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In sensitive contexts…

4

Why AI Trustworthy and Transparency?

Opinion | When a Computer Program Keeps You in Jail (Published 2017). (2024). The New York Times. 
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html

Tangermann, V. (2024, February 12). Tesla Driver Says He’s Not Sure If He Killed a Pedestrian Because 
He Was on Autopilot. Futurism; Futurism. https://futurism.com/tesla-driver-not-sure-full-self-driving

Verma, P., & Oremus, W. (2023, April 5). ChatGPT invented a sexual harassment scandal and named a real law prof as the 
accused. Washington Post; The Washington Post. https://www.washingtonpost.com/technology/2023/04/05/chatgpt-lies/
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Explainable AI (XAI)
To elevate the interpretability of model’s decisions
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Existing XAI methods for Computer Vision
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Existing XAI methods for Object Detection
D-RISE, D-CLOSE, SODEx
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Only perturbation-based XAI methods for object 

detection:

- Hyperparameters sensitivity: many potential 

explanations for a single object.

- Careful fine-tuning hyperparameters: to achieve 

a clear and satisfactory explanation

- Long running time: to perturb images and 

generate an explanation.
D-RISE Architecture (Petsiuk et al., 2021)
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G-CAME – Gaussian Class Activation Mapping Explainer

By adding the Gaussian kernel as the weight for each pixel in the feature map, G-CAME:

• Becomes the first CAM-based method that can explain object detectors for a specific target object.

• Runs in a short time manner compared with perturbation-based methods.

• Produces better plausible and information-faithful explanations than previous methods.

Our proposed method – G-CAME

University of New Brunswick | Analytics Everywhere Lab



Methodology

26. Mai 2024University of New Brunswick | Analytics Everywhere Lab 9



26. Mai 2024 10

1. Target Layers Selection: Set the target layers 

from one-stage/two-stage object detection models

2. Object Locating with Gradient: Take the 

derivative of the target box with the final feature 

map to get the location map

3. Weighting Feature Map: Assign importance to 

each feature map based on its contribution to the 

target object's prediction

4. Masking Target Regions: Focus the saliency map 

on the target object and reduce noise from 

unrelated region

G-CAME Architecture
4 Blocks to generate an explanation

University of New Brunswick | Analytics Everywhere Lab
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To extract the spatial information from the model’s 

convolution layers to generate the saliency map:

• For one-stage detectors (e.g., YOLOX): 

Choose the final convolution layer in each 

branch as the target layer

• For two-stage detectors (e.g., Faster-RCNN): 

Utilize the convolution layers in the Feature 

Pyramid Network (FPN) as the target layers

Block 1 – Target Layers Selection
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To identify the location of the target object in the 

feature map:

• For one-stage detectors: The pixel in the 

gradient map represents the center of the 

object

• For two-stage detectors (regression and 

classification tasks are in separate 

branches): The pixel with the highest value in 

the gradient map is used as an estimate of 

the object's center

Block 2 – Object Localization with Gradient
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Assigning importance to each feature map based on its contribution to 

the target object's prediction:

• Dividing feature maps into positive and negative parts to create a 

smoother saliency map by considering the different effects of each 

part on the prediction

• Calculating the weight for each feature map using the mean value of 

the gradient map provides a measure of its importance

Block 3 – Weighting Feature Map
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To focus the saliency map on the target object and reduce 

noise from unrelated regions:

• Using a Gaussian mask as a weight for each pixel in the 

weighted feature map to estimate the object region based 

on the center of the object

Block 4 – Masking Target Regions 
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To generate the final explanation map:

• Combine the weighted feature maps using the Gaussian kernel

• Choosing the appropriate standard deviation for the Gaussian 

mask to ensure that the saliency map accurately captures the 

object's size and location

Explanation Map Generation
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To validate whether the saliency map is a faithful 

explanation of the model's prediction

1. Perform Cascading Randomization and Independent 

Randomization tests

2. Results: G-CAME method produces valid and reliable 

explanations that are sensitive to the model's 

parameters

Sanity check

University of New Brunswick | Analytics Everywhere Lab
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Qualitative Evaluation
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Visualization results of GradCAM, D-RISE, and G-CAME on samples of MS-COCO 2017 dataset. 
G-CAME can generate the least noisy saliency maps for explaining a specific object.
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The saliency map of D-RISE and 

G-CAME for tiny objects prediction:

(a) tiny objects of the same class 

lying close together

(b) multiple tiny objects of different 

classes lying close together.

In both cases, G-CAME can clearly 

distinguish each object in its 

explanations.

Qualitative Evaluation on Tiny Objects

University of New Brunswick | Analytics Everywhere Lab
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Plausibility evaluation: measure the correlation between the saliency map and the human-labeled ground truth

• Pointing Game (PG) and Energy-based Pointing Game (EBPG)

Faithfulness evaluation: assess the completeness and consistency of the explanations for the model's predictions

• Confidence Drop and Information Drop

Quantitative Evaluation

University of New Brunswick | Analytics Everywhere Lab

Comparison of D-RISE and G-CAME (Our) on the MS-COCO 2017 validation
dataset with the YOLOX model.
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Conclusion
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Perturbation-based

D-RISE, D-CLOSE

CAM-based

G-CAME

Higher plausibility explanation

Less noisy explanation

Higher information retainment

Better running time 

Model-agnostic nature

Higher faithfulness explanation
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