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Abstract

This paper proposes an optimization of an existing Deep Neural Network (DNN)
that improves its hardware utilization and facilitates on-device training for resource-
constrained edge environments. We implement efficient parameter reduction strategies
on Xception that shrink the model size without sacrificing accuracy, thus decreasing
memory utilization during training. We evaluate our model in two experiments: Caltech-
101 image classification and PCB defect detection and compare its performance against
the original Xception and lightweight models, EfficientNetV2B1 and MobileNetV2. The
results of the Caltech-101 image classification show that our model has a better test
accuracy (76.21%) than Xception (75.89%), uses less memory on average (847.9MB)
than Xception (874.6MB), and has faster training and inference times. The lightweight
models are prone to overfitting, with EfficientNetV2B1 having a 30.52% test accuracy
and MobileNetV2 having a 58.11% test accuracy. Both lightweight models have better
memory usage than our model and Xception. On the PCB defect detection, our model
has the best test accuracy (90.30%), compared to Xception (88.10%), EfficientNetV2B1
(55.25%), and MobileNetV2 (50.50%). MobileNetV2 has the least average memory usage
(849.4MB), followed by our model (865.8MB), then EfficientNetV2B1 (874.8MB), and
Xception has the highest (893.6MB). We further experiment with pre-trained weights and
observe that memory usage decreases thereby showing the benefits of transfer learning. A
Pareto analysis of the models’ performance shows that our optimized model architecture
satisfies accuracy and low memory utilization objectives.
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1. Introduction

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have resulted
in the proliferation of many AI-based applications and services. It is undeniable that new ML
models such as large language models [1] and diffusion models [2] are changing our lifestyles.
However, these AI models require intensive computational resources such as CPU, GPU,
memory, and network that only the cloud can offer. Cloud computing has been a key enabler
of many new technologies [3], such as IoT, and AR/VR, by providing virtually unlimited
resources, including on-demand storage and high computing power. By leveraging these
advantages, many powerful AI models such as Segment Everything [4] are trained and
deployed in the cloud.

However, there are several drawbacks when implementing ML models that completely
rely on the cloud. For example, the ML models running on the cloud will solely depend on
the external infrastructure, leading to potential service interruptions and downtime if the
cloud service provider experiences outages or technical issues. Moreover, cloud-based ML
models may face latency and performance issues since their quality of services is closely tied
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to network quality. Unstable connectivity, bandwidth limitations, and network delays could
cause many AI service interruptions.

These challenges motivate the need to rely on edge computing for training ML models.
The rapid development of mobile chipsets and hardware accelerators has improved edge
devices’ computing power significantly [5]. This has led to a shift from deploying models
in the cloud to the edge, where AI functionalities are diffused, converged, and embedded
into resource-constrained devices in physical proximity to the users, such as micro data
centers, cloudlets, edge nodes, routers, and smart gateways. However, this shift wave is only
partially implemented and has not fully taken advantage of the power of edge computing.
The literature highlights this since existing solutions only deploy the inference ML models
at the edge [6–8].

Training on the edge can prove beneficial in terms of variations between training and
deployment environments and also address the viewpoint problem [9]. However, the main
challenge of training on the edge is the availability of computing resources, as modern
deep learning architectures are designed to be computationally intensive. Although various
lightweight deep learning models [10, 11] have been proposed, they do not perform as well
as their heavyweight counterparts. This leaves a research gap in developing deep learning
architectures suitable for training on resource-constraint edge devices. We therefore aim to
answer the following research question:

“Can deep learning models be optimized to facilitate training at the edge with limited
resources while maintaining high accuracy with less resource consumption?"

In this paper, we optimize an existing deep neural network architecture with state-of-
the-art performance to improve its on-device training in an edge environment. We adopt
strategies described by Iandola et al. [12] that enable low model size while preserving high
accuracy. For the existing deep learning model, we choose Xception [13] as a backbone to
integrate the strategies and implement two experiments to evaluate its training performance.
We compare the results against the original Xception as baseline and also against lightweight
models, EfficientNetV2B1 and MobileNetV2.

The main contributions of this work are as follows:

(1) We present an optimization of existing deep neural networks, which facilitates effi-
cient hardware utilization for training in resource-constrained edge environments.

(2) We implement this optimization on the Xception architecture and evaluate its per-
formance in terms of accuracy, memory usage, and inference latency on Caltech-101
and a PCB defect detection task.

(3) We explore the benefits of transfer learning on the resource utilization of models by
comparing the performance of pretrained models vs non-pretrained models.

Our paper is structured in the following order: Section 1 introduces the background
of Edge AI, its challenges, and the problem to be solved. Section 2 discusses relevant
related work involving model optimization and machine learning with edge devices. Section
3 describes our implementation of a memory-efficient optimization using efficient parameter
reduction. In Section 4, we implement our proposed architecture on an edge device and
experiment on Caltech-101 image classification and a PCB defect detection task, and present
our findings. We analyze the results of our experiment and conclude our paper in Section
5.

2. Related Work

This section presents a summary of the related works in this research area. We first
discuss relevant literature on model optimization techniques and then proceed to explore
literature on machine learning with edge devices.
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2.1. Model Optimization using Post-Training Quantization

The most common model optimization methods involve the use of compression techniques
for improved hardware performance. One such method is post-training quantization (PTQ),
which includes techniques to reduce hardware utilization and model size. Post-training
quantization converts a pre-trained FP32 network into a fixed-point network through various
quantization methods while omitting the original training pipeline [14].

Post-training quantization has been widely used as a model compression technique. Victor
Habi et al. [15] proposed a hardware-friendly post-training quantization (HPTQ) framework
that achieves hardware efficiency by combining several quantization techniques such as chan-
nel equalization, threshold selection, per channel quantization, shift negative correction, and
bias correction. They achieve a peak quantization accuracy of 75.018% on ImageNet with
ResNet50. Banner et al. [16] proposed 4-bit PTQ that targets both weight and activation
quantization, and they proposed methods for minimizing quantization error. Wu et al. [17]
proposed an 8-bit quantization approach that maintain comparable accuracy as the FP32
baseline on hard-to-quantize networks such as MobileNets and BERT.

Several other PTQ have been proposed such as loss-aware post-training quantization
[18], post-training piecewise linear quantization [19], and adaptive rounding for post-training
quantization [20]. The challenge of these compression techniques is attributed to the iterative
training process that makes it difficult to use complex optimization algorithms. As such
model compression techniques are often used for inference as they make training difficult to
speed up [21], and we therefore exclude PTQ for our approach.

2.2. Model Optimization with Neural Architecture Search

Model optimization can be equally conducted as a neural architecture search (NAS)
process. With neural architecture search, a controller decides the best architecture for a
given task by using search objectives such as accuracy, latency, and resource utilization.
NAS as an optimization technique determines the best model given specific objectives to
attain. Various NAS approaches exist such as NAS-RL [22], ENAS [23], DARTS [24],
efficient architecture search [25], and PNAS [26].

Although NAS results are often successful, the search process is usually long and resource
intensive. Searching from scratch fails to take advantage of the existing neural architectures
and overlooks the neural architecture design expertise that already exists [27]. For this
reason, NAS has been explored by using existing model architectures as baselines that
define the search space. Li et al. [28] used a ResNet-18 backbone for their search process,
while Lyu et al. [29] used MobileNetV2. The limitation of these works is their choice
of lightweight models, which already have a significantly lower accuracy than heavyweight
models. By re-designing a heavyweight architecture, we explore new ways of improving
resource efficiency of the architecture without losing significant accuracy.

Pre-defining search patterns can help guide the process towards better architectural de-
cisions and therefore shorten the process by constraining the search space. Shortening the
search process is a suitable trade-off to consider for resource-constraint devices. Establishing
these patterns, however, requires prior knowledge of architectural design to guarantee the
success of the pattern. In this paper, we focus on establishing the success of an optimiza-
tion method (which could become a search pattern) and therefore deviate from using NAS
headfirst.

2.3. AI Models at the Edge

Many studies have implemented artificial intelligence on edge. Nikouei et al. [30] devel-
oped a lightweight CNN (L-CNN) using depthwise separable convolution and a Single Shot
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Multi-Box Detector (SSD) for human object detection and deployed the model on an edge
device; Sallang et al. [6] deployed a MobileNetV2-based SSD on a Raspberry Pi 4 for smart
waste management; and Sreekumar et al. [31] designed a real-time traffic pattern collection
method using YOLOv2 deployed on an edge device.

Beyond the use of edge devices for deploying machine learning models, other authors
explored performing on-device training. Kukreja et al. [9] proposed using a student-teacher
model for training, where a teacher model is trained on an object and used to update the
dataset with different viewpoints on which student models are trained. They also discussed
the use of checkpointing to reduce the memory consumption of the training process. Tsukada
et al. [7] proposed an On-device Learning Anomaly Detector (ONLAD), which combines
sequential learning with semi-supervision and an autoencoder to reduce computational cost.
They developed a hardware implementation of their method called ONLAD Core, on which
they performed on-device training.

Similar to these works, we emphasize on-device training by implementing and training
our models on the edge. However, we differ from these approaches by optimizing a deep
neural network to make it lightweight and computationally efficient enough to train on the
edge. This enables us to leverage the well-proven architecture to obtain higher accuracy
than other lightweight models.

3. Proposed Approach and Implementation

Deep learning models can be optimized through any of the following techniques: quan-
tization, neural architecture search, pruning, knowledge distillation, and compact network
design. Compact network design (CND) use of hardware-efficient techniques for design-
ing neural network architectures that enable improved training efficiency for models. These
techniques include depthwise separable convolutions, residual connections, and intermediate
data encoding [32].

Figure 1. Optimizing a model using Compact Network Design.

The use of compact network design can be extended to existing DL models for optimized
hardware performance. Thus, we propose two paradigms for compact network design in the
optimization of existing DNNs as illustrated in Figure 1: (i) horizontal compact network
design optimization; and (ii) vertical compact network design optimization. Horizontal CND
optimization preserves the network architecture to leverage its proven success, but integrates
optimized convolutions. It aims to find the optimal number of channels, types of filters, and
other in-layer factors that achieve both objectives of high performance and better resource
utilization. This enables the optimized model achieve similar performance to the original
architecture, but a better hardware utilization. Vertical CND optimization, on the other
hand, relies on the overall network architecture as a template upon which an optimized
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network can be implemented. An example of such an optimization is the design of the GRU
as an efficient simplification of the LSTM [32].

In this paper, we optimize the DNN model using the horizontal reduction approach (as
depicted in Figure 1). Particularly, we focus on optimizing Xception [13]. We use an efficient
parameter reduction approach described by [12] which we will discuss in the next section.
For each setting, we observe the training performance and the efficiency metrics to ensure
that each objective is achieved without a substantial cost to the other objective.

An overview of our implementation is shown in Figure 2.
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Figure 2. Implementation of an optimized DNN.

3.1. Xception

The Xception architecture [13] consists of a linear stack of depthwise separable convo-
lutions. In this architecture, 36 convolutional layers are assembled into 14 modules with
residual connections around them, except for the first and last modules. These modules are
divided into an Entry flow, a Middle flow, and an Exit flow. Depthwise separable convolu-
tion and residual connections are two factors that have been reported to be essential in the
design of lighter and more efficient network architectures [30, 33, 34].

Xception’s 79.0% Top-1 Accuracy on ImageNet indicates the success of the model’s macro-
architectural design. Our goal is to optimize this macro-architecture by using horizontal
compact network design methods to improve its resource efficiency. We employ design
methods explored in SqueezeNet to achieve this objective.

3.2. SqueezeNet

Iandola et al [12], proposed SqueezeNet as a lightweight CNN model with 50 times fewer
parameters than AlexNet but with a comparable performance. They describe three strate-
gies to reduce the number of parameters of a CNN architecture: Strategy (1) Replacing 3x3
filters with 1x1 filters; Strategy (2) Decreasing the number of input channels to 3x3 filters;
and Strategy (3) Downsampling late in the network so that convolutional layers have large
activation maps.

The authors also present a fire module consisting of a squeeze layer (containing only 1x1
convolutional filters), followed by two expand layers (a mix of 1x1 and 3x3 convolutional
filters).
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Using these design considerations, they propose a SqueezeNet architecture containing a
single convolutional layer, followed by 8 fire modules, and a final convolutional layer.

3.3. Optimizing Xception

Xception’s modular architecture makes it flexible for optimization and thus motivates
our choice to optimize the architecture. Our approach includes modifying the Xception
network to include Strategies (1) and (2) of SqueezeNet which aim to reduce the number of
parameters while preserving accuracy. We maintain the original macro-architectural design
of Xception (i.e. Entry flow, Middle flow, and Exit flow), but alter the micro-architecture
(i.e. varying the number of filters and channels).

All first 3x3 filters in Separable Convolution layers are replaced with 1x1 filters, thereby
satisfying Strategy (1). This technique reduces the number of filters nine-fold and subse-
quently reduces the number of parameters.

The number of parameters of a layer is defined by:

ω = Nchannels ∗Mfilters ∗Ψfilter (3.1)

where
ω is the number of parameters,
Nchannels is the number of channels
Mfilters is the number of filters
Ψfilter is the dimensions of the filter, e.g. 1x1 or 3x3

Strategy (1) already explores reducing the number of filters by replacing 3x3 filters with
1x1 filters. By implementing Strategy (1), we have a fixed number of filters with fixed
filter sizes. Equation 1 becomes a linear relationship between the number of parameters
and the number of channels. This relationship is exploited by Strategy (2) which proposes
decreasing the number of input channels into a layer.

We reduce the number of channels in the Entry Flow and Middle Flow to ensure that
fewer channels are fed into subsequent layers of the network. The fire module described in
Section 3.2 also provides an implementation of Strategy (2). The squeeze layer of the fire
module reduces the number of channels that are fed into the final expand layer (3x3 filters).

We follow the fire module pattern in our implementation by modifying the layers in the
Entry and Middle flows, such that there are fire modules with a squeeze and two expand
layers. A squeeze layer has 1x1 filters, the first expand layer has 1x1 filters, and the second
expand layer has 3x3 filters. The following relationship is preserved in the architecture:

s1x1 < e1x1 + e3x3 (3.2)
where s1x1 is the number of filters in the squeeze layer, e1x1 is the number of filters in the
first expand layer, and e3x3 is the number of filters in the last expand layer.

The implementation of a few pooling layers early in the network maintains large activation
maps as the layers progress. These are later downsampled late in the network in accordance
with Strategy (3).

4. Experiments and Results

Our edge environment consists of an A203 Mini PC built with Nvidia’s Jetson Xavier NX
8GB module, 128GB SSD, and a pre-installed JetPack 5.0.2 on Ubuntu 20.04. The A203
Mini PC is a powerful edge computer that brings AI to the edge. With up to 21 TOPS and
an integrated GPU, it provides AI computational capabilities for smart cities, industrial
automation, and smart manufacturing. We implement two experiments to validate our
results: Caltech-101 image classification and a PCB defect detection.
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(a) Training Accuracy (b) Memory Usage

Figure 3. Accuracy and Memory Usage Patterns During Training (compared with orig-
inal Xception architecture as baseline and other lightweight models, EfficientNetV2B1
and MobileNetV2)

Table 1. Comparison of model performance on Caltech-101. The base comparison is
made with the original Xception model. ↑ represents an increase in a metric compared
to Xception while ↓ represents a decrease in the metric.

Model #Params Train Acc Test Acc Avg Mem.
per Epoch

Avg Time
per Epoch

Avg Inf.
Time

Baseline
Comparison

Optimized Model 15.8M ↓ 96.16%↓ 76.21%↑ 847.9MB↓ 523.88s↓ 465ms↓
Xception (Original) 21.1M 96.95% 75.89% 874.6MB 702.19s 520ms

Other Lightweight
Models

EfficientNetV2B1 7.1M 93.32% 30.53% 823.0MB 381.44s 383ms
MobileNetV2 2.4M 90.79% 58.11% 838.6MB 301.12s 306ms

4.1. Experiment 1: Image Classification with Caltech-101

The first experiment evaluates our model performance on image classification with Caltech-
101 [35]. The dataset consists of 101 object classes, including "airplanes", "elephant", "sax-
ophone", and several others. Each class of objects contains between 40 to 800 images and
a total of 9,146 images.

Our results are presented in Figure 3 and Table 1. We make a primary comparison of
our proposed model against the original Xception architecture, but also include the results
for the lightweight models MobileNetV2 and EfficientNetV2B1.

From the results, it can be observed that EfficientNetV2B1 and MobileNetV2 had high
training accuracies but very low test accuracies indicating that they overfit the training
data. This was not observed in both Xception and in our proposed architecture. Due
to this overfitting, we focus our comparison on the test accuracy as it is more indicative
of the model’s generalizability. EfficientNetV2B1 had the lowest test accuracy (30.53%),
MobileNetV2 had a test accuracy of 58.11%, Xception had a test accuracy of 75.89% and
our proposed model had the highest test accuracy 76.21%. This comparison shows the
shortcomings of lightweight models in terms of accuracy as both EfficientNetV2B1 and
MobileNetV2 had very low test accuracies.

For memory consumption, Xception stood out from the other models, with the highest
average memory consumption of 874.6MB. The consumption pattern was also observed in
Figure 3b. Meanwhile, EfficientNetV2B1 had the lowest average memory usage of 823.0MB
and MobileNetV2 had 838.6MB. Our proposed model had an average memory consumption
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Table 2. Comparing PCB Defect Detection task with base models vs using models pre-
trained on Caltech-101. ↑ represents an increase in the pre-trained model’s metric against
its base model, while ↓ represents a decrease.

Not Pre-trained Pre-trained on Caltech-101

Model Train
Acc.

Test
Acc.

Avg
Mem.
(MB)

Avg
Inf.
Time

Train
Acc.

Test
Acc.

Avg
Mem.
(MB)

Avg
Inf.
Time

Optimized Model 97.81% 90.30% 865.8 465ms 70.71% ↓ 69.80% ↓ 833.7 ↓ 446ms ↓
Xception (Original) 97.66% 88.10% 893.6 519ms 70.84% ↓ 71.00% ↓ 831.5 ↓ 509ms ↓
EfficientNetV2B1 88.87% 55.25% 874.8 346ms 65.96% ↓ 67.40% ↑ 828.7 ↓ 335ms ↓
MobileNetV2 96.13% 50.50% 849.4 295ms 67.89% ↓ 69.05% ↑ 818.2 ↓ 295ms ↓

of 847.9MB, which was close to that of MobileNetV2 and significantly lower than that of
Xception. Xception’s high memory usage shows the limitation of heavyweight models in
this aspect.

4.2. Experiment 2: PCB Defect Detection

This experiment evaluates our model performance on a PCB defect detection task as
described by Nuh et al. [36]. The PCB Defect Dataset [37] contains 1386 images divided
into 6 types of defects (Missing Hole, Open Circuit, Mouse Bite, Spurious Copper, Short,
and Spur) in this dataset. The technique in [36] includes an augmentation technique that
provides an augmented dataset of 22,000 images. It also explores defect detection as a
binary classification problem, which reduces the complexity of implementation and allows a
more straightforward analysis of resource consumption. As the technique leverages transfer
learning, we make two comparisons of model performance in this experiment. In the first
setting, we implement the models without any pre-trained weights, and implement the pre-
trained models from Section 4.1 in the second setting. The results of both settings are
presented in Table 2.

4.2.1. Non Pre-trained Models

From Table 2, we observed that our model has the highest training accuracy (97.81%)
and test accuracy (90.30%). Similarly, Xception had a high training accuracy (97.20%) and
the second best test accuracy (88.10%). EfficientNetV2B1 and MobileNetV2 overfit with
high training accuracies but low test accuracies. MobileNetV2 had the least average memory
usage of 849.4MB followed by our proposed model with 865.8MB. EfficientNetV2B1 had an
average memory utilization of 874.8MB and Xception had the highest usage (893.6MB). Mo-
bileNetV2 also had the least inference time (295ms) followed by EfficientNetV2B1 (346ms),
then our proposed model (465ms), and finally Xception (519ms).

These results prove that our model retains its high accuracy on both training and testing,
reflecting its generalizability. It maintains a comparable accuracy with Xception but has a
better memory usage than the latter.

4.3. Pre-trained Models

A different picture was observed when using pre-trained models. The lightweight models
(EfficientNetV2B1 and MobileNetV2) that previously overfit, had more stable training and
test performance. EfficientNetV2B1 had a training accuracy of 65.96% and a test accuracy
of 67.40%. MobileNetV2 had a training accuracy of 67.89% and a test accuracy of 69.05%.
Our model had a training accuracy of 70.71% and a test accuracy of 69.80%. Xception had
both the best training (70.84%) and test accuracy (71.00%).

In this setting, the lightweight models had a more stable training performance and did not
overfit the training data as compared to their non pre-trained settings. This performance
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improvement was contrary to that of our model which had a lower training accuracy of
70.71% and a lower test accuracy of 69.80%. Xception’s training accuracy also decreased
from 97.20% to 70.84% and its test accuracy decreased from 88.10% to 71.00%.

MobileNetV2 maintained the least average memory utilization (818.2MB). EfficientNetV2B1
used less memory (828.7MB) than our model (833.7MB). Xception also had improved mem-
ory usage (831.5MB) which was lower than ours. We can also observed that the accuracies
of all the models were very comparable when using pre-trained weights and they have a
better memory usage.

5. Discussion and Conclusion

In this paper, we explored a neural network optimization to improve hardware efficiency
while maintaining high accuracy. It may seem trivial that reducing the number of parameters
would decrease the memory consumption of a model. However, an unguided reduction of
parameters can lead to a significant decrease in accuracy. It is crucial to carefully decide
where to modify and what type of modification should be made to optimize the model
architecture. Thus, we based our optimization of a deep neural network architecture on
well-studied design considerations described in [12] that aim to reduce the model size while
maintaining accuracy. These optimization methods were implemented on Xception [13] as
base architecture to study the feasibility of the approach.

We evaluated our proposed model with two experiments: image classification on Caltech-
101 and PCB defect detection using binary classification. The results showed an improve-
ment in the memory and utilization inference time of our optimized architecture relative
to the original Xception network. This optimization also did not sacrifice the accuracy of
our model, which maintained a similar accuracy to the original network. An analysis of our
findings is presented in the following sections.

5.1. Pareto Optimality of Optimized Architecture

Since our work focuses on training performance, we analyze the models for accuracy and
memory (as inference latency is more suitable for assessing inference performance). On
a dual-objective front, our model achieves comparable accuracy to a heavyweight model
(Xception) and better memory usage in both Experiment 1 and Experiment 2. An overview
of the comparison is presented in Figure 4.

In both plots, we observe that our optimized model lies within the Pareto-optimal area
of the graph i.e. High Accuracy, Low Memory, whereas the original Xception model lies on
the High Accuracy, High Memory region. On the Caltech-101 classification task (as shown
in Figure 4a), the lightweight models (EfficientNetV2B1 and MobileNetV2) lie on Low Ac-
curacy, Low Memory region suggesting that they trade off accuracy for better hardware
efficiency. The plot for the PCB defect detection task (Figure 4b) shows a different observa-
tion with EfficientNetV2B1 which now has high memory usage but maintains low accuracy.
This could suggest that its memory utilization scales with the size of the dataset as Exper-
iment 2 has 22,000 images while Experiment 1 has 9,146 images. MobileNetV2 remains in
the Low Accuracy, Low Memory region, our optimized model remains in the High Accuracy,
Low Memory region, and Xception remains in the High Accuracy, High Memory region.

With these observations, we can conclude that our model is Pareto-optimal as it achieves
both high accuracy and low memory utilization as its objectives.

5.1.1. To Pre-train or Not?

Wang et al.[33] suggested that transfer learning can facilitate training on resource-constrained
devices. The results in Table 2 validate this notion by demonstrating an improved memory
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(a) Caltech-101 Image Classification (b) PCB Defect Detection

Figure 4. Dual-objective Analysis of Models for Accuracy and Memory Usage. In both
comparisons, we define our accuracy frontier at 70% and our memory usage frontier at
the midpoint of the min and max values.

utilization of the models when using pre-trained weights. Pre-trained weights provide faster
convergence than training with randomly initialized weights [38], thereby reducing the mem-
ory requirements for training. In terms of accuracy, both our optimized model and Xception
suffered a decrease in performance due to negative transfer learning. A valid reason for this
the source task (Caltech-101 classification) on which the models were initially trained. If
the source task significantly differs from the target task, the target performance may fail to
improve or could decrease [39].

From the observations drawn from Table 2, we conclude that transfer learning has a
positive effect on memory utilization as all the models had reduced memory utilization.
However, actions must be taken to ensure that accuracy does not decrease such as choosing
a relevant source task on which the model is trained to avoid negative transfer learning on
the target task [39].

5.2. Conclusion and Future Works

We re-iterate our research question: Can deep learning models be optimized to facilitate
training at the edge with limited resources while maintaining high accuracy with less resource
consumption? From the results and their analyses, we conclude that a suitable optimization
approach can improve the hardware efficiency of existing deep learning models without
sacrificing accuracy. The Pareto optimality observed in our model (as compared to the
original Xception architecture) shows the success of this optimization technique.

For our future work, we will explore a more automated design process using neural ar-
chitectural search procedures with this approach and different architectural templates, thus
enabling the discovery of more optimal architectural designs. We will also investigate vertical
compact network design optimization methods.
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