
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

❖EdgeAI has become a crucial factor for the automation of processes in Smart

Manufacturing. Production processes such as defect detection in quality

assurance continue to benefit from the recent advancements in machine

learning techniques on edge devices.

❖Machine learning models trained to identify imperfections on one object suffer

from performance loss when applied to a different object. We therefore use

transfer learning techniques to solve this challenge.

❖We propose a pre-processing technique that aims to minimize less important

features of the object and build a robust model on an edge device to identify

the defects.

❖We train the model on a dataset of a source object and use the model to

detect defects on different target objects.

MOTIVATION

PROPOSED METHOD

IMPLEMENTATION DETAILS

PRELIMINARY RESULTS

➢ Training on the generated dataset of the source object produced an 

accuracy of 0.9994 and a loss 0.0029

➢ Inference on the target object did not yield the expected outcome of 

identifying defective tiles but this will be explored further

Conclusion

We have proven the success of our pre-processing approach by generating a 

sufficiently large dataset and using it to train a model. The model produced 

convincing results with a final accuracy of 0.9995 and a loss of 0.0029. We will 

further explore methods of improving the model's performance on the new and 

unseen target objects.

Phase 1: Classification

• Image Pre-processing crops the image and 

maps the defect labels on the image

• Dataset Enhancement splits the images into 

tiles and labels as defective or non-defective. A 

new dataset is generated from the labelled 

image tiles.

• Classifier built over the Xception architecture 

and trained on the new dataset using transfer 

learning.

Analytics Everywhere Lab, University of New Brunswick

Atah Nuh Mih, Hung Cao

EdgeAI for Defect Detection using Transfer Learning Techniques in 
the Context of Smart Manufacturing

Phase 2: Detection

• Target image split into 

tiles as in the 

preprocessing

• Each tile passed to the 

classifier for inference

• Defective tiles identified 

and bounded

System Specifications

• 6-core 64-bit CPU, NVIDIA Carmel 

ARMv8.2

• 384-core NVIDIA Volta GPU

• 8 GB 128-bit LPDDR4x 59.7GB/s

• 21 TOPS

• Ubuntu 20.04 LTS

Libraries

• Python v3.10

• Tensorflow v2.11

• Nvidia Jetpack v5.02

• CUDA

• Classifier built upon the Xception architecture

• Input layer takes in images of shape (256, 256, 3)

• deep convolutional neural network architecture 

with depth-wise separable convolutions

• consist of a depth-wise convolution (each filter 

operates on single input channel) followed by a 

pointwise convolution (1x1 filters are applied to 

the output of the depth-wise convolution).

• 36 convolutional layers: 14 depth-wise separable 

convolutional layers, with skip connections 

between some of the layers.

• global average pooling layer followed by a fully 

connected layer with sigmoid activation for 

classification.

Emails: {atah.mih, hcao3}@unb.ca


