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Highlights

EVStationSIM: An End-to-End Platform to Identify and Interpret Similar Clus-
tering Patterns of EV Charging Stations Across Multiple Time Slices

René Richard, Hung Cao, Monica Wachowicz

• A platform that facilitates the comparison of clustering results by practitioners.

• Enables the identification of similar clustering results across temporal partitions.

• Highlights utilization patterns, assisting in downstream analytical tasks.

• Leverages multiple data sources to describe EV charging station clustering results.
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Abstract

Transport electrification introduces new opportunities in supporting sustainable mobility.
Fostering Electric Vehicle (EV) adoption integrates vehicle range and infrastructure deploy-
ment concerns. An understanding of EV charging patterns is crucial for optimizing charging
infrastructure placement and managing costs. Clustering EV charging events has been useful
for ensuring service consistency and increasing EV adoption. However, clustering presents
challenges for practitioners when first selecting the appropriate hyper-parameter combination
for an algorithm and later when assessing the quality of clustering results. In a clustering
process, the ground truth data is normally not available for practitioners to validate different
modeling decisions. Consequently, it is difficult to judge the effectiveness of the discovered
patterns because there is no objective method to compare them. This work proposes an end-
to-end platform prototype named “EVStationSIM” that allows for the creation of relative
rankings of similar clustering results. The ultimate goal is to support users/practitioners
by allowing them to identify and interpret similar clustering patterns of EV charging sta-
tions using multiple time slices. The performance of this proposed platform is demonstrated
with a case study using real-world EV charging event data from charging station operators
in New Brunswick, Canada. The case study illustrates how generated results can assist in
downstream analytical tasks such as planning infrastructure allocation expansions.

Keywords: Agglomerative Hierarchical Clustering, Usage Patterns, EV Charging
Infrastructure, Traffic Counters, Geospatial Data, Clustering Process, Cluster Validity
Indices

1. Introduction

The commitments of authorities around the world to electrify the transportation sector
will have an impact on air quality, sustainable mobility and the management of natural re-
sources. In 2016, New Brunswick had the 3rd highest per-capita Green House Gas (GHG)
emissions in Canada and 30% of these emissions came from the transportation sector. More-
over, 24% of GHG emissions were attributable to vehicles in Canada [1]. By providing
options for motorists to break from the immediate consumption of fossil fuels, opportunities
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for supporting mobility from renewable resources and affecting environmental impacts will
increase.

Widespread adoption of electric vehicles will require adequate public charging station
infrastructure. The operation range of electric vehicles is often a major source of driver
anxiety and a commonly cited barrier to widespread EV adoption [1, 2]. In light of early EV
adoption concerns, increasing the availability of public charging infrastructure may assuage
the hesitancy. However, EV charging infrastructure operators are reluctant to invest in
new charging stations and expand charging networks as they tend to be less profitable in
early adoption settings. In addition, EV uptake faces certain difficulties due to changing
demographic factors in some regions. Enthusiasm around vehicle electrification is typically
associated with a younger group of consumers and financial incentives. Less prosperous
regions with aging populations and slow growth can struggle to provide the conditions to
foster increased EV adoption.

A public EV charging network to serve a population with different lifestyles and parking
habits (e.g., multi-tenant vs. single family dwellings) is needed to stimulate EV adoption [3].
The expensive capital investments required to install new public EV charging infrastructure
and the use of public funds require well-informed decision making at all stages of the EV
adoption life-cycle. In the context of early EV adoption, some EV charging stations may
not be operating at full capacity, while others may serve a disproportionate number of users.
Therefore, an understanding of charging infrastructure usage is paramount in optimizing
investments and the placement of charging stations.

Grouping stations together based on similar utilization patterns, such as high versus low
utilization groupings, is a useful planning tool for operators. A popular unsupervised ma-
chine learning method to assist practitioners in discovering hidden patterns from a data set is
clustering. It has been utilized by users in the energy sector to group consumers with similar
behaviors, predict future demand, and improve services. For instance, accurate load fore-
casting is one tool which can help operators ensure service consistency. Statistical machine
learning models, built with data from EV charging stations having similar charging patterns
(e.g. homogeneous clusters of stations) will reportedly have superior accuracy [4]. Usage be-
haviors and energy consumption patterns are crucial to improving services provided by utility
companies, which are responsible for managing peaks and imbalances in infrastructure us-
age [5]. As vehicle electrification grows, so does the need for electricity and the possible strain
on power grids. Utilities and other power generators can prepare for the changing electricity
demand by initially deepening their understanding of energy usage behavior at the charging
stations. Although there exists rich literature on different techniques and methods developed
to determine EV charging station usage patterns, lacking is the use of real-world EV charging
events from public infrastructure enriched with nearby traffic volumes and other sources of
data to deepen our understanding of these patterns.

Clustering is currently applied in many interdisplinary and specialized knowledge do-
mains. However, selecting an appropriate clustering algorithm with hyperparameter com-
bination and then evaluating the performance and quality of clustering results can be chal-
lenging for practitioners. Without labeled data, the quality assessment of clustering results
is highly subjective. This is likely the main reason why the state-of-the-art ML frameworks
(i.e., AutoML) tend to focus on supervised learning tasks that require labeled data as in-
put [6]. Identifying the clustering results that aligns with the needs of a practitioner is a
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challenge since in many complex data sets, there is a variety of reasonable groupings, and
practitioners might have multiple preferences and different priorities. [7]

This work proposes a platform prototype named “EVStationSIM” which supports identi-
fying, exploring and comparing patterns present in EV charging data. In this work, many EV
station clusterings are generated, results are made comparable using a combination of vari-
ous internal cluster validity indices (CVI). These validity indices help practitioners identify a
clustering result of interest, quantify different priorities and preferences and find similar clus-
tering results in a group of results. A case study using real-world charging events from EV
station operators in New Brunswick is used to evaluate the proposed process of identifying
and exploring similar charging station clusters over multiple a priori determined temporal
partitions in the data.

1.1. Research Objective

The main research objective in this work is, given the prospect of a clustering result of in-
terest identified by a practitioner according to their preferences and priorities, to recommend
similar clustering results over multiple, a priori selected temporal partitions in the data. The
measurable research objectives can be described as follows:

• To build a system information flow which generates multiple clusterings of EV charging
stations for different a priori selected temporal partitions of the same data (e.g weekly,
monthly and seasonal partitions).

• To implement a clustering process which uses internal cluster validity indices to enable
the identification of similar clustering results across these temporal partitions.

• To implement a mechanism to rank similar clustering results in order to assist prac-
titioners in downstream analytical tasks such as improving regression or classification
model performance.

1.2. Scientific Contributions

The scientific contributions of this work can be described as follows:

• An end-to-end system that facilitates the comparison of clustering results by practi-
tioners with different priorities and preferences.

• The use of real-world event data from EV charging station operators combined with
nearby traffic volumes and other data sources advances the understanding of EV charg-
ing behavior in New Brunswick.

• To the best of the author’s knowledge, no other work has fused real-world EV charging
events from station operators in New Brunswick with traffic volumes and geographic
locations of nearby amenities in an attempt to describe EV charging station clustering
results.

• The combination of eight internal cluster validity indices is used to compute a prox-
imity measure (i.e. Euclidean distance) and reduce the cognitive demand on users in
identifying, understanding and comparing similar clustering results.
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1.3. Organization of Work

The structure of this work is organized as follows. Section 2 provides background on
the regional context in which EV infrastructure investments occur. Section 3 summarizes
related research work in this domain. Section 4 describes the proposed clustering process
underpinning this work and Section 5 provides a summary of its implementation details.
In section 6, the analytical results for a case study demonstrating the proposed approach
and platform implementation are discussed. Finally, section 7 concludes and outlines future
research work.

2. Background

Electrifying transportation will play a key role in Canada’s commitment to impact climate
change. Currently, EV uptake in Canada is relatively low compared to other countries.
Fundamental to encouraging households in adopting EVs are national and regional consumer
incentives. However, some regions struggle to provide basic government services and therefore
need to optimize consumer incentives (if these are even an option) in addition to charging
infrastructure investments in order to achieve maximal impact. To provide further context,
this section focuses on EV charging infrastructure and describes the regional setting in which
infrastructure investments occur. This section also introduces the various types of cluster
analysis techniques available to data analysts and presents decision tree feature importance
as a means of contextualizing and interpreting clustering results.

2.1. Electrifying Mobility

2.1.1. Electric Vehicle Charging Equipment

EV chargers or charging stations are commonly referred to as Electric Vehicle Supply
Equipment (EVSE). The equipment sits between the power source and the vehicle’s charging
port. EVSE is comprised of cables, connectors and other devices that ensures a safe usage
when transferring power to vehicles. In addition to power, EVSE is used to exchange data
between charging equipment and the vehicle.

2.1.2. Charging Levels

EV charging opportunities are often grouped in three levels based on voltage, current and
typical charging times. These levels are : Level 1 (L1), Level 2 (L2) and Level 3 (or DC
Fast) [3, 8].

In Figure 1, from left to right, the first level of charger (L1) requires a standard three-
prong, 120 volt alternating current (AC) household plug. The slowest among all charging
connector types, it can take between 8 and 30 hours to fully recharge an EV battery with L1
charging. The use case associated with this type of charging is typically overnight parking
or any other situation where the vehicle will be parked for a long period of time. The second
level of charging (L2 charging) requires a 240 volt AC plug. It can take between 4 and 10
hours to fully recharge an EV with a level 2 charging station. The use case associated with
this type of charging station typically involves parking at the workplace, home or short-term
public locations such as stores or other public parking situations. The last type of charging
station is the Level 3 charging station type. This type of charging station is also known
as Direct Current Fast Chargers (DCFC). L3 chargers are the fastest amongst all charging
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Figure 1: EV Charging Levels

station types. The power provided by L3 charging stations is up to 480 volts Direct Current
(DC). L3 chargers can charge a vehicle’s battery at 80% capacity in 25 to 30 minutes. The
use case typically associated with this type of charging station is for quick charging during a
prolonged road trip in areas such as along major highways.

2.1.3. Electric Vehicles and Connections

EVs can be powered either entirely from batteries or from the combination of batteries and
an internal combustion engine (ICE). A Battery Electric Vehicle (BEV) is powered entirely
from batteries. A BEV has a battery pack which is recharged by plugging the vehicle into
an electrical outlet. The energy stored in the battery pack is used to power an electric motor
and propel the vehicle. A Plug-in Hybrid Electric Vehicle (PHEV) has two motors. One is
electric and the other is powered by gasoline. The PHEV’s battery pack can be recharged by
plugging the vehicle into an electrical outlet, regenerative breaking or the ICE. Depending
on the PHEV, the vehicle can be propelled by the ICE or the electric motor or both systems
simultaneously [8]. Stakeholders in the EV charging industry have agreed upon a handful of
connector types when plugging a vehicle to a source of power for charging and communication.

Figure 2: EV Station Connector Types

Figure 2 outlines common EV charging station connection types. From left to right, the
J1772 connection type is the most common plug for level 1 and 2 charging in North America.
For DCFC stations, CHAdeMO, SAE Combo CCS and Tesla are available and the vehicle
connectivity depends on the manufacturer.
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2.1.4. Charging Stations

Charging stations have different capabilities. Some charging stations operate on their own,
do not have network connectivity and their main function is to charge the vehicle. Others can
be networked and allow for operator controls such as load management, billing, monitoring,
advertising and promotions etc. The basic, non-controllable chargers are also known as smart
chargers. Smart chargers can automatically distribute power evenly in order to manage load.
The more advanced and controllable chargers are often referred to as intelligent chargers.
These chargers can be controlled and managed remotely in order to manage load and demand
etc. Electric Vehicle Energy Management Systems (EVEMS) use the Open Charge Point
Protocol (OCPP) to communicate with controllable charging stations. The OCPP protocol
is vendor neutral, which enables communication with multiple EV charging hardware using
a ‘common language’ regardless of the hardware vendor.

2.1.5. The EV Market in New Brunswick

New Brunswick is located in Eastern Canada and is one of the four Atlantic provinces
(NB, NS, PEI and NL). The Atlantic region’s ratio of people aged 65 and older is above, and
average annual incomes are below, the national averages. The region has seen a steady out-
migration and slow population growth over the years. Only a few large urban centers offer
public transit meaning that the majority of the population depends on private vehicles for
mobility [9]. New Brunswick has a surface area of 71,388 square kilometers, and according
to the 2016 Canadian census, had 747,101 inhabitants. In 2016, there were 584,533 total
road motor vehicle registrations in the province. The general trend in recent years with this
statistic is upward [10, 11].

With respect to EV sales in Canada as a whole, the market share for EVs is relatively
small (almost 2% in 2019). Comparatively, for the same period, the U.S. EV market was
at 2.5%, it was 7% in the Netherlands, and 8% in Sweden. The largest provinces: British
Columbia, Ontario and Quebec led in EV sales in Canada. The remaining provinces, which
includes the Atlantic and prairie provinces are well behind in terms of EV sales; totalling 0.8
EVs per 1000 households [12].

According to [1], there were very few electric vehicle sales up to the year 2015. Electric
vehicles represented just over 0.01 per cent of the light duty passenger vehicles registered in
the province. Eastern Canadian Provinces (NB, NS, PEI, NL, and QC) had a total of 6,457
electric vehicles (with Québec counting for 6,166 of those).

Public EV charging stations in New Brunswick, operated by the New Brunswick Power
Corporation, at the time this study was performed, are mapped in detail in Figure 3. Stations
are located throughout the province where there is a distance of approximately 60 Kilometers
between charging opportunities.

2.2. New Brunswick Road Network

The length of the two–lane equivalent, paved public road network in New Brunswick is
19.5 thousand kilometers. The province’s road network is also comprised of the national
highway system’s 1,829 core and feeder routes [13]. Figure 4 maps major highways and EV
charging stations in New Brunswick. As can be seen in the figure, charging stations are
mostly located near arterial roads, expressways and freeways.

6



(a) L2 Stations (b) L3 Stations

Figure 3: Charging stations in New Brunswick, Canada.

Figure 4: New Brunswick Major Highway Classes and EV Charging Stations

3. Related Works

3.1. Clustering research in the EV applications

Clustering is a popular method applied in many smart grid applications to group similar
consumers, predict future energy consumption or detect outliers. By grouping data points
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where knowledge about classes is unavailable, clustering algorithms play an essential role
in data summarization, discovering hidden patterns for energy usage behavior, such as the
EV charging demand [14], and improving downstream modeling performance. Straka et
al. [4] compared the k-means, hierarchical, and DBScan clustering algorithms aiming to
explore the usage patterns related to charging stations segments. The authors demonstrated
the potential of clustering to reveal new insights by successfully identifying four groups of
EV charging stations characterized by distinct usage patterns. With available EV charging
data, exploring energy usage behavior may improve emerging applications and services. For
example, energy load forecasting methods might perform better when applied to homogeneous
clusters of stations as opposed to all stations [15]. The improvements in predictive algorithm
performance could provide meaningful support for smoothing frequent peaks and imbalances
in power grids [5].

However, dealing with clustering in general is a non-trivial work. Various steps must be
taken by a practitioner/developer such as the selection of an appropriate algorithm and its
hyper-parameters, the right choice of an adequate proximity measure, and how to properly
validate the modeling results. A common problem in clustering is how to objectively and
quantitatively evaluate the results. Cluster validation is an important task in the clustering
process because it aims to compare clustering results and solve the question of optimal cluster
count. From the literature, many internal validity indices have been proposed to evaluate
performance of a clustering algorithm in finding the natural clusters in a random data set
without any class label information [16, 17]. Numerous studies on validating clustering results
use individual CVI to determine relative partitioning performance. Arbelaitz [18] et al. has
selected 30 CVI to compare and evaluate over multiple data sets with the ground truth to find
the best partitioning results. The optimal recommended number of partitions is defined as
the one that is the most similar to the correct one measured by partition similarity measures.
From this study, authors indicated that cluster overlap and noise had the greatest impact on
CVI performance. Some indices achieved good performance with high dimensionality data
sets. They also performed well in some cases where homogeneity of the cluster densities did
not exist. This study recommended using several CVI to obtain robust results.

Few publications have explored using CVI for evaluating clustering results in the energy
domain. Recently, the Davies-Bouldin index [19] was used to determine the best value for
the cluster count parameter applied to the k-means algorithm. Sun et al. [20] evaluated
the clustering results obtained with Dynamic Time Warping distance (DTW) and Euclidean
distance based on the silhouette coefficient using charging tails from ACN-Data collected
from smart EV charging stations. Euclidean distance, which measures the root of square
differences between coordinates of pairs of objects, is a popular distance measure favored
by many researchers in the field of clustering [21]. CVI have traditionally been used for
validation purposes. However, combining multiple CVI together with a proximity measure
such as Euclidean distance may lead to new similarity comparisons for EV charging event
data clustering results, improving the ability to compare results over multiple time slices.
By automating clustering pipelines and organizing meaningful analytical results in a way
that intensifies the opportunity to compare and understand similar clustering results, the
practitioner/developer can reduce cognitive load and demand in discovering EV charging
patterns and detecting meaningful results for downstream analysis. The central approach of
utilizing multiple CVI together in this article represents an innovation in the energy domain
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and in the field of data science.

3.2. Challenges in EV Data Clustering and Results Exploration

Selecting an appropriate algorithm in clustering is critical since its performance may
vary according to the distribution and encoding of data. For instance, the application of
the Hierarchical Agglomerative Clustering (HAC) algorithm is usually limited to small data
sets because of its quadratic computational complexity. Additionally, hierarchical methods
are not always successful in separating overlapping clusters and the clusters are static in
the sense that a point previously assigned to a cluster cannot be moved to another cluster
once allocated [22, 23]. Essential to the practice of clustering is that different clustering
techniques will work best for different types of data. There is no clustering algorithm that
can be universally used to solve all problems. In fact, practitioners/developers have become
interested in recent years in combining several algorithms (e.g. clustering ensemble methods)
to process data sets [24].

Selecting the appropriate algorithm and hyper-parameters in clustering is critical. How-
ever, it could be cognitively demanding to successfully interpret the clustering results. There
may exist several viable combinations of algorithms and hyper-parameters that result in
plausible clusters. Comparing and contrasting multiple clustering results can help uncover
interesting structure in data. Nevertheless, this comes at a cognitive cost since users will
have to expend effort to cognitively encode and interpret these results. Additionally, in data
with a temporal component such as EV charging events for example, assessing the structure
consistency of discovered clusters over different temporal granularities adds additional de-
mands. Supporting the practitioner in analytical results exploration helps reduce cognitive
demand in comparing and contrasting results.

3.3. The state-of-the-art of platforms for exploring EV charging events

Research activities aimed at assessing the impact of widespread EV adoption on distri-
bution networks are taking place with great enthusiasm in academia and industry [25, 26].
However, a large proportion of studies use data from simulated sources rather than real-world
EV charging events [27]. Many research works have applied mathematical modeling and and
computer-based simulations to gain knowledge regarding patterns of infrastructure usage and
deployment [28]. There are few studies which perform location analysis based on data-driven
analysis and modeling [29, 30]. This is evident in a recent review article by Hardman et al. [31]
on consumer preferences with regards to EV charging infrastructure, which lists studies that
employed surveys, interviews, modeling and vehicle GPS data in addition to a small number
of studies using EV charging equipment information. Recently, Ashkrof et al. [2] explored
EV driver travel behaviors in the Netherlands and point out the main limitations of their
work was related to the low number of Battery Electric Vehicle (BEV) driver participants.
Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) drivers were
added to the study to compensate for this limitation. In spite of the hindrance in targeting
BEV owners uniquely, this study pointed out that route attributes (e.g. travel time, charging
infrastructure characteristics en route to and at the destination of travel), recharging wait
times, and State-of-Charge (SoC) considerably influences EV charging behavior and route
selection. In this research, the authors also found that the two main concerns of EV users
are lack of charging opportunities and SoC.
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To recognize and analyze patterns in data, especially when dealing with a new data set,
descriptive analytics provide a good framework to guide the introductory stages of informa-
tion processing. This process is meant to acquire an initial understanding of historical data
and organize it for advance analysis. Advanced stages of descriptive analytics can include
grouping sets of similar and dissimilar objects in clusters. These base analytical functions
form the foundation for increasingly complex downstream analytical tasks. Using real-world,
contextualized data and supporting the practitioner in analytical results exploration can
help reduce cognitive demand in results interpretation and improve downstream modeling
performance.

By using real-world charging event data, related demand characteristics can provide a
better assessment of increased EV adoption and the potential impact on energy demand.
However, EV charging patterns cannot be effectively analyzed in isolation from the social
and economic contexts in which they occur. A more complete picture of EV infrastructure
usage patterns can be formulated by combining data from different sources. As noted previ-
ously, scarcity of foundational EV charging data sources is a concern. This is also true for
complementary data sources. Some research works based on real-world EV charging data
with contextual information (e.g. traffic volumes, land use, neighboring amenities and driv-
ing distances between charging sites) have started to appear in the literature. For example,
a study by [30] suggests that enriching EV charging data sets with contextual information
provides useful infrastructure-related insights. However, this study’s authors note that low
utilization rates of some charging infrastructure in an early adoption context introduces some
limitations in the obtained results.

Few studies focused on developing platforms to support practitioners in analyzing EV
charging data are found in the literature. Recent works describe web platforms which display
EV charging information and enable monitoring of charging infrastructure. For example,
Maase et al. [32] developed an web-based assessment platform to show key performance
indicators such as to kWh, connection time, charging time. The platform utilizes data from
four of the largest cities in the Netherlands (Amsterdam, Utrecht, The Hague, Rotterdam)
and their surrounding areas. Another example is a web platform for sharing the information
about privately owned charging stations [33]. This platform is operated as an interactive
map, based on the Google Maps service. No work in the literature attempts to build a
platform that is able to automate the clustering process and proposes a solution to facilitate
the comparison of clustering results, reduce the cognitive demand on users in identifying,
understanding, and comparing similar clustering results.

4. The Proposed End-to-End EVStationSIM Platform

This section describes the proposed analytical platform that was developed to cluster
and explore patterns that emerge around EV charging infrastructure usage. The system
information flow is utilized to diagnose the cause of phenomena observed at charging stations
based on clustering of real-world charging events. The information flow runs through 7 stages
as shown in Figure 5, which are described as follows:

• Data Collection - (Section 4.1) : The gathering of EV charging event data and
supplementary information related to charging stations.
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• Data Preprocessing and Fusion - (Section 4.2) : The cleaning, transforming and
combining of data collected from multiple sources to produce consistent, accurate, and
useful data files.

• Feature Generation and Selection - (Section 4.3) : The creation of contextual-
ized, semantically enriched data for downstream analytical tasks.

• Clustering - (Section 4.4) : The discovery of internal structure in data using the
hierarchical agglomerative clustering algorithm.

• Processing and Harvesting Validity Indices - (Section 4.5) : The computation
and normalization of eight cluster validity indices for each clustering result.

• Similarity Computation - (Section 4.6) : The computation of relative proximity
measures for all clustering results and the creation of relative rankings of comparable
station groupings.

• Facilitate Pattern Exploration - (Section 4.7) : The suggestion of initial relevant
clustering results to explore and the ability to query relative rankings of comparable
results for diagnostic and down-stream analytical tasks.

4.1. Data Collection

This stage consists of retrieving EV charging event logs and station location information
for Level-2 and Level-3 charging stations. The raw data were made available by the New
Brunswick Power Corporation (NB Power) in a Microsoft Excel file format. This stage also
involves retrieving data from other sources in various file formats. For example, relevant
traffic count totals were provided by the New Brunswick Department of Transportation and
Infrastructure (NBDTI) in a tabular, PDF file format. Supplementary information related to
charging station locations such as information regarding nearby amenities, average property
assessment values and closest metro area populations were retrieved from the GEONB [34]
data catalogue. These were available in the ESRI shape file format. Once all data were
retrieved, the raw data was transformed and enriched in subsequent stages.

4.2. Data Preprocessing and Fusion

This stage uses raw charging event data from public EV charging stations. Preprocess-
ing consists of data cleaning, consolidation and applying a one-way hash function to mask
sensitive customer data. Data cleaning ensures superior information quality and produces a
set of cleaned files by eliminating errors, inconsistencies, duplicated and redundant rows, and
handling missing data. Consolidation combines data from various files into a single data set.
Multiple files from the cleaned data set are used as the input for this operation. The output
of this activity is a single file that merges all attributes into one large table.

Additionally, data fusion consists of combining multiple data sources which can be fol-
lowed by a reduction or replacement for the purpose of maximizing performance. In the
proposed system information flow, charging event data files are combined with station loca-
tion information, neighbouring amenities and permanent traffic count totals to produce more
consistent, accurate, and useful data files.

11



Fa
ci

lit
at

e
 P

at
te

rn
 

Ex
p

lo
ra

ti
o

n

Fe
at

u
re

 G
e

n
e

ra
ti

o
n

 &
 S

e
le

ct
io

nD
at

a 
P

re
p

ro
ce

ss
in

g 
&

 F
u

si
o

n

C
le

an
ed

 D
at

a

C
o

n
te

xt
u

al
-

iz
ed

 D
at

a

Ex
tr

ac
te

d
 

D
at

a

H
as

h
ed

 
D

at
a

M
u

lt
ip

le
 

D
at

a 
So

u
rc

es
 

C
h

ar
gi

n
g 

Le
ve

l 3

C
h

ar
gi

n
g 

Le
ve

l 2

C
h

ar
gi

n
g 

Le
ve

l 1

C
ab

le
 c

o
n

n
ec

t 
to

 c
h

ar
ge

r

C
o

n
tr

o
l &

 
C

o
m

m
u

n
ic

at
io

n

C
o

n
tr

o
l &

 
C

o
m

m
u

n
ic

at
io

n

C
o

n
tr

o
l &

 
C

o
m

m
u

n
ic

at
io

n

A
CA
C

D
CB
u

ild
-i

n
 c

ab
le

 p
ro

te
ct

io
n

Sm
ar

t 
re

ch
ar

ge
 

st
at

io
n

s

A
C

D
at

a 
C

le
an

in
g

D
at

a 
C

le
an

in
g

H
as

h
in

g
H

as
h

in
g

D
at

a 
Fu

si
o

n
D

at
a 

Fu
si

o
n

Fu
se

d
 

D
at

a

Fe
at

u
re

 
G

e
n

e
ra

ti
o

n
Fe

at
u

re
 

G
e

n
e

ra
ti

o
n

D
at

a 
P

ar
ti

ti
o

n
D

at
a 

P
ar

ti
ti

o
n

Fe
at

u
re

 
Se

le
ct

io
n

Fe
at

u
re

 
Se

le
ct

io
n

P
ar

ti
o

n
ed

 
D

at
a

C
lu

st
e

ri
n

g
C

lu
st

e
ri

n
g

A
-p

ri
o

ri
 s

el
ec

te
d

A
lg

o
ri

th
m

, P
ar

am
et

er
, 

P
ro

xi
m

it
y 

M
ea

su
re

P
ro

ce
ss

in
g 

&
 

H
ar

ve
st

in
g 

V
al

id
it

y 
In

d
ic

e
s

P
ro

ce
ss

in
g 

&
 

H
ar

ve
st

in
g 

V
al

id
it

y 
In

d
ic

e
s

Si
m

ila
ri

ty
 

C
o

m
p

u
ta

ti
o

n
Si

m
ila

ri
ty

 
C

o
m

p
u

ta
ti

o
n

M
u

lt
ip

le
 C

lu
st

er
in

g 
R

es
u

lt
s

C
lu

st
er

in
g 

R
es

u
lt

 
Si

m
ila

ri
ti

es
 D

at
ab

as
e

D
at

a 
C

o
lle

ct
io

n
D

at
a 

C
o

lle
ct

io
n

R
aw

 
D

at
a

F
ig
u
re

5
:
P
ro
p
o
se
d
A
n
a
ly
ti
ca
l
S
y
st
em

In
fo
rm

a
ti
o
n
F
lo
w

12



4.3. Feature Generation and Selection

The aim of the feature generation and selection stage is to enrich preprocessed data files
and to select relevant information for further analysis [35, 36]. Feature generation incorpo-
rates the construction of new attributes from raw data, which typically involves creating a
mapping that converts original attributes into new attributes. Feature selection consists of
identifying relevant variables that will improve the performance of downstream analytical
tasks such as finding meaningful clusters or better inference. Once feature generation and
selection are complete, the transformed data files are partitioned using a priori selected tem-
poral granularities (e.g. weekly, monthly or seasonal) as a final data preparation activity.
This facilitates the ensuing analysis over various time slices.

4.4. Clustering

The objective of the clustering stage is to find the patterns from transformed input data
using the Hierarchical Agglomerative Clustering (HAC) algorithm [37]. The algorithm seeks
to build a hierarchy of clusters by merging current pairs of mutual closest input data points
until all the data points have been used in the computation. The measure of inter-cluster
similarity is updated after each step using Ward linkage. This a priori selected algorithm is
utilized to fit the various temporal granularities of input data, producing multiple cluster-
ing results. Internal clustering validity indices are recorded during each application of the
clustering algorithm.

HAC is an unsupervised learning method which uses an iterative, bottom-up approach
when determining cluster memberships. The algorithm does not require pre-specifying the
number of clusters prior to its usage. The procedure starts with each individual point in
the data set forming its own cluster; then the two closest clusters are merged together at
each iteration until all points are merged into one large cluster. This process produces a tree
structure called a dendrogram (See Figure 6), which contains all possible clusterings of the
data set. The number of clusters is selected from the method’s output by deciding where to
cut the dendrogram in order to get the best possible partitioning of the data. Given that
the dendrogram embeds all possible clusterings, cutting the tree in order to get different
partitioning of the data is performed in constant time [38].

Figure 6: Example Dendrogram
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HAC also requires a measure of distance between the clusters when deciding how to group
the data at each iteration. This measure of cluster distances is done with a linkage function
that captures the distance between clusters. Common measures of distance in this context
include Ward and complete. Ward minimizes the variance of the clusters being merged.
When making a merge decision with the Ward approach, two clusters will be merged if the
new partitioning minimizes the increase in the overall intra-cluster variance. Complete uses
the maximum distances between all observations of the two sets. When making a merge
decision with the complete approach, two clusters will be merged if the new partitioning
maximizes the distance between their two most remote elements. Even though the algorithm
does not require pre-specifying the number of clusters prior to its usage, in order to get the
best possible partitioning of the data, a decision on exactly where to cut the tree must be
made. The objective of the clustering is to provide the most compact and well-separated
clusters. As a final remark in the discussion of clustering, it should be noted that the HAC
method is but one of many possible clustering algorithms that could be leveraged by the
proposed platform.

4.5. Harvesting and Processing Validity Indices

The purpose of harvesting and processing the validity indices is to prepare the clustering
operation output for the subsequent creation of a clustering result similarity matrix (described
in Section 4.6). This similarity matrix is utilized to identify clustering result similarities across
various temporal slices in the data. Each application of the clustering algorithm generates
a record consisting of the cluster count parameter value, the various cluster validity index
values and the input data used to generate the clusters. Processing the validity indices
involves selecting and normalizing the index values in preparation for Euclidean distance
computations. This stage utilizes a combination of eight cluster validity indices, which are
listed in Tables 2 and 3 and thoroughly described in [39].

4.6. Similarity Computation

The objective of the similarity computation stage is to perform pairwise Euclidean dis-
tance calculations for each clustering result and create similarity rankings of station group-
ings. The similarity computation stage uses Euclidean distance as the proximity measure
between clustering results. A combination of eight cluster validity indices, individually de-
scribed in [39], are utilized in the distance computations. The pairwise similarity comparisons
(e.g. the similarity matrix) are then persisted in a database to facilitate exploring clustering
result similarities across various temporal slices in the data.

4.7. Facilitate Pattern Exploration

The purpose of the pattern exploration facilitation stage is to enable the basic identifica-
tion and interactive querying of potentially interesting clustering results. Additionally, this
stage enables drilling down into relative rankings of comparable results for diagnostic and
downstream analytical tasks. This stage leverages a RESTful API in order to facilitate this
capability.
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5. EVStationSIM Platform Implementation

In this section, we provide key implementation details of the EVStationSIM platform
proposed in the previous section. Custom-written Python code and a scientific Python stack
were leveraged to implement the platform. The software programs used in this work were
packaged using Docker [40] in order to ensure a reproducible and consistent computational
environment. An architecture composition diagram is provided in Figure 7. The software
used for the platform implementation is summarized in Table B.5 of Appendix B.

Data AnalyticsData Analytics
PersistencePersistence

             Query             Query

Operating System

Docker Engine

Physical Infrastructure/Virtual Resource

UnstructuredUnstructured Semi-
structured

Semi-
structured

StructuredStructured StreamingStreaming

Tracking Node

ParametersMetrics

Artifacts

Metadata

Models

ML ModelsClustering 
Results

Tracking 

Output

EV Stations 
Operators/ 

Practitioners

ML Engineers/ 
Data Scientists/ 

Practitioners

Mobile 
App

Web 
App

Local 
App Local 

App

Cloud 
Job

CLI

Notebooks

Data partitions

EV & Other 
Data 

Source

Figure 7: Architecture Overview

In Table 1, we can observe how system information flow elements introduced in Figure 5
are linked to concrete platform implementation components in Figure 7.
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Table 1: From Platform Proposal to Concrete Implementation Components

Stage
System Information
Flow - (Figure 5)

Architecture
Overview - (Figure 7)

Data Collection Data Collection
Raw Data from
Multiple Data Sources

EV Data Sources
Structured and Other.
QGIS Transformations

Data Preprocessing
and Fusion

Hashing, Data Cleaning,
Data Fusion

Data Analytics &
ML Life-Cycle
Containers

Feature Generation
and Selection

Feature Generation,
Data Partition,
Feature Selection

Data Analytics &
ML Life-Cycle
Containers

Clustering Clustering -
Multiple Clustering
Results

Data Analytics,
ML Life-Cycle,
Persistence &
Visualization
Containers

Harvesting and Processing
Validity Indices

Processing & Harvesting
Validity Indices

ML Life-Cycle
and Persistence
Containers

Similarity
Computations

Similarity
Computation

ML Life-Cycle &
Persistence Containers

Facilitate Pattern
Exploration

Facilitate Pattern
Exploration - RESTful
Interface

Query and
Persistence
Containers

The platform is meant to be of assistance to EV station operators, which are primarily
concerned with accessing analytical results. Station operators access analytical result arte-
facts via custom applications written for mobile, web or local client access. All clients will
leverage the same RESTful web interface. The platform also encapsulates and facilitates the
use of common data analytics tools; to be leveraged by machine learning engineers and data
scientists. These practitioners can interact with the analytical tools using custom-written
code launched from a command line or Jupyter interface. The primary concern for this class
of user is to make interesting analytical results available to EV station operators. Table A.4
in Appendix A outlines individual Docker container deployment details.

5.1. System Information Flow

Figure 8 provides a visual overview of the implemented platform’s information flow; where
weekly clustering results are the primary focus of the exploration. Key implementation details
are listed below :

(1) The Raw EV charging data contains around 9500 recharging events.
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(2) The overlap between EV charging events and traffic counter counts is 9 months which
spans from April 2019 to December 2019.

(3) The traffic counter and GeoNB data are available to provide additional context to
clustering results.

(4) Once feature generation and selection are complete, the EV charging data is split into
weekly partitions. The selected weekly partitions spans the 9 months for which there
is an overlap between EV and traffic counter events.

(5) The clustering process is performed on each weekly partition for a K parameter -
also referred to as the cluster count parameter - that ranges from 2 to 7. All other
hyperparameters for the HAC algorithm are kept as default.

(6), (7), (8) This produces numerous clustering results (i.e. one result for each K value and
week). In the case study presented in the discussion section, results for a K parameter
of 2 are explored.

Figure 8: Platform Information Flow Overview
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The next few sections describe the implementation details supporting the system infor-
mation flow described in Figures 5 and 8.

5.2. Data Collection

This section describes the process of gathering the EV charging event data that is founda-
tional to this work. In addition, it describes how this data was combined with supplementary
data to formulate a more complete picture of EV infrastructure usage patterns.

Real operational data from public electric vehicle charging stations was provided by the
New Brunswick Power Corporation. The raw data consisted of recharging reports and charg-
ing station location information. The data set contained 9,505 EV recharging events occur-
ring between the dates of April 2019 and April 2020; representing 9,194 hours of charging
infrastructure usage and a 97,148.65 kWh energy transfer.

Additional sources of data were collected for integration at the final stage of the EV sta-
tion clustering process in order to enhance result interpretation capabilities. As an example
of a supplementary data source, the New Brunswick Department of Transportation and In-
frastructure (NBDTI) provided access to the total daily traffic counts for 36 permanent traffic
counter installations in the province of New Brunswick. For each traffic counter installation,
hourly and daily traffic count totals were provided. Traffic counter totals were provided for
a date range that spans from January 2019 to December 2019.

As a final step in the data collection phase of the implementation, geospatial data regard-
ing available amenities in the province of New Brunswick were harvested from the GeoNB
data catalogue [34]. Examples of such amenities include schools, provincial parks, hospitals,
provincial government service locations and border crossings. Important information such as
amenity names and corresponding GPS locations were harvested.

5.3. Data Preprocessing and Fusion

Here, details of the cleaning, transforming and linking of data harvested from the various
sources described above are discussed. The Apache Spark distributed analytics engine and
the QGIS Open Source Geographic Information System were primarily used to perform the
Extract Transform and Load (ETL) tasks.

Initial pre-processing involved loading raw EV charging event CSV data files into a local,
thread-based Spark cluster. Data elements were cast to appropriate types when required
(i.e. if they were initially imported as strings). For example, charging event times, initially
imported as strings into Spark, were cast as timestamps. Cleaning the data consisted of
removing charging events that were less than 5 minutes in duration (eliminating 11% of the
raw records). These events were interpreted as connection disturbances and discarded as part
of the normal data cleaning process to avoid skewing results with less relevant information.
Consolidation consisted of integrating the separate charging event CSV files into one and
persisting these on disk in the Apache Parquet file format.

A similar operation was performed on the EV charging station location CSV files. QGIS
and the MMQGIS [41] plug-in were also used to generate hub-line distances between charg-
ing stations and closest permanent traffic counter. After charging stations were linked to
traffic counters based on proximity, the resulting QGIS layer’s data table was exported for
downstream usage. The fusion of EV charging station information with the nearest amenities
such as hospitals, national parks, government services, largest metropolitan areas, etc. was
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done in QGIS. In total, 8 additional GIS features from the GEONB [34] data catalogue were
linked to EV charging station location records using this approach.

The Parquet format is a popular file format with Big Data cloud service providers. Using
this file format can save computation time and money because it is optimized for query
performance and I/O minimization. The file format also supports very efficient compression
and encoding schemes. Using the Parquet file format whenever possible in the platform
translates into overall performance gains due to the advantages in I/O and data compression
over the CSV file format.

5.4. Feature Generation and Selection

The feature generation process creates new features (contextualized) based on calculations
involving existing data attributes. It prepares data in order to be compatible with a machine
learning algorithm’s requirement and can lead to performance improvement of a machine
learning algorithm. In order to simplify the experimental setup, two features were utilized
to cluster stations in the system information flow and case study.

Weekly, monthly and seasonal temporal partitions of the charging event data were created
prior to applying feature transformations. These partitions facilitate the comparison of clus-
tering results based on charging events occurring at stations during a particular week, month
or season of the year. Actors in the energy domain typically define a medium-term duration
lasting from one week to one month, while a long-term duration can span one month to years.
Once the data partitions were established, the charging events were prepared for the cluster-
ing stage by calculating, for each charging station, station type and temporal granularity, the
proportion of total charging events and the proportion of total power used to charge vehicles
relative to all stations. Additionally, the total daily kWh used to charge vehicles for each
station was calculated for all weekly, monthly and seasonal time slices of the charging event
data. These daily aggregate kWh values in addition to the fused data from the data fusion
stage are used in the pattern exploration stage to explain the clusters.

5.5. Clustering

In this stage of the system information flow, the agglomerative clustering algorithm is
applied to all temporal slices of the data produced in the previous stage. The clustering
algorithm’s input features are, for each station, the proportion of total charging events and
the proportion of total power used to charge vehicles relative to all stations. This is done
for a cluster count hyperparameter that varies from 2 to 7. Other hyperparameter settings
are kept to the algorithm’s defaults to simplify the experimental setup. Internal clustering
validity indices are recorded during each application of the clustering algorithm (See Table 2
for the list of recorded indices). Additionally, the clustering process also generates maps
and various charts describing the clusterings. These modeling artefacts are also recorded to
facilitate the clustering pattern exploration.
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Table 2: Recorded Clustering Validity Index Data

Column Name Description
file name File name for clustering

results for station type and time granularity
n cluster K parameter value used in applying

the clustering algorithm
silhouette score Silhouette index value for clustering result
calinski harabasz Caliński-Harabasz index for clustering result
davies bouldin Davies-Bouldin index for clustering result
cohesion Cohesion index for clustering result
separation Separation index for clustering result
RMSSTD Root mean square standard deviation

index for clustering result
RS R-squared index for clustering result
XB Xie-Beni index for clustering results

5.6. Harvesting and Processing Validity Indices

Every application of the clustering algorithm on weekly, monthly and seasonal partitions
of the data generates a record consisting of the cluster count parameter value, the 8 cluster
validity index values and the input data used to generate the clusters. Additionally, visual
representations of the clustering results such as maps, scatter plots, dendrograms etc. are
also generated.

Harvesting and processing the validity indices involves normalizing the recorded index
values of the clustering process in preparation for Euclidean distance computations. This
prepares the clustering validity index data for the creation of a clustering result similarity
matrix.

5.7. Similarity Computation

Pairwise Euclidean distance computations are performed for each clustering result. All
validity index values (e.g. multidimensional points in Euclidean space) of each clustering
result are used in the distance computations. The similarity matrix created in this step of
the system information flow is utilized to identify clustering result similarities across various
temporal slices in the data.

Finally, the similarity matrix is persisted in a relational database to enable the query-
ing of clustering results and corresponding similarities across months, weeks and seasons.
The database query functionality is made available via a RESTful API. Clustering result
visualizations are stored on the file system in such a manner as to support the database
query functionality enabling the retrieval of available clustering result visualizations over
this RESTful interface.

5.8. Facilitate Pattern Exploration

At this point in the system information flow, for each station type, temporal granularity
and for a cluster count hyperparameter that varies from 2 to 7, there is a clustering result
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data set that consists of rows containing a Station and a cluster number. Additionally,
pairwise Euclidean distances between all clustering results have been recorded.

The distance, in Kilometers, from the closest school, park, hospital etc. for each charging
station has also been noted. In addition, for each temporal partition in the data, daily kWh
totals have been recorded for each charging station. Given that charging stations were linked
to traffic counters based on proximity in the data fusion stage of the information flow, traffic
counter counts can be aggregated to match the weekly, monthly and temporal partitions in
the EV charging data. This auxiliary information can be used to enhance clustering result
interpretation capabilities by providing additional contextual information at the charging
station level.

After clustering results are processed, contextualized and persisted, the practitioner can
navigate these results via a RESTful interface (See Appendix D and Appendix E for
request/response examples). Figure 9 illustrates how the practitioner interacts with the
results system. First, the practitioner requests ranked station clustering results for either
L2 or L3 station types (Step 1). The system then returns a sorted list of clustering results
ordered by silhouette score (Step 2). From this list, the practitioner selects one result as the
reference result for which comparable results are desired and then requests these comparable
results from the system (Step 3). Finally, the system returns a sorted list of comparable
clustering results that is ordered by Euclidean distance (Step 4). This sorted list contains
result-specific artefacts such as scatter plots, station cluster membership maps, silhouette
plots and CART feature importance plots.

The clustering process implementation and RESTful API facilitate the comparison of
clustering result similarities across various temporal granularities. This process is useful in
identifying avenues for further analysis. One Level 3 station clustering result for the week of
May 27th, 2019 has been selected as a case study to demonstrate the proposed approach and
platform implementation. The case study is presented in the next chapter.

Figure 9: Results Query Sequence
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6. Case Study: Applying the EVStationSIM Platform to Analyze New Brunswick
EV Charging Data

This section highlights analytical results of our proposed approach and system implemen-
tation with a case study. The results presented here identify similar station clusterings over
multiple weeks. Table 3 summarizes the clustering similarities relative to station clusterings
for a reference week starting on May 27th, 2019. In all results, the number of clusters is 2 and
the station type is L3. The table is sorted in ascending order by Euclidean distance relative
to the reference week. According to the multi-dimensional pairwise distance calculations
obtained, the most similar clustering result to the week starting on May 27th, 2019 is the
result for the week starting on August 26th 2019. The least similar clustering result is the
result for the week starting on December 23rd, 2019.

Table 3: Clustering Similarities - L3 - May 27th, 2019

WEEK Sil CH DB C S RMS RS XB Dist

27-MAY-2019 0.600 51.370 0.512 1.123 2.403 0.153 0.682 0.0919 N/A

26-AUG-2019 0.623 60.355 0.518 1.135 2.854 0.154 0.715 0.078 0.138

29-AUG-2019 0.600 54.727 0.594 1.163 2.652 0.156 0.695 0.107 0.156

06-MAY-2019 0.630 57.190 0.600 1.153 2.749 0.155 0.704 0.089 0.169

17-JUN-2019 0.624 46.222 0.618 1.145 2.206 0.154 0.658 0.111 0.181

07-OCT-2019 0.586 60.513 0.540 1.234 3.111 0.160 0.716 0.099 0.191

02-DEC-2019 0.630 56.551 0.582 1.261 2.972 0.162 0.702 0.090 0.197

... ... ... ... ... ... ... ... ... ...

04-NOV-2019 0.648 72.433 0.503 1.505 4.542 0.177 0.751 0.081 0.550

01-APR-2019 0.575 39.765 0.620 2.028 3.361 0.206 0.624 0.107 0.613

28-OCT-2019 0.825 92.435 0.215 0.656 2.525 0.117 0.794 0.0184 0.784

23-DEC-2019 0.801 50.970 0.110 0.701 1.489 0.121 0.680 0.0174 0.825

Column Name Abbreviations for Table 3

Sil : Silhouette index
CH : Caliński-Harabasz index
DB : Davies-Bouldin index
C : Cohesion
S : Separation
RMS : Root mean square standard

deviation
RS : R-squared
XB : Xie-Beni index
Dist : Euclidean distance between

current and previous row

6.1. Weekly Grouping Observations

A few weekly groupings were observed based on spatial and temporal patterns in the
results. These groupings appear across the ordered list of results in Table 3 in the following
arrangement :
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• High Utilization in Lower Half of Province

– Weeks Starting : 27-MAY-2019, 26-AUG-2019, 29-AUG-2019

• High Utilization at Provincial Boundary Edges

– Weeks Starting : 06-MAY-2019, 17-JUN-2019, 07-OCT-2019

• High Utilization in South-East of Province

– Weeks Starting : 02-DEC-2019

• Lowering Utilization Rates

– Weeks Starting : 04-NOV-2019, 01-APR-2019

• Low Utilization Rates Across The Province

– Weeks Starting : 28-OCT-2019, 23-DEC-2019

This work utilizes the groupings mentioned above to organize the ranked list of weekly
clustering results into bite-sized portions. Grouping the weeks together in this fashion helps
the reader navigate a long list of results in small increments. A representative visual pre-
sentation of the clustering results for each grouping can be seen in Figures 10 through 14.
Each figure contains a silhouette plot [42], a scatter plot and a map describing the clustered
data. Additionally, a feature importance bar chart is included; highlighting which features
are the most important, if predicting the cluster labels were attempted using a decision tree
algorithm. CART predictive models, are used as an exercise in explaining the clusters using
the harvested, transformed and fused features such as nearby traffic counts and amenities.

In all silhouette plots found in Figures 10a through 14a, an observation with a silhouette
width near 1 means that a data point is well placed in its cluster; an observation with a
silhouette width closer to negative 1 indicates the likelihood that this observation might
really belong in some other cluster. We describe weekly clustering results individually while
contrasting these with the results for our reference week of May 27th, 2019 in the following
sections.

6.2. High Utilization in Lower Half of Province

The clustering results for the reference week of May 27th, and the weeks starting on August
26th and 29th are very similar. The clustering result similarities for these three individual
weeks are noticeable both in spatial and temporal terms. Spatially, in the three clustering
results, cluster 1 - the higher station utilization cluster - member stations are mostly located
in the lower half of the province. More specifically, cluster 1 station members are mostly
located along a section of the province’s road network classified as a highway (i.e. the Trans-
Canada Highway in red on the maps). Temporally, the sum of kWh transferred to vehicles
on Wednesdays is in the most top important features list in the three results. The clustering
result for the week of May 27th is described in detail next. This clustering result also serves
as the representative week for the first 3 clustering results found in Table 3.
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6.2.1. Reference - Week Starting May 27th, 2019

We can see from Figure 10a that a reasonable structure in the data has been found for
our reference week, which starts on May the 27th. In this clustering, stations are grouped in
terms of relatively higher and lower utilization rates. The average silhouette score is 0.600
in this clustering result. In Figure 10b, cluster 0, the cluster with relatively lower utilization
rates, has more station members than cluster 1, which is the cluster with relatively higher
utilization rates.

(a) Silhouette (b) Scatter

(c) Map (d) CART Feature Importance

Figure 10: L3 Station Clusters - (27-MAY-2019)

In the scatter plot, we can clearly see the crisp clusters identified by the HAC algorithm.
The map in Figure 10c, indicates that cluster 1 member stations are mostly located in the
lower half of the province. Finally, in the CART feature importance chart of Figure 10d, we
can observe the most significant feature, if we were to use a classification and regression trees
algorithm to predict the station member clusters for the purpose of explaining the clusters
using supplementary data, is the sum of kWh transferred to vehicles on the Wednesday.
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6.3. High Utilization Provincial Boundary Edges

The clustering results for the next 3 weeks in the ordered list of clustering results of
Table 3 are also very similar. Spatially, in the three clustering results, cluster 1 - the higher
station utilization cluster - member stations are mostly located at the edge of the province.
Temporally, the sum of kWh transferred to vehicles on Fridays and Saturdays are top impor-
tant features in the three results. The clustering result for this group’s representative week
is described in detail next.

6.3.1. Week Starting May 6th, 2019

The next clustering result we describe is for the week starting on the 6th of May, 2019
(See Figure 11). The average silhouette score for this result is 0.630. The silhouette plot
in Figure 11a suggests a less optimal clustering. This plot indicates that some observations
would seemingly belong to clusters other than the one they are in; these observations have a
negative silhouette width value.

(a) Silhouette (b) Scatter

(c) Map (d) CART Feature Importance

Figure 11: L3 Station Clusters - (06-MAY-2019)
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A less than optimal clustering is confirmed by observing the scatter plot of Figure 11b.
Some observations in cluster 1 seem to be outliers. The cluster cohesion is not as prevalent as
cluster 0’s. The cluster station members of cluster 1 in the map of Figure 11c are no longer
generally located in the lower half of the province. Cluster 1 station members are mostly
located at the province’s boundary edges with this result. The important features outlined in
the bar chart of Figure 11d no longer includes Wednesday kWh totals. The most important
feature is now kWh power transfers to vehicles on Saturday.

6.4. High Utilization in South-East of Province

The clustering results for the next week in the ordered list of results is unique in the
sense that neighbouring results have less similarities when considering spatial and feature
importance aspects to explain the clusters. This clustering result is described in detail next.

6.4.1. Week Starting December 2nd, 2019

For the clustering result of the week starting on December 2nd, 2019, the average silhouette
score is 0.630. The silhouette plot in Figure 12a and the scatter plot in Figure 12b suggest
that perhaps utilizing 3 clusters would result in a better partitioning of the stations. We can
observe in the scatter plot of Figure 12b that cluster 1 - the higher station utilization cluster
- seems to have large ”within” dissimilarities, which leads to the lower silhouette widths
that are observed in the silhouette plot for this cluster. In this result, it is apparent from
the scatter plot (Figure 12b) that cluster 1 could be split in two smaller but well separated
clusters.

The cluster station members of cluster 1 in the map of Figure 12c are generally located in
the South-East section of the province. The important features outlined in the bar chart of
Figure 12d indicate that the traffic counts for the closest traffic counter is the most important
variable for predicting station cluster membership for the purpose of explaining the clusters
using supplementary data.
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(a) Silhouette (b) Scatter

(c) Map (d) CART Feature Importance

Figure 12: L3 Station Clusters - (02-DEC-2019)

6.5. Lowering Utilization Rates

The clustering results for the next 2 weeks in the ordered list of results have some in-
teresting properties. There does not seem to be an obvious and common spatial pattern in
these two clustering results. The number of cluster members for the high utilization cluster
(cluster 1) decreases when comparing the week starting on November 04th, 2019 to the week
starting April 01st, 2019. Temporally, the sum of kWh transferred to vehicles on Wednesday
is in the list of important features for both results. The clustering result for this group’s
representative week is described in detail next.

6.5.1. Week Starting April 1st, 2019

In the result for the week starting on April 1st, 2019, the average silhouette score is 0.575.
The silhouette plot in Figure 13a and the average silhouette score value suggest a reasonable
structure in the data has been found. Observing the scatter plot of Figure 13b, we can see
that the observations in each cluster are more dispersed than in the reference result.
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(a) Silhouette (b) Scatter

(c) Map (d) CART Feature Importance

Figure 13: L3 Station Clusters - (01-APR-2019)

The cluster station members of cluster 1 in the map of Figure 13c are generally located in
the lower half of the province. The important features outlined in the bar chart of Figure 13d
highlight the total kWh transferred to vehicles on Wednesday as the most important feature.

6.6. Low Utilization Rates Across The Province

The clustering results for the last 2 weeks in the ordered list of clustering results both
depict a majority grouping of low utilization EV stations across the province. The sum of
kWh transferred to vehicles at the end of the week (i.e. Friday and Sunday) are top important
features in these clustering results. The clustering result for this group’s representative week
is described in detail next.

6.6.1. Week Starting October 28th, 2019

We can see from Figure 14a and the average silhouette score of 0.825 that a strong
structure in the data has been found for the week starting on October 28th, 2019. Like all
clustering results, stations are grouped in terms of relatively higher and lower utilization
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rates. In the scatter plot of Figure 14b, we visually observe high intra-cluster similarity
and inter-cluster separation. We can also observe that cluster 1, the cluster with relatively
higher utilization rates, has 2 station members only and are located in the lower-right of the
province according to the map in Figure 14c. The most important feature outlined in the
bar chart of Figure 14d is total kWh transferred to vehicles on Sunday.

Every cluster validity index depicted in Table 3 for this result indicates a superior grouping
of stations relative to our reference week.

(a) Silhouette (b) Scatter

(c) Map (d) CART Feature Importance

Figure 14: L3 Station Clusters - (28-OCT-2019)

6.7. Summary of Observations

As can be observed in Figures 10 to 14 of the previous sections, the decreasing relative
similarity of clustering results is especially noticeable when visually comparing the silhouette
and scatter plots for the week of May 27th with the same visualizations in other weeks and
doing so in a step-wise fashion down the ranked list of results. As we move further away
from the reference week, the spatial and feature importance aspects of the clustering results
change. The grouping of weeks at the beginning and end of the ordered results list are
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quite apparent. However, in the middle of the list (e.g. weeks starting 04-NOV-2019 and
01-APR-2019) the spatial-temporal characteristics of the grouping of weeks are less obvious.
Although helpful in presenting and thinking about the results, there is a level of subjectivity
in grouping the weeks in this manner. A subjectivity that, as mentioned previously, is also
present in assessing the quality of individual clustering results in general.

Individual cluster validity index calculations embed implicit trade-offs on what is priori-
tized when expressing inter-cluster separation, intra-cluster homogeneity, density, and com-
pactness as one numeric value. One can view the various indices as averages where a certain
precision is lost in the summary. This can lead to situations where one index will suggest a
better clustering relative to another grouping and another index will inverse this assessment.

The results highlighted in the case study provided in this section demonstrate that given
a clustering result of interest, a process of objectively highlighting and recommending similar
clustering results can indeed be automated in order to support the practitioner in evaluating
how structure in data persists over multiple time slices in a data set with temporal proper-
ties. The relative ranking of similar clustering results this approach affords makes it easy
to objectively identify similar station groupings over multiple weeks based on a reference
week. Using real-world, contextualized data and supporting the practitioner in analytical
results exploration can help reduce cognitive demand in results interpretation and improve
downstream modeling performance. Not highlighted in the case study, are the clustering
results for other a priori selected temporal partitions in the data, which are also available as
reference points for exploring monthly or seasonal clustering similarities.

As a final remark on the results, Appendix F demonstrates how the weekly groupings
obtained in the case study can provide useful insights in planning and expanding infrastruc-
ture allocation. As outlined in the appendix, utilizing the top 5 stations with the most kWh
transferred to vehicles per station grouping can inform long-term planning and investment
decisions.

7. Conclusions and Future Work

A broad EV adoption scenario will require adequate public charging infrastructure. An
understanding of EV charging patterns at public charging stations is crucial to foster adoption
while managing costs and optimizing placement of charging infrastructure. The outcomes
of this research is believed to provide useful insights in planning and expanding infrastruc-
ture allocation (See Appendix F for this discussion). To optimize operations, EV station
operators often seek market-related insights. EV charging station clustering can reveal use-
ful segmentations in service consumption patterns. The insights offered by this framework
can assist station operators and policy makers in the development of consumer engagement
strategies, demand forecasting tools and in the design of more sophisticated tariff systems.

Capital investments in public charging infrastructure involves the use of public funds and
necessitates informed decision making. Identifying similar station utilization patterns over
multiple weeks can be useful planning information for station operators. As demonstrated
in our case study, the results produced with our platform can help identify and explain over
or under-utilized EV charging stations in addition to other patterns of use in the context of
time. These additional insights can assist with capital investment decisions. Descriptive an-
alytics provide a good framework to guide the introductory stages of information processing.
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Advanced stages of descriptive analytics can include grouping sets of similar and dissimilar
objects into clusters. This process is meant to acquire an initial understanding of historical
data and organize it for advance analysis.

Although clustering has become a routine analytical task in many research domains, it
remains arduous for practitioners to select a good algorithm with adequate hyperparameters
and to assess the quality of clustering and the consistency of identified structures over various
temporal slices of data. The process of clustering data is often an iterative, lengthy, man-
ual and cognitively demanding task. The subjectivity in determining the level of “success”
that unsupervised learning approaches are able to achieve and the required expert knowledge
during the modeling phase suggest that a human-in-the-loop process of supporting the prac-
titioner during this activity would be beneficial. Ascertaining whether a particular clustering
of data is meaningful or not requires expertise and effort. Doing this for multiple results
on data that has been sliced by weekly, monthly or seasonal partitions prior to applying
the clustering algorithm would be very time consuming. Manually identifying one mean-
ingful result of interest and then having an automated mechanism to select similar results
is extremely useful in reducing the amount of effort required to identify avenues that merit
further analysis and assist in downstream analytical tasks such as improving regression or
classification model performance.

Future work will examine to what extent the weekly clustering results obtained with
our platform improves downstream regression modeling results. Specifically, we will explore
whether the Euclidean distances and clusters obtained in the case study can improve the
predictive performance of a baseline regression model for predicting peak day of week kWh.
Additionally, framing the creation of the initial ranked list of results as a multiple-criteria
decision-making (MCDM) problem will be included in this work.
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Appendix A. Computation Environment Deployment Details

Table A.4: Computation Environment - Docker Container Configurations

Docker Host

Category Value

OS Fedora Core 32
CPU Model Intel(R) Xeon(R)

CPU E5-2660 0
@ 2.20GHz

Core Count 32
RAM 28GB

Data Analytics Container

Category Value

OS Fedora Core 31
Core Count 20
RAM 20GB
Spark Master local[15]
Spark Driver Mem. 2GB
Spark Executor Mem. 15GB

Tracking Container

Category Value

OS Fedora Core 31
Core Count 2
RAM 2GB

Persistence Container

Category Value

OS Fedora Core 31
Core Count 4
RAM 4GB

Query Container

Category Value

OS Fedora Core 31
Core Count 2
RAM 2GB
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Appendix B. EVStationSIM Platform Software Components

Table B.5: Software Used to Implement the EVStationSIM Platform

D
a
ta

A
n
a
ly
ti
cs

Analytics
Engine

Apache Spark is an open source analytics engine for big data and machine learn-
ing. The engine offers implicit data parallelism, fault tolerance, supports multiple
programming languages and enables executing data engineering, data science, and
machine learning tasks on single or multiple node clusters. The PySpark inter-
face for Spark in Python enables the programmer to write Spark applications using
Python language APIs.

Data
Manipu-
lation

Pandas is an open source data analysis and manipulation library written in Python.
Pandas is a widely used in data data analysis and machine learning tasks and works
well with many other data science modules inside the Python ecosystem.

Scientific
Comput-
ing

NumPy is an open source library for scientific computing in Python providing sup-
port for large, multi-dimensional arrays and matrices, along with a large collection
of high-level mathematical functions to operate on these structures. This fundamen-
tal library also enables basic statistical operations, random simulation in addition
to other functionality for working with numerical data. Scipy: is an open source
scientific computation library that extends NumPy and provides additional utility
functions for optimization, statistics and signal processing.

Machine
Learning

Scikit-Learn is an open source library for machine learning in Python. The library
provides machine learning and statistical modeling functionality such as classifica-
tion, regression, clustering and dimensionality reduction.

Notebook
Interface

Jupyter is an open source web-based interactive development environment for note-
books, code, and data.

D
a
ta

V
is
u
a
li
za

ti
o
n Visualization

Package
Matplotlib is an open source plotting library for the Python programming lan-
guage. The library enables the creation of static, animated, or interactive visualiza-
tions and provides an API for embedding plots into applications.

T
ra

ck
in
g ML Life

Cycle
MLflow is an open source software package which streamlines the machine learn-
ing development lifecycle and addresses the common challenges of experimentation,
reproducibility and deployment in machine learning projects.

P
e
rs
is
te
n
ce

RDBMS PostgreSQL is an open source relational database management system which is
highly stable and backed by more than 30 years of development in the open-source
community.

Q
u
e
ry

RESTful
Interface

Falcon is a minimalist Web Server Gateway Interface (WSGI) library for building
fast web APIs and application backends.

C
o
n
ta
in
e
ri
za

ti
o
n Packaging Docker Engine is a software framework that uses OS-level virtualization to run

applications on servers and the cloud. Containerization is a form of virtualization
where a packaged application runs in an isolated user space called a container and
everything required to run the application is encapsulated and isolated in the con-
tainer.
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Appendix C. Example Stage Element Implementation

Figure C.15 provides an example feature generation and selection stage element which
was described in Section 4.3 and in Item (4) of Figure 8. In this stage, once feature generation
and selection are complete, the transformed data files are partitioned using a priori selected
temporal granularities (e.g. weekly, monthlyor seasonal). In this example, the parameter-
ized create batch ranges.py Python script is executed from a Bash script. The platform
workflow is comprised of multiple parameterized Python scripts like this one. The script in
this example creates weekly temporal slices of an input data set. Noteworthy elements of
this script are outlined below.

• Line 8 outlines the individual weekly slices of data we are interested in creating. The
list of weeks in this example covers a little over a month.

• Lines 17 to 35 defines a function that is used to call a parameterized Python script of
interest. Parameters include the start date of the week we are interested in creating a
temporal slice of the data for ($WEEK), the input data (“$HOME”/data/nb power/...),
the output directory (“$HOME”/data/nb power/work) and whether we should track
logging and artefact information inside MLflow ($TRACK EXPERIMENTS).

• Lines 40 to 51 defines a function that iterates over each week defined in Line 8 with
appropriate parameters and calls the function defined in Lines 17 to 35.

• Line 53 launches the process to create weekly batch ranges. The output of this process
is 6 data files. One file for each week defined in Line 8. These individual files are used
downstream in the workflow in tasks such as clustering.
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Figure C.15: Parameterized create batch ranges.py Python Script Execution
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Appendix D. Query Request - Station Groupings

(1) First, the practitioner requests ranked station clustering results for either L2 or L3
station types. Here the query parameters in the URL indicate that L3 station types
are of interest with a silhouette score ranging from 0.4 to 0.6.

(2) The system then returns a sorted list of clustering results ordered by silhouette score.
We see that the top result, according to this silhouette score range, is the clustering
results for the week of May 27th, 2019 where the cluster count is 2. This particular
record contains all cluster validity index values and a link to similar clustering results.

(3) Other clustering results, ranked in descending order by silhouette score, are also avail-
able for exploration.

Figure D.16: Search for Interesting Result
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Appendix E. Query Response - Similar Weekly Groupings

(1) From the sorted list of clustering results ordered by silhouette score list, the practitioner
selects one result as the reference result for which comparable results are desired.

(2) Details of the reference clustering result are outlined with corresponding analytical
artefacts.

(3) & (4) A sorted list of comparable clustering results, ordered by Euclidean distance,
is also available to the user. This list contains result-specific artefacts such as scatter
plots, station cluster membership maps, silhouette plots and CART feature importance
plots.

Figure E.17: Similar Results to Week Starting May 27, 2019
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Appendix F. Weekly Groupings - Top 5 Station Members

Tables F.6 to F.16 list the top 5 stations with the highest total kWh transferred to
vehicles per cluster during the weeks included in our case study. Ranking changes relative to
the reference week are illustrated with the following symbols : (✛) indicates a new station
not seen in the reference week’s top 5 list, (➚) indicates a move up in ranking, (➙) no changes
in ranking and finally, (➘) indicates a drop in raking.

In the relatively higher station utilization rate cluster of cluster 1, Irving, Salisbury is
often in the top 5 stations with the most kWh transferred to vehicles overall followed by
Irving, Aulac and Grey Rock, Edmundston. As EV adoption increases in the province,
station grouping trend observations such as this can be identified and applied to long-term
planning and investment decisions.

Table F.6: Top 5 Stations per Cluster - (27-MAY-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10004 Irving, Aulac 152.879 1
NBC-10001 Irving, Salisbury 100.63 1
NBC-10007 Mountain Road 97.092 1
NBC-10008 Grey Rock, Edmundston 94.347 1
NBC-10009 Murray’s, Beardsley 88.679 1

Station Name Business Location Total Sum kWh Cluster

NBC-10012 Atlantic Host, Bathurst 69.077 0
NBC-10003 Irving, Grand Falls 53.361 0
NBC-10006 Acorn, Lake George 51 0
NBC-10002 Irving, Youngs Cove 45.48 0
NBC-10020 Garcelon Civic Center 42.173 0

Table F.7: Top 5 Stations per Cluster - (26-AUG-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10001 ➚ Irving, Salisbury 261.121 1
NBC-10006 ✛ Acorn, Lake George 249.519 1
NBC-10009 ➚ Murray’s, Beardsley 245.675 1
NBC-10008 ➙ Grey Rock, Edmundston 206.073 1
NBC-10026 ✛ Town of Shediac 197.387 1

Station Name Business Location Total Sum kWh Cluster

NBC-10004 ✛ Irving, Aulac 128.865 0
NBC-10012 ➘ Atlantic Host, Bathurst 116.36 0
NBC-10021 ✛ Shoppers Drug Mart, Sussex 100.068 0
NBC-10003 ➘ Irving, Grand Falls 97.377 0
NBC-10013 ✛ Saint Quentin 93.521 0

Table F.8: Top 5 Stations per Cluster - (29-AUG-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10009 ➚ Murray’s, Beardsley 186.57 1
NBC-10006 ✛ Acorn, Lake George 160.428 1
NBC-10001 ➘ Irving, Salisbury 158.952 1
NBC-10004 ➘ Irving, Aulac 129.71 1
NBC-10021 ✛ Shoppers Drug Mart, Sussex 119.355 1

Station Name Business Location Total Sum kWh Cluster

NBC-10008 ✛ Grey Rock, Edmundston 74.164 0
NBC-10002 ➚ Irving, Youngs Cove 66.513 0
NBC-10020 ➚Garcelon Civic Center 65.854 0
NBC-10026 ✛ Town of Shediac 65.645 0
NBC-10015 ✛ Northumberland Square Mall 57.653 0

Table F.9: Top 5 Stations per Cluster - (06-MAY-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10015 ✛ Northumberland Square Mall 105.749 1
NBC-10008 ➚ Grey Rock, Edmundston 69.111 1
NBC-10007 ➙ Mountain Road 68.182 1
NBC-10001 ➘ Irving, Salisbury 52.772 1
NBC-10004 ➘ Irving, Aulac 48.745 1

Station Name Business Location Total Sum kWh Cluster

NBC-10016 ✛ Osprey Truck Stop 17.337 0
NBC-10005 ✛ Irving, Lincoln 15.807 0
NBC-10002 ➚ Irving, Youngs Cove 13.5 0
NBC-10010 ✛ Johnson’s Pharmacy 13.442 0
NBC-10021 ✛ Shoppers Drug Mart, Sussex 12.746 0

Table F.10: Top 5 Stations per Cluster - (17-JUN-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10008 ➚ Grey Rock, Edmundston 171.968 1
NBC-10009 ➚ Murray’s, Beardsley 143.419 1
NBC-10005 ✛ Irving, Lincoln 97.156 1
NBC-10003 ✛ Irving, Grand Falls 64.398 1
NBC-10010 ✛ Johnson’s Pharmacy 61.931 1

Station Name Business Location Total Sum kWh Cluster

NBC-10020 ➚ Garcelon Civic Center 54.24 0
NBC-10019 ✛ Irving, Quispamsis 44.94 0
NBC-10004 ✛ Irving, Aulac 34.569 0
NBC-10025 ✛ Visitor Information Center, Caraquet 21.554 0
NBC-10016 ✛ Osprey Truck Stop 17.756 0
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Table F.11: Top 5 Stations per Cluster - (07-OCT-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10006 ✛ Acorn Lake George 165.795 1
NBC-10008 ➚ Grey Rock, Edmundston 122.943 1
NBC-10009 ➚ Murray’s, Beardsley 122.616 1
NBC-10007 ➘ Mountain Road 118.928 1
NBC-10004 ➘ Irving, Aulac 115.62 1

Station Name Business Location Total Sum kWh Cluster

NBC-10020 ➚ Garcelon Civic Center 51.529 0
NBC-10013 ✛ Saint Quentin 34.286 0
NBC-10023 ✛ O’Neill Arena 30.571 0
NBC-10022 ✛ Quality Inn, Campbellton 29.558 0
NBC-10002 ➘ Irving, Youngs Cove 28.557 0

Table F.12: Top 5 Stations per Cluster - (02-DEC-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10024 ✛ NB Power, Fredericton 151.696 1
NBC-10015 ✛ Northumberland Square Mall 138.531 1
NBC-10007 ➙ Mountain Road 76.959 1
NBC-10001 ➘ Irving, Salisbury 73.232 1
NBC-10004 ➘ Irving, Aulac 68.446 1

Station Name Business Location Total Sum kWh Cluster

NBC-10025 ✛ Visitor Information Center, Caraquet 35.658 0
NBC-10012 ➘ Atlantic Host, Bathurst 35.386 0
NBC-10008 ✛ Grey Rock, Edmundston 30.647 0
NBC-10017 ✛ Richibucto 29.424 0
NBC-10011 ✛ Tracadie 24.252 0

Table F.13: Top 5 Stations per Cluster - (04-NOV-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10009 ➚ Murray’s, Beardsley 96.329 1
NBC-10001 ➙ Irving, Salisbury 95.546 1
NBC-10008 ➚ Grey Rock, Edmundston 87.194 1
NBC-10021 ✛ Shoppers Drug Mart, Sussex 62.15 1
NBC-10019 ✛ Irving, Quispamsis 61.582 1

Station Name Business Location Total Sum kWh Cluster

NBC-10017 ✛ Richibucto 16.705 0
NBC-10012 ➘ Atlantic Host, Bathurst 16.086 0
NBC-10007 ✛ Mountain Road 12.513 0
NBC-10002 ➙ Irving, Youngs Cove 7.057 0
NBC-10010 ✛ Johnson’s Pharmacy 6.979 0

Table F.14: Top 5 Stations per Cluster - (01-APR-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10025 ✛ Visitor Information Center, Caraquet 77.505 1
NBC-10001 ➙ Irving, Salisbury 66.328 1
NBC-10004 ➘ Irving, Aulac 63.805 1
NBC-10020 ✛ Garcelon Civic Center 42.991 1
NBC-10019 ✛ Irving, Quispamsis 42.066 1

Station Name Business Location Total Sum kWh Cluster

NBC-10007 ✛ Mountain Road, Moncton 36.524 0
NBC-10026 ✛ Town of Shediac 35.608 0
NBC-10009 ✛ Murray’s, Beardsley 34.709 0
NBC-10015 ✛ Northumberland Square Mall 33.706 0
NBC-10013 ✛ Saint Quentin 22.457 0

Table F.15: Top 5 Stations per Cluster - (28-OCT-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10004 ➙ Irving, Aulac 191.299 1
NBC-10001 ➙ Irving, Salisbury 181.971 1

Station Name Business Location Total Sum kWh Cluster

NBC-10025 ✛ Visitor Information Center, Caraquet 71.36 0
NBC-10015 ✛ Northumberland Square Mall 70.484 0
NBC-10003 ➘ Irving, Grand Falls 55.306 0
NBC-10021 ✛ Shoppers Drug Mart, Sussex 48.136 0
NBC-10022 ✛ Quality Inn, Campbellton 38.062 0

Table F.16: Top 5 Stations per Cluster - (23-DEC-2019)

Station Name Business Location Total Sum kWh Cluster

NBC-10015 ✛ Northumberland Square Mall 439.331 1

Station Name Business Location Total Sum kWh Cluster

NBC-10012 ➙ Atlantic Host, Bathurst 164.358 0
NBC-10003 ➙ Irving, Grand Falls 149.745 0
NBC-10013 ✛ Saint Quentin 89.708 0
NBC-10008 ✛ Grey Rock, Edmundston 67.787 0
NBC-10017 ✛ Richibucto 62.896 0
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