
Edge devices, such as smartphones
and IoT devices, are becoming
increasingly popular for machine
learning applications. Due to
limited computing and storage
resources, federated learning can
be used in edge devices to train
models without the need to share
their data with a central server.
Federated Averaging (FedAvg) is a
popular algorithm for federated
learning that aggregates local
model updates to train a global
model. The objective of this
research would be to evaluate and
compare the performance of the
FedAvg algorithm in the context of
edge devices with streaming data
using limited computational and
communication resources. The
research aims to enable
collaborative machine learning
while getting continuous data from
the IoT devices and preserving
data privacy.
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Federated learning is a
distributed learning approach that
enables edge devices to train
machine learning models without
sharing their data. Federated
averaging is a popular algorithm
for federated learning that
aggregates local machine learning
model updates from edge devices to
train a global model. We are
working towards an evaluation of
the performance of federated
averaging algorithm on edge
devices and compare it to a
centralized approach.

Literature Review
Previous research has shown that FedAvg can achieve comparable accuracy to
centralized learning while preserving the privacy of edge devices. Also,
FedAvg has fewer hyperparameters to tune than other algorithms, which can
make it easier to use and deploy. The communication cost is relatively low
compared to some other Federated Learning algorithms because only model
updates are sent between the server and clients during training, not the
entire dataset. Below a comparison is shown of different federated
aggregated models.

Proposed Method
We are aiming to conduct an experiment on a set of edge devices, each
running a simple classification task. The devices communicate with a
central server using the federated averaging algorithm to collaboratively
train a machine learning model. In the diagram below, our proposed the
dataflow is presented as well as the overall system infrastructure.

Conclusion
Our proposed system would ensure
data privacy, alongside would
enable collaborative ML. Also,
would have diverse applications,
such as in healthcare, smart
homes, autonomous vehicles, and
various other sectors where edge
computing is used.
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Proposed 
Experiment

Our potential experiment is to
evaluate the performance of the
FedAvg algorithm on edge devices
with limited computational and
communication resources. The
experiment would use streaming
data that are collected from IoT
devices or sensors, and evaluate
the convergence rate, accuracy,
and communication efficiency of
the algorithm.

Expected Results

Introduction

The results of the experiment may
show that FedAvg performs well in
homogeneous edge device
environments where data is
distributed in an i.i.d manner.
Additionally, the experiment may
reveal new optimization techniques
or communication protocols that
can improve the performance of
FedAvg on edge devices, further
advancing the field.
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