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Abstract. Decoupling vehicles from the immediate consumption of fossil fuels
introduces new opportunities in supporting sustainable mobility. Fostering a shift
from vehicles with internal combustion engines to Electric Vehicles (EV) often
involves using publicly funded subsidies. Given early EV adoption challenges,
some charging stations may be under-utilized, others will serve a disproportion-
ate number of users. An understanding of EV charging patterns is crucial for
optimizing charging infrastructure placement and managing costs. Clustering has
been used in the energy domain to ensure service continuity and consistency.
However, clustering presents challenges in terms of algorithm and hyperparame-
ter selection in addition to pattern discovery validation. The lack of ground truth
information, which could objectively validate results, is not present in clustering
problems. Therefore, it is difficult to judge the effectiveness of different mod-
elling decisions since there is no external validity measure available for compar-
ison. This work proposes a clustering process that allows for the creation of rela-
tive rankings of similar clustering results that will assist practitioners in the smart
grid sector. The approach supports practitioners by allowing them to compare a
clustering result of interest against other similar groupings over multiple temporal
granularities. The efficacy of this analytical process is demonstrated with a case
study using real-world EV charging event data from charging station operators in
Atlantic Canada.
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1 INTRODUCTION

The trend of vehicle electrification is happening rapidly in many countries around the
world. In spite of the pandemic-related worldwide downturn in car sales, new electric
car registrations increased by 41% alongside $120 billion in consumer expenditures on
electric vehicles (EV) in 2020 [9]. The International Energy Agency predicts that global
EV stock will reach 145 million vehicles by 2030 in the Stated Policies Scenario and
global EV fleet will reach 230 million vehicles by 2030 in the Sustainable Development
Scenario [9]. The futuristic vision of advanced and modern urbanization is a core con-
cept of a smart city, in which cutting-edge infrastructure is able to offer a high quality
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of life for citizens and the sustainable management of natural resources. Adopting the
usage of EVs is expected to improve air quality, provide sustainable mobility, mitigate
greenhouse gas emissions, reduce urban noise pollution, and therefore contributes to
this vision.

Building public charging infrastructure brings about high capital costs in addition
to the usage of public funds to accelerate the transition to EVs. This necessitates smart
decision-making at all stages of the adoption life-cycle. Given the challenges of early
EV adoption, some charging stations may be under-utilized, others will serve a dispro-
portionate number of users. Moreover, uncontrolled EV charging behaviors may cause
numerous problems for existing power grids such as high load peaks, increased opera-
tional costs, degraded power quality, increased energy consumption, and the potential
risk of power outages [31,3]. Therefore, reliable control of the EV charging behavior
will be paramount for a successful mass market penetration. Clustering stations to-
gether based on usage patterns is an important and useful planning tool for operators.
In addition, as the number of EVs increases, so does the demand for electricity and the
possible strain on electrical grids. Utilities and other power generators need to prepare
for increased demand. Accurate load forecasting is a tool that can help operators ensure
service continuity and consistency.

Clustering is an unsupervised machine learning technique that assists practitioners
in revealing hidden patterns and insights from a given dataset. In smart grid applica-
tions, this method has been used by practitioners to group similar consumers, categorize
related energy consumption reports, forecast future demand, and grow EV adoption.
Statistical and probabilistic models, built with data from EV charging stations having
similar charging patterns, will reportedly have increased accuracy [29]. As a result, en-
ergy load projecting methods might perform better when applied to homogeneous clus-
ters of EV stations as opposed to all stations. Hidden patterns in energy usage behavior
are the key to improving services provided by utility companies, which are responsible
for managing peaks and imbalances in EV charging infrastructure usage patterns [12].

Although clustering algorithms have been applied in many knowledge domains and
applications, practitioners face the challenge of selecting the proper clustering algo-
rithm with hyperparameter combination for their specific application. An additional
concern includes evaluating the quality of clustering results. Moreover, it tends to re-
quire specialists to be able to assess and make sense of the clustering results due to
the subjectivity found in deep expert knowledge. This is one of the main reasons why
existing automated machine learning frameworks tend to focus on supervised learn-
ing tasks that require labeled data as input rather than unsupervised learning tasks that
deal with unlabeled data [22]. Because the identification of the most similar clusters
can be subjective, it usually requires different approaches to automate this process [23].
In addition, one of the challenges in clustering is finding the results that align with a
practitioner’s needs. In practice, there are several plausible clusters in complex datasets.
What’s more, practitioners may have different priorities and preferences. An unsuper-
vised clustering algorithm has no way to intrinsically infer which clusters exhibit these
desired priorities and preferences [5].

In spatial-temporal datasets (e.g. EV charging event datasets), evaluating the struc-
ture consistency of discovered clusters over different temporal granularities is normally
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an arduous, manual and time-consuming activity. Several examples of metrics can be
utilized to determine the structure consistency of the clusters such as inter-cluster ho-
mogeneity, inter-cluster separation, density, and uniform cluster sizes. Nevertheless,
the question of how to select a particular clustering result that is more meaningful than
another based on practitioner priorities and preferences, still heavily depends on the
practitioner’s expert knowledge. Doing this for multiple results on data that has been
sliced by weekly, monthly or seasonal partitions prior to applying the clustering al-
gorithm would be very time consuming. Towards this challenge, this study explores
whether, given the prospect of a clustering result of interest, a process of objectively
highlighting and recommending similar clustering results can be automated in order to
support practitioners in evaluating how clustering patterns persist over multiple tempo-
ral granularities, allowing practitioners to find meaningful clusters according to their
preferences and priorities. This work aims to assist practitioners in identifying multiple
clustering results of interest for different temporal partitions of the same data. Provid-
ing the practitioner with an initial ranked list of clustering results and a mechanism to
determine clustering similarities can assist practitioners in downstream analytical tasks
such as improving regression or classification model performance.

Consequently, a clustering process in which internal cluster validity indices are uti-
lized to enable the identification of similar clustering results across various temporal
slices of data is proposed. The main focus of this study is to support practitioners in
identifying similar clustering results by using a reference result of interest and compar-
ing this reference result with other results where all results are obtained from a-priori
selected temporal partitions of the input data (i.e. weekly, monthly and seasonal pari-
tions). To demonstrate the proposed approach, a case study using real-world charging
event data from EV station operators in Atlantic Canada is utilized to evaluate our
clustering process in identifying similar clusters of charging stations according to their
usage patterns (e.g. high vs low utilization). This work is part of a larger ongoing re-
search project. It continues the activities documented in [25] which examined charging
events from EV charging stations exclusively. This paper extends this work by provid-
ing additional spatial context to the interpretation of the weekly clustering results. In
addition to these enhanced results, supplementary background and clustering process
details have been added.

The rest of the paper is organized as follows. In section 2, previous research work
is described. Section 3 describes the background of this work. Section 4 describes the
proposed clustering process underpinning our work. Section 5 provides a detailed de-
scription of the real-world EV charging event data and the end-to-end automated im-
plementation of our proposed clustering process. In section 6, we discuss the results.
Finally, section 7 concludes and indicates future research work.

2 RELATED WORK

Clustering techniques have played a significant role in finding new value and insights
in many smart grid applications [26]. They are an essential tool in the pattern analysis
process to discover energy usage behavior (i.e. the EV charging demand) in the energy
domain [3]. For example, Straka and Buzna [29] carried out a comparison of the clus-
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tering results from the k-means, hierarchical, and DBScan algorithms aiming to explore
usage patterns related to segments of charging stations. This experiment is based on a
dataset of 1700 charging stations distributed across the Netherlands with about 1 mil-
lion charging transactions collected during a 4-year period. The clustering algorithms
successfully identified four groups of EV charging stations characterized by distinct
usage patterns. In [8], the authors analyzed a dataset of seven public smart charging
stations located across the City of Rochester, US. These stations recorded the charging
activities of vehicles during a period of 2-years. By applying the k-means clustering
algorithm, they were able to identify different clustering patterns and their behaviors
with respect to charging activity, parking without charging activity, and parking dura-
tions. Another example of using clustering algorithms to reveal the charging patterns
from EV stations can be found in [31]. In this study, the k-means clustering technique
is used to categorized EV user behavior into different groups and label them for further
prediction purposes. This work is developed based on a dataset collected from more
than 200 EV charging stations installed in public parking structures in many locations
in Los Angeles, US.

The aforementioned research [29,8,31] had a common point that the clustering re-
sults are mainly analysed based on the time series and the temporal characteristics of
the datasets. Indeed, Xiong et al. [31] mainly used the arrival and departure schedule
that are fixed at certain timestamps with little variance to label the groups, while [29,8]
mainly used timestamps of charging events and utilization or energy consumed (kWh)
to compute the clusters.

Very few research works exploit the spatial component of EV-related datasets to en-
hance knowledge discovery [20]. Recent work by Kang et al. [14] used location-based
service data to identify spatial-patterns of EV usage behavior in urban areas to char-
acterize the distribution of home and charging station clusters as well as user charging
preferences. From the literature, few attempts [11,13] have conducted spatial-temporal
clustering to improve the integration of an EV fleet with power management and oper-
ations.

A common issue in clustering is how to objectively and quantitatively assess and
analyse the results. From this, some important research questions emerge such as (Q1)
How to use the spatial-temporal information from a given dataset to assist practitioners
in understanding hidden patterns revealed in the clustering results? (Q2) How to inter-
pret and make sense of the clustering results yielded from a large quantity of grouped
data points? and (Q3) How to automatically identify similar patterns across multiple
temporal granularities without manually inspecting the results one by one?

Cluster validation is an essential task in the clustering process since it aims is to
compare clustering results and solve the question of optimal cluster count. Many inter-
nal validity indices have been proposed in the literature to evaluate the “success” level
that a clustering algorithm can achieve in discovering the natural groupings in data
without any class label information [24,18]. Currently, the majority of studies validat-
ing cluster results have been focused on the computation of individual cluster validity
indices (CVI), which are normally selected to specify the relative performance of clus-
tering results. For example, Arbelaitz et al. [4] perform a comparison of 30 CVIs using
an experimental setup on multiple datasets with ground truth information to propose
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the “best” partitioning. The optimal suggested number of partitions is defined as the
one that is the most similar to the correct one measured by partition similarity mea-
sures. The authors found that noise and cluster overlap had the greatest impact on CVI
performance. Some indices performed well with high dimensionality data sets and in
cases where homogeneity of the cluster densities disappeared. The conclusion in this
work suggests using several CVI to obtain robust results.

Sun et al. [30] proposed a time series clustering method using a modified Euclidean
distance to group the similar charging tails from ACN-Data collected from smart EV
charging stations. In this work, they evaluated their clustering results with Dynamic
Time Warping distance (DTW) and Euclidean distance method using the silhouette
coefficient. In [32], the Davies-Bouldin index is used to determine the best value for the
cluster count parameter using the k-means algorithm.

All in all, the CVIs have been traditionally used for validation purposes. However,
utilizing multiple CVIs together in combination with a proximity measure such as Eu-
clidean distance has a strong potential to offer a new pairwise similarity measure that
can enhance the comparison of clustering results by practitioners. This is also the key
to answering the research questions (Q1), (Q2), (Q3) that we mention above. Certainly,
this is not a common practice in data science as well as in the energy domain.

3 BACKGROUND

Partitioning data into groups based on internal and a-priori unknown schemes inherit
in the data is a main concern of clustering. In this unsupervised learning approach, al-
gorithms are presented with data instances having features describing each object but
no information, or label, is given as to how instances should be grouped in terms of
their similarity. Clustering plays an important role in discovering hidden patterns in a
dataset. It has been utilized in the energy domain to group similar consumers and help
predict future demand. Clustering can serve as a pre-processing step for other algo-
rithms. For example, statistical models built with data from charging stations having
similar charging patterns will reportedly have superior accuracy [29].

Many clustering algorithms have been developed. These have been broadly catego-
rized into a handful of groupings in the literature based on aspects of the approach such
as the partitioning criteria, clustering space, procedures used for measuring the similar-
ity and whether samples belong strictly to one cluster or can belong to more clusters in
differing degrees. A common grouping of clustering algorithms is partitioning, density,
grid and hierarchical methods [10,19,2,21].

3.1 Partitioning Methods

Partitioning-based methods split data points into k partitions, where each partition rep-
resents a cluster. The data is split to optimize a certain, often distance-based, criterion
function. Examples of commonly known partition-based methods include k-means and
k-medoids [19]. The k-means clustering algorithm is easy to implement and is appro-
priate for large datasets. However, it has the disadvantage of being inappropriate for
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clusters of different densities and being dependent on initial centroid values. Addition-
ally, noisy data and outliers are problematic for this algorithm. Centroids can be tugged
by outliers, or outliers might get their own cluster instead of being ignored. Similarly,
the k-Medoids algorithm is easy to implement. The advantage of this algorithm is that
it converges quickly and is less sensitive to outliers. However, it is also dependent on
the initial set of medoids and can produce different clusterings on iterative runs [2].
Partitioning methods have the drawback of whenever a point is close to the center of
another cluster; poor results are obtained due to overlapping.

3.2 Density Methods

Density-based methods group neighboring objects into clusters based on local density
conditions instead of distance-based criterion. Groups are formed either according to
the density of neighborhood objects or a density function. This class of methods in-
terprets clusters as dense regions that are separated by low density noisy regions. Ex-
amples of commonly known density-based methods include DBSCAN, and OPTICS.
This class of methods can handle noisy data and can discover arbitrarily shaped clus-
ters. Outliers are not problematic with this class of methods. However, density-based
techniques have difficulty with data of varying densities. Together with hierarchical and
partitioning-based methods, density-based methods have difficulties working with high
dimensional data. As dimensionality increases, the feature space increases and objects
appear to be sparse and dissimilar which affects clustering tendency [28].

3.3 Grid Methods

Grid-based methods form a grid structure from a finite number of cells quantized using
the original data space. This class of methods denotes a fast processing time. Density-
based methods require the practitioner to specify a grid size and a density threshold.
However, this can be done automatically by using adaptive grids. Examples of com-
monly known grid-based methods include STING and CLIQUE. These methods are
typically not effective for working with high dimensional data [19].

3.4 Hierarchical Methods

Hierarchical-based methods create a hierarchical decomposition for a given set of data
points (i.e. divide similar instances by constructing a hierarchy of clusters). The fam-
ily of methods can take an agglomerative (bottom-up) or divisive (top-down) approach.
This class of methods can easily work with many forms of similarity or distance mea-
sures and are applicable to many attribute types. These methods suffer from a vagueness
in termination criteria and also have difficulties in handling outliers or noisy data [19].
However, hierarchical clustering has the added advantage in that clustering results can
be easily visualized and interpreted using a tree-based representation called a dendro-
gram (See Fig. 1).

One example of a hierarchical clustering method is the Hierarchical Agglomera-
tive Clustering (HAC) algorithm. The HAC algorithm needs to determine the distance
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Fig. 1: Example Dendrogram

between samples in order to form similar groupings of data points. There are many
options available to practitioners when selecting a distance measure. Among popular
metrics are the Euclidean and Manhattan distance metrics. Proximity measures can af-
fect the shape of clusters. Different similarity measures can produce valid clusterings
but they will have different meanings. Often, the importance of the clustering depends
on whether the clustering criterion is associated with the phenomenon under study. Eu-
clidean distance is a preferred distance measure by researchers in the field of clustering.
This distance metric measures the root of square differences between co-ordinates of
pairs of objects [27] and is defined as [7]:

D(x,y) =

√√√√ d

∑
i=1

(xi− yi)2 (1)

The Manhattan distance computes the absolute differences between coordinate of
pairs of objects and is defined as [27]:

DistXY = |Xik−X jk| (2)

Kapil and Chawla [15] found that clustering using Euclidean distance outperformed
clustering using Manhattan distance in terms of the number of iteration, sum squared
errors and time taken to build the model. Manhattan distance is usually preferred over
the more common Euclidean distance when there is high dimensionality in the data [1].

HAC also requires a measure of distance between the clusters when deciding how to
group the data at each iteration. This measure of cluster distances is done with a linkage
function that captures the distance between clusters. Common measures of distance in
this context include Ward and complete. Ward minimizes the variance of the clusters
being merged. When making a merge decision with the Ward approach, two clusters
will be merged if the new partitioning minimizes the increase in the overall intra-cluster
variance. Complete uses the maximum distances between all observations of the two
sets. When making a merge decision with the complete approach, two clusters will be
merged if the new partitioning maximizes the distance between their two most remote
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elements. Even though the algorithm does not require pre-specifying the number of
clusters prior to its usage, in order to get the best possible partitioning of the data, a
decision on exactly where to cut the tree must be made.

4 METHODOLOGY

4.1 Clustering Algorithm Selection

Selecting an appropriate algorithm in clustering is critical since its performance may
vary according to the distribution and encoding of data. For instance, the application of
the HAC algorithm is usually limited to small datasets because of it’s quadratic com-
putational complexity. Additionally, hierarchical methods are not always successful in
separating overlapping clusters and the clusters are static in the sense that a point pre-
viously assigned to a cluster cannot be moved to another cluster once allocated [33,17].

Essential to the practice of clustering is that different clustering techniques will
work best for different types of data. There is no clustering algorithm that can be univer-
sally used to solve all problems. In fact, practitioners have become interested in recent
years in combining several algorithms (e.g. clustering ensemble methods) to process
datasets [16].

The clustering method selected for use in this work is the HAC algorithm. The input
data is of low dimensionality and the number of instances is small. A single and simple
algorithm was selected in order to simplify the workflow execution and experimental
setup. The case study is focused on how the proposed solution facilitates the comparison
of clustering results and reduces the cognitive demand on practitioners in identifying,
understanding and comparing similar clustering results.

4.2 The Proposed Analytical Workflow

Fig. 2 provides a conceptual overview of the main tasks of our proposed workflow. The
numbered items in the figure link back to individual Python scripts described in detail
in the implementation section. At the end of the process, a database is used to persist all
clustering results and a RESTful Application Programming Interface (API) facilitates
querying these results by different practitioners.

Data Preprocessing and Fusion The data preprocessing and fusion task uses raw
data from the public EV charging stations. Preprocessing consists of data cleaning and
consolidation steps. Data cleaning, ensures good data quality and produces a set of
cleaned files by eliminating errors, inconsistencies, duplicated and redundant data rows,
and handling missing data. Data consolidation combines data from various data files
into a single dataset. A variety of files from the cleaned dataset are used as the input for
this operation. The output of these steps is a unique file that merges all attributes into
one big table.

Moreover, data fusion consists of combining multiple data sources followed by a
reduction or replacement for the purpose of better inference. In our proposed cluster-
ing process, consolidated station location information and charging event data files are
combined to produce more consistent, accurate, and useful data files.
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Fig. 2: Our Proposed Analytical Workflow [25]

Feature Generation and Selection The aim of the feature generation and selection
task is to enrich pre-processed and fused data files by adding new attributes to each data
row according to a specific context. This task is defined by a contextualization function
that can produce a set of new data rows using contextualization parameters to add new
attributes to the fused data rows. Transformed data is then partitioned using multiple
temporal granularities (e.g. weekly, monthly or seasonally).

Clustering The aim of the clustering task is to find the patterns from transformed input
data using a hierarchical agglomerative clustering algorithm. The algorithm seeks to
build a hierarchy of clusters by merging current pairs of mutual closest input data points
until all the data points have been used in the computation. The measure of inter-cluster
similarity is updated after each step using Ward linkage. This a priori selected algorithm
is utilized to fit the various temporal granularities of the input data, producing multiple
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clustering results. Internal cluster validity indices are recorded during each application
of the clustering algorithm.

Harvesting and Processing Validity Indices Each application of the clustering algo-
rithm generates a record consisting of the cluster count parameter value, the various
cluster validity index values and the input data used to generate the clusters. Processing
the validity indices involves selecting and normalizing the index values in preparation
for Euclidean distance computations. This task utilizes the combination of eight cluster
validity indices which are thoroughly described in [25] and listed in Table 3.

Similarity Computations Our work uses a proximity measure in the clustering task
and in the computation of the results similarity matrix. Selecting a measure to deter-
mine how similar or dissimilar two data points is an important step in any clustering
process. Proximity measures can affect the shape of clusters as some data points may
be relatively close to one another according to one measure and relatively far from each
other according to another.

In addition to the clustering task, the similarity computation task uses Euclidean
distance as the proximity measure between clustering results. All index values (e.g.
multidimensional points in Euclidean space) of each clustering result are used in the
distance computations. The pair-wise similarity comparisons (e.g. the similarity matrix)
are then persisted in a database for down-stream results exploration via a RESTful API.

The similarity matrix is stored in the database using two tables. The first table sum-
marizes clustering results with rows consisting of a unique clustering result ID (re-
sult id) and meta-data about running the algorithm (e.g. input file name, clustering exe-
cution time, all validity index values, etc.). The second table, which is linked to the first
table, contains rows consisting of a source result ID (from result id), a target result ID
(to result id) and a Euclidean distance. Links between result IDs are not duplicated as
directionality is not considered.

4.3 Clustering and Results Exploration

The proposed analytical workflow enables the basic identification and interactive query-
ing of potentially interesting clustering results. Additionally, the resulting assembly
enables drilling down into relative rankings of comparable results for diagnostic and
downstream analytical tasks. This process leverages the aforementioned RESTful API
in order to facilitate this capability. The workflow facilitates the comparison of cluster-
ing results by practitioners with different priorities and preferences.

Selecting the appropriate algorithm and hyperparameters in clustering is critical.
However, interpreting the level of “success” achieved once modeling results are avail-
able can be cognitively demanding. Their may exist several viable combinations of algo-
rithms and hyperparameters that result in plausible clusters. Comparing and contrasting
multiple clustering results can help uncover interesting structure in data. Nevertheless,
this comes at a cost since practitioners will have to expend effort to cognitively encode
and interpret these results. Additionally, in data with a temporal component such as EV
charging events for example, assessing the structure consistency of discovered clusters
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over different temporal granularities adds additional demands. Supporting the practi-
tioner in analytical results exploration helps reduce mental demand in comparing and
contrasting results.

The traditional usage of CVI has been for validation purposes. However, utilizing
multiple CVI together in combination with a proximity measure such as Euclidean dis-
tance has a strong potential to offer a new pairwise similarity measure that can enhance
the comparison of clustering results. Supporting the practitioner by automating clus-
tering workflows and presenting meaningful analytical results in a way that increases
the opportunity to understand and compare similar groupings can assist in recognizing
patterns and identifying meaningful results for downstream analysis.

5 IMPLEMENTATION

This work makes use of real operational data from public EV charging stations provided
by the New Brunswick Power Corporation. 9,505 EV charging events that occurred
between the dates of April 2019 and April 2020 at Level-2 (L2) and Level-3 (L3) public
charging stations were included in the analysis. Table 1 describes the raw EV charging
dataset features. Our practitioners are utility company managers and planners that are
responsible for coordinating various projects including EV charging station condition
assessments, operating and capital budget forecasting, and maintenance and operation
practices development. Fig. 3 describes the overall end-to-end implementation of our
EV case study.

Table 1: Raw Data [25]
Column Name Description
Connection ID Unique identifier for a connection
Recharge start time (local) Timestamp denoting start of charging event
Recharge end time (local) Timestamp denoting end of charging event
Account name Unused (all null)
Card identifier Unique identifier for a charging plan member
Recharge duration (hours:minutes) Duration of charge event
Connector used Connection used during charge event
Start state of charge (%) State of charge % at beginning of charging event
End state of charge (%) State of charge % after charging event is complete
End reason Charge event end reason
Total amount Unused (all null)
Currency Unused (all null)
Total kWh Energy transferred to vehicle during charging event
Station Unique identifier for charging station

Custom-written Python code and a scientific Python stack were leveraged to imple-
ment the proposed clustering process. Task elements were executed in sequence from
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a centralized management script. The software programs used in this work were pack-
aged using a Docker [6] container in order to ensure a reproducible and consistent
computational environment.
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Fig. 3: Overview of Our Implemented EV Case Study [25]

Fig. 4 highlights noteworthy aspects of the implementation. The numbered boxes
represent individual parameterized Python scripts. The data flow is such that the output
of one script is the input for the next script. Input and output file names contain pa-
rameter values that were used when calling the workflow’s scripts. The grey elements
represent a job’s input file(s). The blue elements represent a job’s output file(s). The
detailed implementation of each script is described as follows:

– Script (1): The one way hash.py script imports raw event data and casts column
elements to appropriate types. Additionally, a one-way hash function is applied to
the Card identifier column.

– Script (2): The locations to parquet.py script imports raw station location data and
integrates multiple input files into one.

– Script (3): The fuse location w events.py script fuses event data with charging
station location information.

– Script (4): This work focuses on recharge report event data in the downstream
analysis. The feat eng rech report.py script creates new features (contextualized)
based on calculations involving existing data attributes and removes events with a
duration of 5 minutes or less (eliminating 11% of the raw records).

– Script (5): The create batch ranges.py script creates temporal partitions of the
data. These partitions facilitate the cluster analysis based on charging events occur-
ring during a particular week, month or season of the year.

– Script (6): The generate ev station features.py prepares the input data for cluster-
ing by calculating, for each charging station, station type and temporal granularity,
the proportion of total charging events and the proportion of total power used to
charge vehicles relative to all stations.
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– Script (7): The cluster data.py script applies the agglomerative clustering algo-
rithm to all temporal slices of the data produced in the previous task. This is done
for a cluster count hyperparameter that varies from 2 to 7. Other hyperparameter
settings are kept constant to simplify the experimental setup. Internal cluster va-
lidity indices are recorded during each application of the clustering algorithm (See
Table 2 for the list of indices).

– Script (8): The scale indices.py script normalizes the internal cluster validity in-
dices in preparation for the downstream Euclidean distance computations.

– Script (9): The similarity matrix.py script performs pairwise Euclidean distance
computations for each clustering result. All index values (i.e. multidimensional
points in Euclidean space) of each clustering result are used in the distance compu-
tations.

– Script (10): The load data.py script persists the similarity matrix data produced in
the previous task in a relational database to enable querying of clustering results and
corresponding similarities across months, weeks and seasons. The database query
functionality is made available via a RESTful API.

After results are generated and persisted (i.e. Script (10) in Fig. 4 is complete), the
practitioner can navigate these results via a RESTful interface. Fig. 5 illustrates how
the practitioner interacts with the results system. First, the practitioner requests ranked
station clustering results for either L2 or L3 station types (Step 1). The system then
returns a sorted list of clustering results ordered by silhouette score (Step 2). From
this list, the practitioner selects one result as the reference result for which comparable
results are desired and then request these comparable results from the system (Step 3).
Finally, the system returns a sorted list of comparable clustering results that is ordered
by Euclidean distance (Step 4). This sorted list contains result-specific artefacts such as
scatter plots, mapped station cluster memberships and silhouette plots.
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Fig. 4: Implemented Clustering Process Data Flow [25]

Fig. 5: Results Query Sequence [25]
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The clustering process implementation and RESTful API facilitate the comparison
of clustering result similarities across various temporal granularities. This process is
useful in identifying avenues for further analysis. One Level 3 station clustering result
for the week of May 27th, 2019 has been selected as a case study to demonstrate our
approach. The case study is presented in the next section.

6 DISCUSSION OF THE RESULTS

This section highlights the results of our proposed approach in identifying similar sta-
tion clusterings over multiple weeks with a case study. Table 3 highlights similar clus-
tering results relative to station clusterings for a target week starting on May 27th, 2019.
In all results, the number of clusters is 2 and the station type is L3. The table is sorted
in ascending order by Euclidean distance relative to the target week. According to the
multi-dimensional pairwise distance calculations obtained using the indices described
in Table 2, the most similar clustering result to the week starting on May 27th, 2019 is
the result for the week starting on February the 17th 2020. The least similar clustering
result is the result for the week starting on December 2nd, 2019.

Table 2: Clustering Validity Index Data [25]
Column Name Description
file name File name for clustering results for station type and time granularity
n cluster K parameter value used in applying the clustering algorithm
silhouette score Silhouette index value for clustering result
calinski harabasz Caliński-Harabasz index for clustering result
davies bouldin Davies-Bouldin index for clustering result
cohesion Cohesion index for clustering result
separation Separation index for clustering result
RMSSTD Root mean square standard deviation index for clustering result
RS R-squared index for clustering result
XB Xie-Beni index for clustering results

A corresponding visual presentation of the clustering results found in Table 3 can
be seen in Figures 6 through 10. Each figure contains a silhouette plot, scatter plot
and a map describing the clustered data. In the silhouette plots, an observation with
a silhouette width near 1, means that the data point is well placed in its cluster; an
observation with a silhouette width closer to negative 1 indicates the likelihood that this
observation might really belong in some other cluster.
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Table 3: Clustering Similarities - L3 - May 27th, 2019 [25]

WEEK Sil CH DB C S RMS RS XB Dist

MAY-27-2019 0.60 51.37 0.51 1.12 2.40 0.15 0.68 0.09 N/A
FEB-17-2020 0.60 49.35 0.57 0.19 2.44 0.16 0.67 0.10 0.081
MAR-02-2020 0.65 55.51 0.52 1.14 2.63 0.15 0.70 0.07 0.101
JUL-29-2019 0.60 55.82 0.53 0.99 2.30 0.14 0.70 0.11 0.105
... ... ... ... ... ... ... ... ... ...
DEC-02-2019 0.63 56.55 0.58 1.26 2.97 0.16 0.70 0.09 0.177

Column Name Abbreviations :

Sil : Silhouette index

CH : Caliński-Harabasz index

DB : Davies-Bouldin index

C : Cohesion

S : Separation

RMS : Root mean square standard deviation

RS : R-squared

XB : Xie-Beni index

Dist : Euclidean distance between current and previous row

6.1 Week of May 27th, 2019 - (Reference Week)

We can see from Fig. 6 that a reasonable structure in the data has been found for our
reference week, which starts on May 27th, 2019. In this clustering, stations are grouped
in terms of relatively higher and lower utilization rates. The average silhouette score is
0.600 in this clustering result (See Fig. 6a).

In Fig. 6b, cluster 0, the cluster with relatively lower utilization rates, has more
station members than cluster 1. Cluster 1 is the grouping of stations with relatively
higher utilization rates. In the scatter plot, crisp clusters identified by the HAC algorithm
can be observed. However, cluster 1 has an observation that is comparatively far from
its other station members. The map in Fig. 6c, indicates that cluster 1 member stations
are mostly located in the lower half of the province.
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(a) (b)

(c)

Fig. 6: L3 Station Clusters - MAY-27-2019

6.2 Week of February 17th, 2020

We now focus on the closest clustering result relative to our reference week. This group-
ing is for the week starting on the 27th of February, 2020. The average silhouette score
for this result is also 0.60 (See Fig. 7a). The scatter plot of Fig. 7b denotes relatively
well separated clusters similar to our reference week. The clusters can also be thought
of as groupings of high vs. low station utilization rates with this result. Additionally, the
number of observations in each cluster is the same as the reference week. Results for
the week of May 27th, 2019 are slightly better when considering all cluster validation
indices. This can also be observed visually. Data points seem to be closer together in the
scatter plot of Fig. 6b than in Fig. 7b. The in-between cluster separation in both results
are similar.

The map in Fig. 7c reveals that cluster 1 - the higher utilization stations cluster -
member stations are mostly located in the right half of the province with this clustering
result.
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(a) (b)

(c)

Fig. 7: L3 Station Clusters - FEB-17-2020

6.3 Week of March 02nd, 2020

The next closest clustering result relative to our reference week is the grouping for the
week starting on March 02nd, 2020. The average silhouette score for this result is 0.65.
The silhouette plot in Fig. 8a suggests a less optimal clustering. This plot indicates that
some observations would seemingly belong to clusters other than the one they are in;
these observations have a negative silhouette width value. A less than optimal clustering
is confirmed by observing the scatter plot of Fig. 8b. Some observations in cluster 1
could be outliers. Additionally, the cluster’s cohesion is not as prevalent as cluster 0’s.
Perhaps a cluster count of 3 would be more appropriate with this result.

Fig. 8c, indicates that cluster 1 - the higher utilization stations cluster - member
stations are mostly located in the lower-right half of the province with this clustering
result.



A Spatial-temporal Comparison of EV Charging Station Clusters 19

(a) (b)

(c)

Fig. 8: L3 Station Clusters - MAR-02-2020

6.4 Week of July 29th, 2019

The silhouette plot in Fig. 9a and the average silhouette score of 0.60 suggest a reason-
able structure in the data has also been found in this week. Fig. 9b denotes relatively
well separated clusters. Cluster 1 has an observation that is comparatively far from its
other station members. The number of observations in each cluster for both the refer-
ence clustering result and this result are different. Based on the various indices, cluster-
ing results for July 29th, 2020 are better in some aspects and inferior in others to results
for the week of May 27th, 2019. This result was identified as being the 3rd most similar
result for our target week.

Fig. 9c, indicates that cluster 1 - the higher utilization stations cluster - member
stations are mostly located along a major freeway in the province, mostly covering the
left and the bottom sections of the province.
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(a) (b)

(c)

Fig. 9: L3 Station Clusters - JUL-29-2019

6.5 Week of December 02nd, 2019

The decreasing relative similarity of results is especially visible when comparing the
results for the week of May 27th, 2019 with results having the least similarity (i.e,
results for the week of December 2nd, 2019). In Fig. 10a we can see that all cluster 1’s
members have below average silhouette scores and the clustering of stations is much
less similar than the other clusterings. Additionally, as can be observed in Fig. 10b,
perhaps a cluster count of 3 would be more appropriate with this result.

Fig. 10c, indicates that cluster 1 - the higher utilization stations cluster - member
stations are mostly located in the lower-right half of the province with this clustering
result.
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(a) (b)

(c)

Fig. 10: L3 Station Clusters - DEC-02-2019

6.6 Overall Results

As can be observed in Figures 6 to 10 of the previous sections, the decreasing relative
similarity of clustering results is especially noticeable when visually comparing the
silhouette and scatter plots for the week of May 27th with the same visualizations in
other weeks and doing so in a step-wise fashion down the ranked list of results.

Individual index calculations embed implicit trade-offs on what is prioritized when
expressing inter-cluster separation, inter-cluster homogeneity, density, and compactness
as one numeric value. One can view the various indices as averages where a certain
precision is lost in the summary. This can lead to situations where one index will sug-
gest a better clustering relative to another grouping and another index will inverse this
assessment. This is illustrated in Table 3 where for example, the silhouette, Caliński-
Harabasz, separation and R-squared index values for December 02nd suggest a better
clustering than on the week starting on May 27th. However, the Davies-Bouldin, cohe-
sion and RMS index values inverse this assessment.

Capital investments in public charging infrastructure involves the use of public
funds and necessitates robust informed decision making. Identifying similar station uti-
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lization patterns over multiple weeks can be useful planning information for station
operators. The cluster analysis presented in our case study provides useful insights by
identifying similar groupings of EV charging stations according to their usage patterns
in time.

The results highlighted in the case study provided in this section demonstrate that
given a clustering result of interest, a process of objectively highlighting and recom-
mending similar clustering results can indeed be automated in order to support the
practitioner in evaluating how structure in data persists over multiple time slices in a
dataset with temporal properties. The relative ranking of similar clustering results that
our approach affords makes it easy to objectively identify similar station groupings over
multiple weeks based on a reference week. Not highlighted in the case study, are the
clustering results for other a-priori selected temporal partitions in the data, which are
also available as reference points for exploring monthly or seasonal clustering simi-
larities. For example silhouette plots representing a reference month (where K=4) and
season (where K=3), see Fig. 11.

(a) (b)

Fig. 11: L3 Station Clustering References - August and Spring [25]

7 CONCLUSIONS AND FUTURE WORK

A broad EV adoption scenario will require adequate public charging infrastructure. An
understanding of EV charging patterns at public charging stations is crucial to foster
adoption while managing costs and optimizing placement of charging infrastructure.
The outcomes of this research is believed to provide useful insights in planning and
expanding infrastructure allocation. To optimize operations, EV station operators often
seek market-related insights. EV charging station clustering can reveal useful segmen-
tations in service consumption patterns.

Although clustering has become a routine analytical task in many research domains,
it remains arduous for practitioners to select a good algorithm with adequate hyperpa-
rameters and to assess the quality of clustering and the consistency of identified struc-
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tures over various temporal slices of data. The process of clustering data is often an
iterative, lengthy, manual and cognitively demanding task. The subjectivity in deter-
mining the level of “success” that unsupervised learning approaches are able to achieve
and the required expert knowledge during the modeling phase suggest that a human-in-
the-loop process of supporting the practitioner during this activity would be beneficial.
Ascertaining whether a particular clustering of data is meaningful or not requires ex-
pertise and effort. Doing this for multiple results on data that has been sliced by weekly,
monthly or seasonal partitions prior to applying the clustering algorithm would be very
time consuming. Manually identifying one meaningful result of interest and then hav-
ing an automated mechanism to select similar results is extremely useful in reducing
the amount of effort required to identify avenues that merit further analysis and assist
in downstream analytical tasks such as improving regression or classification model
performance.

The contributions of this work include an end-to-end analytical workflow that en-
ables the analysis of energy utilization patterns at public charging infrastructure using
real charging data from station operators in Atlantic Canada. This workflow facilitates
the comparison of clustering results by practitioners with different priorities and pref-
erences. Utilizing the combination of eight internal cluster validity indices to compute
a proximity measure of clustering results in a priori selected temporal partitions of the
data reduces the cognitive demand on users in identifying, understanding and com-
paring of similar clustering results over time. A case study demonstrates that given a
clustering result of interest, the process of objectively highlighting and recommend-
ing similar clustering results can be automated in order to support the practitioner in
evaluating how structure in data persists over multiple time slices and reduce effort
in identifying multiple meaningful clustering results from a large number of modeling
artifacts.

Currently, the initial ranked list of clustering results described in Step 1 of Fig. 5
is created using silhouette scores only. Framing the creation of the initial ranked list
of results as a Multiple Criteria Decision Making (MCDM) problem may improve the
initial results exploration experience. This will be included in future work. EV charg-
ing patterns can be more effectively analyzed by referencing the social and economic
contexts in which they occur. Once clusters are obtained, it may be useful to explain
the clusters with features other than the original features used to obtain the clusters.
The use of real-world EV charging event data combined with nearby traffic volumes
and nearby amenities may help to further contextualize the clustering results. This will
also be included in future work. Lastly, other avenues will explore if utilizing the Eu-
clidean distances and clusters obtained in this work can improve predictive performance
of a baseline classifier such as improving the predictive performance of classifiers for
predicting peak day of week kWh.
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24. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster vali-
dation indexes. International Journal of computers and communications 5(1), 27–34 (2011)

25. Richard, R., Cao, H., Wachowicz, M.: An automated clustering process for helping
practitioners to identify similar ev charging patterns across multiple temporal gran-
ularities. In: Proceedings of the 10th International Conference on Smart Cities and
Green ICT Systems - SMARTGREENS,. pp. 67–77. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010485000670077

26. Si, C., Xu, S., Wan, C., Chen, D., Cui, W., Zhao, J.: Electric load clustering in smart grid:
Methodologies, applications, and future trends. Journal of Modern Power Systems and Clean
Energy 9(2), 237–252 (2021)

27. Singh, A., Yadav, A., Rana, A.: K-means with three different distance metrics. International
Journal of Computer Applications 67(10) (2013)

28. Sisodia, D., Singh, L., Sisodia, S., Saxena, K.: Clustering techniques: a brief survey of dif-
ferent clustering algorithms. International Journal of Latest Trends in Engineering and Tech-
nology (IJLTET) 1(3), 82–87 (2012)

29. Straka, M., Buzna, L.: Clustering algorithms applied to usage related segments of electric
vehicle charging stations. Transportation Research Procedia 40, 1576–1582 (2019)

30. Sun, C., Li, T., Low, S.H., Li, V.O.: Classification of electric vehicle charging time series
with selective clustering. Electric Power Systems Research 189, 106695 (2020)

31. Xiong, Y., Wang, B., Chu, C.C., Gadh, R.: Electric vehicle driver clustering using statisti-
cal model and machine learning. In: 2018 IEEE Power & Energy Society General Meeting
(PESGM). pp. 1–5. IEEE (2018)

32. Xydas, E., Marmaras, C., Cipcigan, L.M., Jenkins, N., Carroll, S., Barker, M.: A data-driven
approach for characterising the charging demand of electric vehicles: A uk case study. Ap-
plied energy 162, 763–771 (2016)

33. Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series clustering.
The Scientific World Journal 2014 (2014)

https://www.kdnuggets.com/3-reasons-why-automl-wont-replace-data-scientists-yet.html/
https://doi.org/10.5220/0010485000670077

	A Spatial-temporal Comparison of EV Charging Station Clusters Leveraging Multiple Validity Indices

