used for the three time in-
tervals.

• seasonality prior scale: This parameter deter-
mines the seasonality trend, and it was set as 10
to avoid over-fitting.

• holidays prior scale: This controls flexibility to fit
holiday effects. It was tuned to 10 for applying no
regularization.

• seasonality mode: The option multiplicative was
chosen because of the seasonal fluctuations (i.e.
Tuesdays and Thursdays)

The hyperparameters that have not been tuned were
growth (linear); changepoints (13 change points were
used), yearly seasonality (off); weekly seasonality
(on); holidays (specified holidays); interval width
(30min, 1h, and 2h).

In Figures 8(a) and 8(b), the green line represents the
observed y values, meanwhile the red line represents
the forecast ŷ values from the Prophet model. During
the training using only 80% of the historical data, it
is clear that the Prophet model had a superior fitting to
high and medium observed y values rather than lower y
values, specially when evaluating the 1h time interval
with the 30 min interval. In addition, the forecasting
of peaks was relatively more robust for the 1h interval
time series.

(a) 30 minutes interval

(b) 1 hour interval

(c) 2 hours interval

Figure 8. Comparison between the observed y and forecast ŷ
values for a 30 min, 1h, and 2h time interval during training
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In contrast, Figure 8(c) illustrates the over-fitting in
the forecasts using the 2h interval due to the constant
low frequency of events count, which have been proba-
bly triggered by the PIR motion, luminosity, and sound
sensors. Our aim in generating a time series of event-
counts and avoiding future selection when using non-
intrusive sensing was analytically achieved. However,
the results suggest that more historical data is needed
for training the Prophet model in order to evaluate if
the same patterns will persist when using the 2h inter-
val.

6.3 Forecasting Accuracy versus Time Interval

The accuracy of the forecast ŷ values using differ-
ent time intervals was measured by the mean absolute
percentage error (MAPE) for one day prediction (24
hours) in the future. In Figure 9, the grey dots show
the absolute percent error that was computed for each
forecast, and the blue lines represent the mean fitting
curve that specifies the proportion of forecasts used in
each rolling window.

(a) 30 minutes interval

(b) 1 hour interval

(c) 2 hours interval

Figure 9. The MAPE scores obtained for different time in-
tervals

We can observe that for the 30min time interval, the ab-
solute percent errors were around 0% to 2% as shown
in Figure 9(a), which are significant lower than 5%,
which is typical for predictions of one month into the
future. In contrast, the errors fluctuated around 0.2
when using the 1h time interval, generating a smoother
average curve as shown in Figure 9(b).

Furthermore, Figures 9(b) and 9(c) reveal how these
time intervals have generated similar patterns. How-
ever, the fitting curve with 2 hour interval has show an
increasing trend between 10h and 15h, revealing the
less accurate predictions.

7 Conclusions and Future Work

The analytical workflow presented in this paper was
implemented using an IoT architecture based on a sen-
sor node that was continuously collecting raw trig-
gered events from sensors including PIR motion, tem-
perature, luminosity, CO2, TVOC, sound, pressure, ac-
celerometer, gyroscope, and humidity. This workflow
is unique in devising a non-intrusive sensing strategy
for occupancy forecasting, and its IoT architecture was
designed to be a low-cost and scalable solution.

The four workflow tasks were developed to perform
a variety of steps. The IoT sensing task was designed
to run in an online mode, as it needs to handle the
data flow from the sensors to the cloud. The ensuing
tasks, such as data pre-processing, forecast modelling,
and labelling, were executed in an offline mode in the
cloud. The labelling task was the only task that was au-
tomated in the analytical workflow, but we expect that
all tasks should be automated in the near future. More
research is needed to develop stream-based data pre-
processing methods.

The Prophet model was evaluated in depth to ensure
over- or under-fitting did not occur. Overall, the fore-
casting achieved 80% accuracy when compared to the
class schedule. In the future, more ground truth data
is needed to validate the occupant behavior outside of
scheduled class time. Moving forward, more data will
be collected to cover the entire scholastic year.

The results have shown how event-triggered data can
be used to understand occupancy presence in indoor
spaces, simply by computing the seasonality of occu-
pant behavior at different time intervals. The event-
counts time series has demonstrated how event-counts
are a powerful proxy for inferring occupancy using a
learning model such as the Prophet forecasting model.

The applicability of this research is not contained only
to a lab classroom, but is expected to accurately fore-
cast occupancy of offices, halls, and corridors of a
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building. Different indoor spaces will require that dif-
ferent thresholds be set for triggering the events, as
they depend on occupant behavior. Future research will
focus on developing a Prophet forecasting model for
different spatial granularities of indoor spaces.

8 Software and Data Availability

The Prophet library supporting this publication is pub-
lished in R and Python package at https://facebook.
github.io/prophet/. The used version is archived at
https://github.com/facebook/prophet.

Research data supporting this publication is not avail-
able due to privacy concerns. Sample of synthetic data
can be provided upon request.

The platform code for leveraging the Prophet forecast-
ing model in this publication cannot be publicly shared
due to current IP Agreement between UNB and Cisco
System Canada.
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