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Abstract—APIs or Application Programming Interfaces help
distributed systems and microservices to expose their function-
alities and serve as a means for communication among them.
In contrast to a poorly designed API, a well-designed API is
easy for users to understand and use. Thus, APIs with high-
quality design are essential both for API providers and client
developers. This paper aims to assess the linguistic design quality
of APIs in distributed systems and microservices by automatically
detecting good and poor design practices, commonly known as
patterns and antipatterns, respectively. We rely on syntactic and
semantic analyses for automatic assessment of the design quality
of APIs using detection heuristics. Syntactic analysis involves
analyzing the structure and syntax of the APIs, while semantic
analysis involves analyzing API documentation, descriptions, and
parameters. We achieved an overall accuracy of more than 93%
in detecting patterns and antipatterns. Our detection results also
suggest that antipatterns are prevalent in the APIs of distributed
systems and microservices. Our findings will assist API developers
in identifying poor design practices and improving the design
quality of their APIs.

Index Terms—Distributed Systems, Microservices, APIs, REST,
GraphQL, Semantic Analysis, NLP, Linguistic Design Quality

I. INTRODUCTION

Distributed systems and microservices work together to
achieve a common (technical and/or business) objective.
Nowadays, microservices are a very popular approach for
building such distributed systems [1]. Application Program-
ming Interfaces (APIs) facilitate communications among the
(micro)services. APIs define the protocols, data formats, and
operations for communication [2]. Moreover, distributed sys-
tems and microservices rely on APIs and their documentation
to publish their functionalities. APIs may follow good design
practices, i.e., design patterns, that exhibit high-quality design.
On the other hand, APIs may also exhibit poor design practices,
i.e., antipatterns.

The design quality of APIs plays a major role in effective
communication among the services in the distributed systems.
A well-designed API (1) provides the required functionality
and interfaces for developers that are clear and easy to use,
(2) improves developer experience, (3) reduces errors, eases
maintenance, boosts integration, and increases easy adoption
[2]. In contrast, a poorly designed API is hard to understand and
use, lacks proper documentation, and increases development
time for client developers. Thus, automatic detection of
poor linguistic design in APIs is essential for developing
user-friendly and efficient APIs for distributed systems and

microservices. Adopting good API design practices and early
detection of poor design practices can significantly contribute
to the success of an API.

In this study, we assess the linguistic design quality of the
APIs of distributed systems and microservices. We aim to
assess how well APIs expose their functionality. Various types
of APIs are available, such as SOAP, REST, GraphQL, gRPC,
etc. This study specifically focuses on assessing the linguistic
design quality of REST and GraphQL APIs because they are the
two most popular API categories in the industry. REST APIs
follow REST (Representational State Transfer) principles and
are an industry-standard protocol for communication between
Web services and their clients using HTTP (Hypertext Transfer
Protocol) requests and responses [3]. GraphQL is another API
architecture that has recently grown in popularity and offers
a more adaptable and effective substitute for conventional
REST APIs. GraphQL allows clients to request the precise
data they require, potentially lowering the quantity of data
carried over the network [4]. Both REST and GraphQL follow
a resource-oriented architecture [2], [4]. Every resource has
its unique identifier, URI (Unique Resource Identifier), and a
set of actions (HTTP methods) that the client can perform to
manipulate resources.

This study aims to find empirical evidence of linguistic
antipatterns in APIs of distributed systems and microservices,
and identify the most prevalent linguistic antipatterns. The
findings of our study will provide valuable insights for API
developers, guiding them on the specific antipatterns that
require attention to enhance the overall design quality of their
APIs. Thus, we aim to answer the following research questions:

RQ1: To what extent do the APIs in distributed systems and
microservices suffer from poor design?
RQ2: What is the accuracy of the detection heuristics of
linguistic patterns and antipatterns?
RQ3: Which API category in distributed systems and microser-
vices is more prone to poor linguistic design?
RQ4: Which linguistic patterns and antipatterns are most
common in APIs of distributed systems and microservices?

As our main contributions in this study, we:

• assess the linguistic design quality of APIs of distributed
systems and microservices using syntactic and semantic
analyses;



• provide empirical evidence that both REST and GraphQL
APIs have poor linguistic design;

• analysis of 1,655 endpoints from 21 REST and 12
GraphQL APIs after collecting 846 endpoints from
GraphQL APIs and 809 endpoints from REST APIs; and,

• identify most occurring patterns and antipatterns among
the analyzed APIs.

The rest of the paper is organized as follows: Section II
highlights the relevant studies from the literature on detecting
linguistic antipatterns in APIs. Section III presents a brief
definition of ten linguistic antipatterns from the literature.
Section IV outlines our research methodology. Section V
summarizes the detection results and answers the research
questions, while Section VI presents a general discussion of
our findings. Finally, Section VII concludes our discussion,
highlights the limitations of our study, and proposes potential
future work.

II. RELATED WORK

This study aims to find the linguistic patterns and antipat-
terns in the APIs of distributed systems and microservices.
Identifying patterns (i.e., good practices) and antipatterns (i.e.,
poor practices) are essential to assess the linguistic quality of
APIs. We use syntactic and semantic analysis of the endpoints,
description, and their parameters to assess the linguistic quality
of APIs. REST and GraphQL APIs are two of the most widely
used API design practices. Due to their flexibility and efficiency,
developers of distributed systems and services follow them to
design their APIs. In this study, we focus on the syntactic and
semantic analysis of REST and GraphQL APIs to determine
their linguistic quality. In the following, we summarize and
present the previous works that use semantic and syntactic
analysis to assess the linguistic quality of APIs.

Analysis of REST APIs: The linguistic design of REST APIs
has been evaluated in several studies applying semantic analysis.
A survey by Petrillo et al. [5] presented 73 best practices in
REST API design. Other studies that detected bad practices in
REST API design include Hausenblas et al. [6], which assessed
endpoint naming quality by performing a subjective analysis on
REST APIs. Parrish et al. [7] used subjective lexical comparison
to examine how verbs and nouns are used in naming endpoints.
To evaluate the extent to which developers follow the standard
API practices, Rodrıguez et al. [8] analyzed the HTTP requests
and found that REST APIs usually do not follow the standard
design practices. However, those studies do not focus on the
linguistic design quality of APIs.

Concerning linguistic quality, some of the most notable
studies to detect linguistic patterns and antipatterns in APIs
using syntactic and semantic analyses were performed using
DOLAR [9] and SARA [10] tools, where the authors defined
nine antipatterns and conducted their study on widely known
REST APIs including Facebook and YouTube. Later, they
studied APIs for IoT applications [11], analyzed 1,102 end-
points from 19 IoT APIs, and detected nine linguistic patterns
and antipatterns. In another work, the authors conducted a

comparative study on 37 public, partner, and private APIs [12]
to investigate which type of API is more prone to poor linguistic
design. Other works on REST APIs involved structural analysis
of linguistic designs of APIs [13], [14]. Besides that, several
surveys on API design quality [15], [16] provided a state-
the-art summary of the current good and bad practices in API
design. Semantic analysis is not limited to linguistic antipattern
detection. For example, Ma et al. [17] used semantic analysis
to develop a tool to help developers analyze, cluster, and
recommend APIs.

Analysis of GraphQL APIs: Compared to REST, there has
not been much work for GraphQL APIs in assessing linguistic
quality. Most of the study on GraphQL is focused on optimizing
GraphQL query processing [18], [19]. Wittern et al. [18]
analyzed common naming conventions and worst-case response
sizes, and described practices that address large responses.
Roksela et al. [19] evaluated different query execution plans of
GraphQL and suggested a selection of execution strategies to
improve the performance of GraphQL APIs. Other studies, such
as [20], focused on improving the performance optimization
of GraphQL APIs. Finally, studies such as [21], [22] highlight
the good and bad practices in GraphQL APIs. Interestingly,
no study in the literature focused on the linguistic quality of
GraphQL APIs.

This study seeks empirical evidence of poor linguistic design
in REST and GraphQL. We also aim to conduct a comparative
study between REST and GraphQL regarding their linguistic
design quality.

III. LINGUISTIC PATTERNS AND ANTIPATTERNS IN APIS

This section briefly defines linguistic patterns and antipat-
terns extracted from the literature. In the following, we briefly
define all ten patterns and antipatterns used in this study.

✗Amorphous vs. ✓Tidy Endpoint: An endpoint is considered
tidy if it has 1) lower-case resource naming, 2) no underscores,
3) no trailing slashes, and 4) no file extensions. ✗Amorphous
Endpoint antipattern, on the other hand, appears when endpoints
have capital letters (except for camel cases) or other symbols
that make them difficult to use and read [9]. For example, the
endpoint /Available-Data-Feeds/ is an ✗Amorphous Endpoint
as it contains trailing slashes and uppercase letters. In contrast,
/available-data-feeds/{dataSourceId} is a ✓ Tidy Endpoint as
it does not contain any uppercase letters, underscores, trailing
slashes, or file extensions.

✗Contextless vs. ✓Contextualized Resource Names: Nodes
in the endpoint should belong to the same semantic context,
i.e., the endpoint should be contextual. ✗Contextless Resource
Names antipattern occurs when nodes in the endpoint do not
belong to the same semantic context [9]. For example, endpoint
/newspapers/earth/players/{id} is considered to be a ✗Context-
less Resource Names antipattern as nodes are not semantically
related. In contrast, endpoint /football/club/players/{id} is
considered to be a ✓Contextualized Resource Names pattern
as all the nodes are semantically related.

/Available-Data-Feeds/
/available-data-feeds/{dataSourceId}
/newspapers/earth/players/{id}
/football/club/players/{id}


✗CRUDy vs. ✓Verbless Endpoint: ✓Verbless Endpoint does
not use CRUDy terms such as create, read, update, delete, or
their synonyms with HTTP methods. In contrast, using such
terms as resource names is considered to be ✗CRUDy Endpoint
[9]. The endpoint update/players/{id} along with the POST
method is a ✗CRUDy Endpoint antipattern as it has CRUDy
term update. In contrast, endpoint /players/{id} along with the
POST method is a ✓Verbless Endpoint pattern as the endpoint
does not contain any CRUDy terms or their synonyms.

✗Inconsistent vs. ✓Consistent Documentation: ✗Inconsistent
Documentation antipattern occurs when the HTTP method
of an endpoint is in contradiction with its documentation.
In contrast, for consistent documentation, the HTTP method
is in agreement with the documentation [11]. In Adobe
Audience Manager API, the HTTP method (POST) of the
endpoint /datasources/bulk-delete is in contradiction with the
documentation ’Bulk delete multiple data sources’, and thus
is an ✗Inconsistent Documentation antipattern. According to
the API design guidelines, the POST method should be used
to create some resources [2]. In contrast, in Pipefy API the
HTTP method (POST) of the endpoint /createCardRelation is
consistent with its documentation ’Creates a card relation’,
and thus, is a ✓Consistent Documentation pattern.

✗Non-descriptive vs. ✓Self-descriptive Endpoint: In API
design architecture, endpoints have to be as user-friendly as
possible. An endpoint needs to be easy to understand and
as precise as possible for better understandability. When an
endpoint design has encoded nodes (e.g., basic resource names
not used), it becomes a ✗Non-descriptive Endpoint antipattern
and gets harder to grasp. A ✓Self-descriptive Endpoint, on
the other hand, has resource identifiers that are short and to
the point [12]. The endpoint /auth/token/oauth1 is a ✗Non-
descriptive Endpoint as it is not descriptive enough and hard to
understand the purpose of the endpoint. In contrast, the endpoint
/account/set-profile-photo is a ✓Self-descriptive Endpoint as
the endpoint is descriptive and easy to understand.

✗Non-hierarchical vs. ✓Hierarchical Nodes: The nodes
in endpoints in the Hierarchical Nodes pattern are in a
hierarchical relationship. In contrast, a ✗Non-hierarchical
Nodes antipattern occurs when at least one node in an
endpoint is not hierarchically related to its neighbor nodes
[9]. For example, /professors/university/faculty/ is a ✗Non-
hierarchical Nodes antipattern since ‘professors’, ‘faculty’,
and ‘university’ are not in a hierarchical relationship. In
contrast, /university/faculty/professors/ is a ✓Hierarchical
Nodes pattern since ‘university’, ‘faculty’, and ‘professors’
are in a hierarchical relationship.

✗Non-standard vs. ✓Standard Endpoint: A ✓Standard
Endpoint Design does not contain 1) non-standard characters
such as é, å, ø, etc, 2) blank spaces, 3) unknown characters,
and 4) double hyphens. In contrast, The use of characters
such as é, å, ø, etc., in endpoint, the presence of blank
spaces in endpoint, the usage of double hyphens in endpoint,
and the presence of unknown characters in endpoint are

the four main indicators of ✗Non-standard Endpoint design
[11]. The endpoint /data--feeds/billingreport from IBM Cloud
Pak System API is an example of ✗Non-standard Endpoint
Design as endpoint contains a double hyphen. In contrast,
the endpoint /data-feeds/billing-report represents ✓Standard
Endpoint design.

✗Non-pertinent vs. ✓Pertinent Documentation: ✗Non-
pertinent Documentation antipattern occurs when an endpoint
is in contradiction with its documentation, i.e., the endpoint and
its corresponding documentation are not semantically related.
In contrast, a properly documented endpoint uses semantically
related terms to clearly describe its purpose [10]. In PokéAPI,
the endpoint /v2/berry-firmness/{names}/ is in contradiction
with the documentation ’The name of this resource is listed in
different languages’, and thus is a ✗Non-pertinent Documenta-
tion. In contrast, another endpoint documentation pairs from
PokéAPI: /v2/berry-firmness/{berries}/ - ’A list of the berries
with this firmness.’ shows a higher semantic relationship, and
thus is a ✓Pertinent Documentation.

✗Pluralized vs. ✓Singularized Nodes: Endpoints should not
use singular/plural nouns inconsistently when naming resources
in the API. The last node of the request endpoint should be
singular when clients send PUT/DELETE requests. In contrast,
the last node should be plural for POST requests. Consequently,
when singular names are used for POST requests or plural
names are used for PUT/DELETE requests, the ✗Pluralized
Nodes antipattern occurs [9]. In Adobe Audience Manager API,
the POST method is used with the /data-feeds/usage endpoint
whose last node is a singular noun, and thus it is considered
to be ✗Pluralized Nodes antipattern. In contrast, if PUT or
DELETE were used with the same endpoint, it would have been
considered to be ✓Singularized Nodes pattern, as singular last
nodes are supposed to be used with PUT or DELETE methods.

✗Unversioned vs. ✓Versioned Endpoint: ✓Versioned End-
point makes maintenance simpler for client developers as well
as API providers. The format or type of response data may
change, a resource may be removed, a new endpoint may
be added, response parameters may change, and major or
minor API versions are needed to track all the changes. An
endpoint exhibits the ✗Unversioned Endpoint antipattern if not
versioned [11]. For example, the endpoint /file requests/count
from Dropbox is an ✗Unversioned Endpoint as the endpoint
does not contain any version number. In contrast, another
endpoint /v1/me/library/playlists/{id} from Apple Music is
considered to be a ✓Versioned Endpoint, as the endpoint
contains the version number.

Apart from these patterns and antipatterns, many other REST
API design rules are defined in several books such as [2].
However, they do not discuss detection techniques or algorithms
for these rules. This study analyzes ten patterns and antipatterns
for API design from the literature.

IV. RESEARCH METHODOLOGY

Figure 1 shows the research methodology followed in this
study. We collect and pre-process API endpoints in Steps

update/players/{id}
/players/{id}
/datasources/bulk-delete
/createCardRelation
/auth/token/oauth1
/account/set-profile-photo
/professors/university/faculty/
/university/faculty/professors/
/data--feeds/billingreport
/data-feeds/billing-report
/v2/berry-firmness/{names}/
/v2/berry-firmness/{berries}/
/data-feeds/usage
/file_requests/count
/v1/me/library/playlists/{id}


TABLE I: List of the analyzed APIs, online documentation,
and number of endpoints.

REST GraphQL
APIs Endpoints APIs Endpoints APIs Endpoints
Adobe Audience 65 Microsoft Power BI 34 AniList 27
Apple App Store 32 Node-RED 15 Apple Music 99
BroadCom 40 Oracle Cloud Marketplace 43 Artsy 21
CiscoFlare 25 QuickBooks Online 21 Braintree 96
ClearBlade 45 Samsung ARTIK Cloud 80 Facebook 66
Dropbox 32 Shopify 71 GitHub 256
Google Nest 35 SurveyJS 14 GitLab 55
GroupWise 56 Uber 24 Instagram 28
IBM Cloud Pak 34 WM3 Multishop 54 Pipefy 90
IBM Watson IoT 57 PokéAPI 24
Instagram 19 Shopify 33
Linkedin 13 Twitter 51

1 and 2. We detect linguistic patterns and antipatterns in
Step 3 by implementing their detection heuristics. We define
the ground truth in Step 4. Finally, we compute detection
performance metrics, synthesize our findings, and answer our
research questions in Step 5. The following sections provide
brief descriptions of each step of the methodology.

A. Step 1: Data Collection

This step involves gathering information of APIs. For
each API, we manually collected endpoints, associated HTTP
methods, available documentation, and parameters. To ensure
the data quality, we followed a systematic data collection
approach [23]. Furthermore, for our investigation, we only
gathered endpoints that have well-organized HTTP methods
and documentation. The resulting dataset encompasses 846
endpoints from 12 GraphQL APIs. Additionally, we incorporate
809 endpoints from 21 REST APIs made publicly available
in [12] to analyze the design quality of APIs. Table I lists 33
analyzed REST and GraphQL APIs with the sources of their
online documentation and the number of endpoints analyzed.

B. Step 2: Pre-processing

We pre-process endpoint documentation and their parameters
using standard NLP techniques before using them for the
definition of ground truth and detection of patterns and
antipatterns. As part of the pre-processing, we first refine
endpoint documentation by removing extra spaces, unknown
characters, unknown symbols, and non-English characters.
Then, we expand acronyms and decompose compound words
to improve the readability and understandability of endpoint
documentation and parameters. From the APIs, we gather a
list of acronyms and compound words and their corresponding
split words for pre-processing purposes. Further pre-processing,
such as stop word removal, stemming, and lemmatization are
applied during the detection phase in Step 3.

C. Step 3: Detection of Linguistic Patterns and Antipatterns

This step involves the detection of ten patterns and an-
tipatterns described in Section III. To detect these patterns
and antipatterns, we follow similar detection methods in the
literature [10], [11]. We also aim to improve several detection
heuristics in terms of their detection performance, as discussed
in Section V.

Analysis of Linguistic Patterns and Antipatterns: We
analyze the definition of patterns and antipatterns to explore
their linguistic aspects. For example, detecting ✗Non-pertinent
Documentation and ✗Contextless Resource Names antipattern
requires semantic analysis of the endpoint and its documenta-
tion.

For example, Figure 2 depicts the detection heuristic for
✗Non-pertinent Documentation antipattern. We obtain domain-
specific knowledge from the documentation of each endpoint
(lines 2–3) to construct a topic model [24] in line 4. Subse-
quently, we extracted the nodes from the endpoint in line 5
and then computed the similarity between the nodes and the
documentation (line 6) using the LDA topic model. Then, we
determine the average similarity value between each topic in
the topic model and all nodes in an endpoint. An endpoint
is assumed to have ✗Non-pertinent Documentation antipattern
if the average similarity value is below the threshold (line
7). Conversely, ✓Pertinent Documentation pattern is reported
if the similarity value equals or exceeds the threshold. We
utilized a threshold of 0.5 for detection. The choice of 0.5
as the threshold aligns with the standard practice in cosine
similarity [25] measurements.

Figure 3 shows the detection heuristics for ✗Contextless
Resource Names antipatterns. As described in Section III, nodes
in an endpoint should be semantically related [2]. To find the
semantic relationship, we compare the nodes with the words
in each topic of the LDA topic model based on the cosine
similarity score. The LDA topic model from the documentation
of endpoints is constructed in line 2. We extract the nodes
from the endpoint in line 3. If all the nodes of the endpoint
fall into one topic of the LDA topic model, our detection
algorithms identify that nodes are semantically related, i.e.,
✓Contextualized Resource Names. In line 4, we calculate the
similarity score of nodes against each topic of the LDA topic
model. If the average similarity score of nodes is below the
threshold, then all the nodes of the endpoints are not present in
one topic of the topic model (line 5), i.e., ✗Contextless Resource
Names. In contrast, if the average similarity score of nodes is
above a certain threshold, then the detection algorithm identifies
the endpoint as ✓Contextualized Resource Names, i.e., all nodes
of the endpoint should fall into at least one topic of the topic
model. Similar to ✗Non-pertinent Documentation antipattern
heuristic, 0.5 is used as the threshold for identification.

Patterns and Antipatterns Detection: For detecting ten
patterns and antipatterns, we utilized detection heuristics
from the literature with minor modifications and improve-
ments [10], [11]. We developed a Python-based detection
tool implementing detection algorithms for ten detection
heuristics. We relied on heuristics to detect antipatterns that only
require syntactical analysis. Conversely, for antipatterns that
require semantic analysis, we employed heuristics and various
natural language processing (NLP) tools and techniques, e.g.,
NLTK (www.nltk.org/) and spaCy (https://spacy.io/usage/spacy-
101). To detect ✗Non-descriptive Endpoint, ✗Inconsistent
Documentation, ✗Pluralized Nodes, and ✗CRUDy Endpoints,

https://experienceleague.adobe.com/docs/audience-manager/user-guide/reference/reference.html?lang=en
https://learn.microsoft.com/en-us/rest/api/power-bi/
https://anilist.github.io/ApiV2-GraphQL-Docs/
https://developer.apple.com/documentation/appstoreconnectapi
https://nodered.org/docs/api/
https://developer.apple.com/documentation/applemusicapi/
https://techdocs.broadcom.com/us/en/ca-enterprise-software/devops/continuous-delivery-director-saas/1-0/reference/rest-api-reference.html
https://docs.oracle.com/en/cloud/marketplace/partner-portal/rest-api-publisher/QuickStart.html
https://developers.artsy.net/v2/
https://developer.cisco.com/docs/
https://developer.intuit.com/app/developer/qbo/docs/develop
https://graphql.braintreepayments.com/reference/
https://stagingdocs.clearblade.com/v/3/4-developer_reference/android/API_Reference/
https://apidashboard.io/apis?tags=inclusion
https://developers.facebook.com/docs/graph-api/
https://www.dropbox.com/developers/documentation/http/documentation
https://shopify.dev/docs/api
https://docs.github.com/en/graphql/ 
https://developers.google.com/nest/device-access/api
https://surveyjs.io/form-library/documentation/api-reference/survey-data-model
https://docs.gitlab.com/ee/api/graphql/
https://www.novell.com/documentation/groupwise18/gwsdk_admin_rest_api/data/bookinfo.html
https://developer.uber.com/docs/riders/references/api
https://developers.facebook.com/docs/instagram-api/
https://www.ibm.com/docs/en/cloud-paks/cp-integration
https://wm3.se/wm3-multishop
https://api-docs.pipefy.com/reference/
https://www.ibm.com/docs/en/mapms/1_cloud?topic=reference-application-rest-apis
https://pokeapi.co/docs/
https://developers.facebook.com/docs/instagram-api/
https://shopify.dev/docs/api/admin-graphql/
https://learn.microsoft.com/en-us/linkedin/shared/authentication/authentication?context=linkedin%2Fcontext
https://developer.twitter.com/en/docs/
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Fig. 1: Research Methodology for Assessing Linguistic Design Quality of APIs.

1: NON-PERTINENT DOCUMENTATION(Request-Endpoint, Documentation)
2: Documentation ← REMOVE-STOP-WORDS(Documentation)
3: Tokens ← LEMMATIZE-TOKENIZE(Documentation)
4: TopicModel ← EXTRACT-TOPICS(Tokens)
5: EndpointNodes ← EXTRACT-ENDPOINT-NODES(Request-Endpoint)
6: Similarity-Value ← COSINE-SIMILARITY-SCORE(EndpointNodes, TopicModel)
7: if Similarity-Value < threshold
8: return ‘Non-Pertinent Documentation’ antipattern
9: end if
10: return ‘Pertinent Documentation’ pattern

Fig. 2: ‘Non-Pertinent Documentation’ detection heuristic.

1: CONTEXTLESS-RESOURCE(Request-Endpoint, Documentation)
2: TopicsModel ← EXTRACT-TOPICS(Documentation)
3: EndpointNodes ← EXTRACT-ENDPOINT-NODES(Request-Endpoint)
4: Avg-Similarity-Value ← COSINE-SIMILARITY-SCORE(EndpointNodes,
TopicsModel)
5: if Avg-Similarity-Value < threshold
6: return ’Contextless Resource Names’ antipattern
7: end if
8: return ’Contextualized Resource Names’ pattern

Fig. 3: ’Contextless Resource Names’ detection heuristic.

we used standard pre-processing, heuristics, and regular ex-
pressions. Standard pre-processing involves removing stop
words, tokenization, lowercasing, stemming, lemmatization,
part-of-speech (POS) tagging, removing punctuation, and word
embedding. To detect ✗Non-hierarchical Nodes antipattern, we
utilized WordNet [26], and to detect ✗Contextless Resource
Names and ✗Non-pertinent Documentation, we employed LDA
topic model [24] and cosine semantic similarity metric [25].

LDA Topic Model and Cosine Semantic Similarity: We
used Gensim (https://pypi.org/project/gensim/), a widely used
Python library for building topic models [24]. For ✗Contextless
Resource Names and ✗Non-pertinent Documentation detection,
we built topic models of k topics from the documentation
of the API endpoints. The topic models were examined to
extract the key concepts within the API documentation. This
approach allowed us to discover hidden relationships among
the endpoint nodes and their documentation. The degree of
similarity between two vectors in an inner product space is
measured by cosine similarity [25]. It determines whether two
vectors are pointing in approximately the same direction by
computing the cosine of the angle between them. This measure

is widely used in text analysis and natural language processing
to evaluate document similarity.

D. Step 4: Ground Truth Definition

The definition of ground truth involves utilizing a random
sampling approach to select 91 endpoints from a pool of 1,655
endpoints from 21 REST and 12 GraphQL APIs. This step
aims to measure the performance of our implemented detection
heuristics. The population comprises 16,550 endpoint instances
(1,655 endpoints × 10 antipatterns). We chose a sample size of
910 queries (91 endpoints × 10 antipatterns) with a confidence
interval of 10 and a confidence level of 95%.

Three professionals with expertise in REST and GraphQL
API design were involved in the validation process. None of
these professionals were part of the detection process, nor were
the detection results shared and discussed with them to avoid
bias. For the validation, we prepared online questionnaires using
Google Forms1, describing all ten patterns and antipatterns
with appropriate examples to provide some background. For
each individual, we provided the HTTP method, endpoint,
description, and parameters (if available). We used majority
voting to select whether an endpoint has a specific antipattern.

E. Step 5: Deliberation

Deliberation involves analyzing and synthesizing the findings.
We also compare the detection results and the ground truth
generated by experts to compute several performance metrics.
To answer the defined research questions, we use the detection
performance of the detection algorithm. To answer RQ1, we
compile a detailed detection results table and use a mosaic
plot for REST and GraphQL APIs. For RQ2, we used various
performance metrics such as accuracy, precision, recall, and F1-
score. Finally, to answer RQ3 and RQ4, we visualize the results
through the detection result table and stacked column chart,
illustrating the proportion of endpoints identified as antipatterns
across the two API categories for distributed systems and
microservices.

V. RESULTS

This section presents our detection results and answers our
research questions.

1https://forms.gle/E7h8RVRYg4umHTtU8
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Fig. 4: Detection of Patterns and Antipatterns in REST APIs
(top) and GraphQL APIs (bottom). The black portion represents
antipatterns and the white portion represents patterns.

A. Overview of the Detection Results

Figure 4 depicts the mosaic plots of the detection results
for ten patterns and antipatterns on 33 APIs. The number of
endpoints analyzed for an API corresponds to the height of the
boxes (row-wise). The ratio of endpoints classified as patterns
and antipatterns is displayed by the width of the white and
black boxes (column-wise) for each antipattern. As Figure 4

shows, the most prevalent antipattern in APIs is ✗Unversioned
Endpoint, while other common antipatterns are ✗Amorphous
Endpoint, ✗Pluralized Nodes, and ✗CRUDy Endpoint.

The detailed detection results for ten patterns and antipatterns
are shown in Table II. Each column shows the detection
instances for all ten pairs of patterns and antipatterns, and
each row shows the number of endpoints detected as patterns
and antipatterns for the APIs. Our results suggest that 98%
of the endpoints contain ✗Unversioned Endpoint antipatterns.
In contrast, 99% of the endpoints follow ✓Contextualized
Resource Names pattern. In GraphQL APIs, 68% of the
endpoints follow ✗Unversioned Endpoint antipatterns, and 99%
follow ✓Standard Endpoint design.

B. Poor Linguistic Design in APIs (RQ1)

RQ1 investigates the presence of poor linguistic design
quality in APIs. This study only considers REST and GraphQL
APIs of distributed systems and microservices. Thus, we
present and analyze the poor linguistic design in APIs from
the perspective of REST and GraphQL. From Table II, the
most prevalent antipattern in REST APIs is ✗Unversioned
Endpoint, constituting 98% of the detected antipatterns. More-
over, REST APIs generally follow good API design principles
for linguistic patterns. For example, 88% of the endpoints
follow ✓Standard Endpoint patterns, 95% of the endpoints
are ✓Verbless Endpoint, and 92% of the endpoints have
✓Consistent Documentation. This suggests that REST API
developers tend to follow good API design practices.

In GraphQL APIs, the most prevalent antipatterns include
✗Unversioned Endpoint (68% of the endpoints) and ✗Pluralized
Nodes (50%). For other linguistic patterns, GraphQL follows
similar design practices to REST APIs. For example, GraphQL
APIs commonly follow linguistic patterns like ✓Tidy Endpoint
(86% of the endpoints), ✓Descriptive Endpoint (96%), ✓Con-
textualized Resource Names (95%), ✓Hierarchical Nodes(94%),
and ✓Pertinent Documentation(99%). Thus, GraphQL API
developers also follow good API design practices, except for
✗Unversioned Endpoint and ✗Pluralized Nodes antipatterns.

From Figure 4, in REST APIs, the second most common
antipattern is ✗Amorphous Endpoint. Among the other REST
APIs, the majority of APIs also follow the ✓Verbless Endpoint
pattern, except for Dropbox and SurveyJS. Similarly, most APIs
adopt the ✗Pluralized Nodes antipattern, excluding the Apple
App Store and Cisco Flare APIs. ✗Inconsistent Documentation
antipattern is common in all APIs, except for Dropbox and
QuickBooks. For GraphQL APIs, nearly all APIs exhibit
✗Amorphous Endpoint, except for AniList, Apple Music,
and GitLab. We also found that the presence of ✗CRUDy
Endpoint is widespread across most GraphQL APIs, except
for Apple Music, Artsy, GitLab, and PokéAPI. Furthermore,
developers do not always properly document their APIs, i.e.,
most GraphQL APIs demonstrate ✗Inconsistent Documentation
antipattern.



TABLE II: Detection Results on 1,655 Endpoints from 33 REST and GraphQL APIs for ten Patterns and Antipatterns.
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REST
Adobe Audience 16 49 0 65 4 61 65 0 10 55 1 64 0 65 2 63 0 65 8 57
Apple App Store 0 32 0 32 0 32 32 0 0 32 1 31 0 32 0 32 4 28 0 32
BroadCom 8 32 1 39 4 36 40 0 9 31 8 32 4 36 19 21 2 38 3 37
Cisco Flare 0 25 0 25 0 25 25 0 0 25 0 25 0 25 0 25 0 25 0 25
ClearBlade 0 45 0 45 0 45 36 9 18 27 0 45 0 45 7 38 7 38 3 42
Dropbox 29 3 0 32 17 15 28 4 31 1 0 32 0 32 2 30 0 32 20 12
Google Nest 35 0 0 35 0 35 35 0 2 33 1 34 0 35 30 5 0 35 0 35
GroupWise 0 56 0 56 0 56 56 0 5 51 4 52 0 56 4 52 2 54 3 53
IBM Cloud Pak 22 12 14 20 0 34 34 0 4 30 12 22 0 34 2 32 3 31 2 32
IBM Watson IoT 0 57 0 57 3 54 57 0 11 46 6 51 2 55 12 45 1 56 3 54
Instagram 4 15 0 19 0 19 19 0 3 16 0 19 0 19 0 19 2 17 0 19
Linkedin 2 11 2 11 0 13 13 0 0 13 2 11 2 11 0 13 2 11 0 13
Microsoft Power 2 32 1 33 0 34 34 0 4 30 4 30 0 34 1 33 0 34 1 33
Node-RED 0 15 0 15 0 15 15 0 3 12 1 14 0 15 0 15 0 15 0 15
Oracle Cloud 0 43 0 43 0 43 37 6 4 39 0 43 0 43 3 40 0 43 2 41
QuickBooks 21 0 21 0 0 21 21 0 12 9 1 20 0 21 0 21 1 20 7 14
Samsung ARTIK 56 24 60 20 1 79 80 0 10 70 2 78 0 80 4 76 2 78 6 74
Shopify 71 0 1 70 1 70 71 0 7 64 0 71 1 70 8 63 1 70 1 70
SurveyJS 1 23 0 24 5 19 24 0 2 22 1 23 0 24 3 21 0 24 1 23
Uber 0 14 0 14 0 14 14 0 2 12 0 14 0 14 2 12 1 13 1 13
WM3 Multishop 43 11 1 53 2 52 54 0 3 51 0 54 0 54 7 47 2 52 3 51

GraphQL
AniList 0 27 0 27 9 18 0 27 26 1 0 27 0 27 2 25 0 27 17 10
Apple Music 0 99 0 99 4 95 0 99 1 98 0 99 0 99 0 99 1 98 0 99
Artsy 5 16 0 21 1 20 0 21 0 21 0 21 0 21 0 21 0 21 0 21
Braintree 4 92 0 96 24 72 96 0 83 13 2 94 3 93 7 89 1 95 40 56
Facebook 32 34 0 66 1 65 14 52 7 59 5 61 0 66 6 60 0 66 8 58
GitHub 19 237 0 256 127 129 256 0 216 40 13 243 28 228 21 235 2 254 53 203
GitLab 1 54 0 55 0 55 55 0 0 55 1 54 6 49 3 52 1 54 0 55
Instagram 9 19 5 23 0 28 26 2 2 26 0 28 0 28 0 28 0 28 1 27
Pipefy 6 85 0 91 56 35 91 0 63 28 7 84 1 90 12 79 0 91 20 71
PokéAPI 24 0 3 21 0 24 0 24 0 24 0 24 0 24 1 23 4 20 0 24
Shopify 2 31 0 33 5 28 33 0 24 9 1 32 0 33 0 33 1 32 6 27
Twitter 14 37 0 51 7 44 1 50 3 48 4 47 1 50 0 51 0 51 4 47

RQ1 Summary: Poor linguistic designs (i.e., antipatterns) are
present in the APIs of distributed systems and microservices.
Thus, despite the wide adoption of these APIs, they still lack
quality design.

C. Accuracy of Detection Algorithms (RQ2)

RQ2 aims to investigate the detection accuracy of our
detection algorithms. The detection accuracy for each of the
ten patterns and antipatterns is shown in Table III. On a set
of 91 endpoints (i.e., 91 × 10 instances of antipattern), our
detection algorithms achieved an average detection accuracy
of 93.08%, precision of 79.9%, and recall of 86.59% (thus,
average F1-score of 85.98%). Validation results suggest that
our detection algorithms outperform state-of-the-art detection
methods [10], [11].

The state-of-the-art approaches SARA [10] achieved an
average F1-score of 80.9% and DOLAR [9] achieved 79.5%.
SARAv2 [11] (an extension of the SARA approach) achieved
an average F1-score of 64% on linguistic antipattern detection
on a similar sample validation size (i.e., 91). The detection
algorithms implemented in this study achieved a better per-
formance than state-of-the-art methods in terms of both F1-

score and accuracy. Our study outperformed DOLAR and
SARA in terms of F1-score by a margin of 6.5% and 5%.
Our detection algorithms also outperformed SARAv2 by a
margin 21.98% in terms of the F1-score. Such improvement
in detection performance could be due to several reasons,
including the use of Cosine Similarity instead of Second-Order
Similarity [27] metric to capture the similarity between words,
improving the overall semantic analysis.

However, the performance metrics are also influenced by
how developers, in this case, three professionals, understand
and interpret a word based on their experience and knowledge.
From Table III, we can observe that ✗Contextless Resource
Names, ✗Non-pertinent Documentation, ✗Non-descriptive End-
point, ✗Non-hierarchical Nodes, and ✗Pluralized Nodes have
significantly low detection performance compared to other
antipatterns. For example, 12 endpoints were detected as
instances of ✗Non-hierarchical Nodes antipattern, but only
six were validated as ✗Non-hierarchical Nodes. For instance,
the endpoint ”/v19.0/{application-id}/button auto detection
device selection” was detected as ✗Non-hierarchical Nodes
antipattern, however, based on the majority voting, the manual
validation (ground truth definition) identified the endpoint as

/v19.0/{application-id}/button_auto_detection_device_selection
/v19.0/{application-id}/button_auto_detection_device_selection
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Fig. 5: Prevalence of antipatterns in REST and GraphQL APIs

✓Hierarchical Nodes pattern. Consequently, ✗Non-hierarchical
Nodes antipattern exhibits a low precision, recall, and F1-score
due to such interpretation conflicts among the professionals.
We provide all our study resources in this GitHub repository2.

RQ2 Summary: Our detection algorithms achieved an
average accuracy of 93.08%, precision of 79.9%, recall of
86.59%, and F1-score of 85.98%. Compared to the state-
of-the-art methods, our detection algorithms yield better
detection performance.

D. API Category Prone to Poor Linguistic Design (RQ3)

RQ3 aims to identify the API category that is more
susceptible to poor linguistic design. Figure 5 shows the
proportion of endpoints detected as antipatterns in REST and
GraphQL APIs. The figure suggests that linguistic antipatterns
are prevalent in both REST and GraphQL APIs. The figure also
suggests that the proportion of antipattern instances in a specific
category varies for each of the ten antipatterns. We observe
from Figure 5 that REST APIs contain more antipatterns than
GraphQL APIs. More specifically, endpoints from GraphQL
APIs had 1,638 instances of antipatterns (out of 8,470 = 847
endpoints × 10 antipatterns). In comparison, endpoints from
REST APIs had 1,631 instances of antipatterns (out of 8,090
= 809 endpoints × 10 antipatterns), which suggests overall
17% of the REST endpoints contain antipatterns, in contrast to
16% for GraphQL endpoints. Thus, REST APIs have a slightly
higher proportion of antipattern instances than GraphQL APIs.

RQ3 Summary: According to our detection results, antipat-
terns are more prevalent in REST compared to GraphQL
APIs, i.e., GraphQL APIs are well designed compared to
REST APIs in terms of linguistic quality, although the margin
of difference is very small.

2https://github.com/krishnodey/CASCON-Supplementary-Material

E. Most Common Linguistic Patterns and Antipatterns (RQ4)

We aim to find which linguistic patterns and antipatterns are
more common in APIs of distributed systems and microservices
through RQ4. From Table II and Figure 5, the most common
antipatterns are ✗Unversioned Endpoint, ✗Amorphous Endpoint,
and ✗Pluralized Endpoint. In contrast, common good design
practices among the APIs are ✓Descriptive Endpoint, ✓Con-
textualized Resource Names, and ✓Pertinent Documentation.
Linguistic antipatterns that are rare in REST APIs are ✗Non-
descriptive Endpoints (5% of endpoints), ✗Contextless Resource
Names (1% of endpoints), and ✗Non-pertinent Documentation
(4% of endpoints). On the other hand, for GraphQL APIs, ✗Con-
textless Resource Names (4% of endpoints), ✗Non-standard
Endpoints (1% of endpoints), and ✗Pertinent Documentation
(5% of endpoints) antipatterns are rare. Moreover, in REST
and GraphQL APIs, ✓Standard Endpoints and ✓Hierarchical
Nodes are common good practices.

RQ4 Summary: Most commonly occurring antipatterns
are ✗Unversioned Endpoint, ✗Amorphous Endpoint, and
✗Pluralized Nodes, i.e., developers are not concerned with
versioning of the endpoints. Moreover, using uppercase,
underscores, file extensions, and trailing slashes are common
in endpoint design, which are poor design choices.

VI. DISCUSSIONS

Our detection results suggest that APIs of distributed systems
and microservices are not always well-designed, i.e., have
antipatterns. In this section, we discuss the detection of some
of the common antipatterns. We also discuss the implications
of our study and identify threats that may affect the validity
of our results.

In total, 29 out of 33 analyzed APIs lack version information.
Versioning is critical to API design as it helps API and
client developers manage their endpoints as they evolve.
Also, with a continuous evolution of endpoints, ✗Unver-
sioned Endpoints might break clients and become difficult
to manage. For example, an endpoint from Dropbox API
/files/create folder batch/check does not use versioning, thus
our detection algorithm and experts during ground truth
generation identified it as ✗Unversioned Endpoint antipattern.
In contrast, an endpoint /v1/me/ratings/songs/{id} from Apple
Music API uses versioning, hence identified as ✓Versioned
Endpoint pattern.

When nodes of an endpoint are not semantically related,
it is considered as ✗Contextless Resource Names antipattern.
For example, in the X API (formally known as Twitter),
the endpoint /v2/spaces/search was detected as ✗Contextless
Resource Names by our detection algorithm because there is a
lack of semantic relationship between nodes spaces and search.
In contrast, an endpoint /api/user/reg from Clear Blade API
was detected as ✓Contextualized Resource Names because
the detection algorithm finds semantic relationship among api,
user, reg. The use of semantically related terms while designing
endpoints improves readability and understandability. On the

/files/create_folder_batch/check
/v1/me/ratings/songs/{id}
/v2/spaces/search
/api/user/reg


TABLE III: Performance of the detection algorithms. P: Positive, N: Negative, Pre: Precision, Rec: Recall, F1: F1 Score.

Antipatterns P N TP FP TN FN Accuracy Pre Rec F1

Amorphous Endpoint 33 58 30 3 58 0 96.7% 90.91% 100% 93.72%
Contextless Resource Names 3 88 2 1 82 6 92.31% 66.67% 25% 77.42%
CRUDy Endpoint 17 74 15 2 74 0 97.8% 88.24% 100% 92.77%
Inconsistent Documentation 14 77 11 3 69 8 87.91% 78.57% 57.89% 82.98%
Non-descriptive Endpoint 3 88 2 1 86 2 96.7% 66.67% 50% 78.92%
Non-hierarchical Nodes 12 79 6 6 77 2 91.21% 50% 75% 64.59%
Non-standard Endpoint 8 83 7 1 83 0 98.9% 87.5% 100% 92.85%
Non-pertinent Documentation 4 87 3 1 87 0 98.9% 75% 100% 85.31%
Pluralized Nodes 27 64 6 21 58 6 70.33% 22.22% 50% 33.77%
Unversioned Documentation 73 18 73 0 18 0 100% 100% 100% 100%

Average 93.08% 79.9% 86.59% 85.98%

other hand, semantically dissimilar terms in the endpoint could
be misleading and hard to understand.

✗Inconsistent Documentation antipatterns occur when the
documentation of the endpoint is in contradiction with the
HTTP method, i.e., an appropriate HTTP method was not im-
plemented. In the Broad Com API, the endpoint /api/getAccess
uses POST HTTP method with documentation ’Returns the
Authentication Token X-AccessToken, as part of response
headers, if the provided user name and password is correct’,
which is conflicting because HTTP GET method should be
used to retrieve resources and HTTP POST method should
be used to create resources. Thus, our detection algorithm
identified this endpoint as an ✗Inconsistent Documentation
antipattern. Similar issues can be observed in one endpoint
/bulk/devices/remove from IBM Watson IoT API where the
HTTP method POST is in contradiction with the documentation

’Delete multiple devices. Delete multiple devices, each request
can contain a maximum of 512 kB’. The presence of an
✗Inconsistent Documentation antipattern significantly reduces
the understandability, as the endpoint does not do what its
documentation says. In contrast, a consistent endpoint is easy
to understand and not misleading.

✗Amorphous Endpoint antipattern is one the most prevalent
antipatterns, with 25 out of 33 APIs containing this antipattern.
An endpoint /devices/cameras/device id/snapshot url from
Google Nest API was detected as an instance of ✗Amorphous
Endpoint as our detection algorithm found underscores in
the endpoint. An endpoint should not use uppercase letters,
underscores, file extensions, or trailing slashes, which may limit
the understandability of endpoints. In contrast, an endpoint
/datasources/bulk-delete of Adobe Audience Manager API
demonstrates a ✓Tidy Endpoint. Tidy endpoints are very
concise and help the client developers understand their purpose.

Antipatterns are prevalent in APIs of distributed systems
and microservices, as discussed above. Our study presents
interesting findings that could help API providers and client
developers identify and improve their API endpoint design.

A. Implications for Developers

Application developers usually review API documentation
provided by the API developers before they consume the

API. API design quality is essential to facilitate their use
by application developers. Application developers would opt
for well-designed APIs compared to poorly designed APIs
because of the ease of understanding and use. This study aims
to find empirical evidence of linguistic antipatterns in APIs of
distributed systems and microservices. Our findings suggest
that linguistic antipatterns exist in both categories of APIs (i.e.,
REST and GraphQL), which will help API developers address
the existing linguistic antipatterns and help them improve the
overall design quality of their APIs. Well-designed APIs will
attract more consumers and improve the overall user experience.
Results from our study suggest that one of the most commonly
occurring antipatterns is ✗Unversioned Endpoint, which means
API developers are not providing versioning of endpoints,
which may make API evolution and maintenance difficult. Our
other observations include: ✗Amorphous Endpoint, ✗Pluralized
Nodes, and ✗CRUDy Endpoint, i.e., API developers commonly
include amorphous design, pluralized nodes, and CRUDy verbs
in endpoint design. In summary, API developers could use our
findings to improve the overall design quality of their APIs.

B. Threats to Validity

Our research mainly focuses on linguistic patterns and
antipatterns in APIs of distributed systems and microservices.
We performed experiments using a dataset that included 1,655
endpoints from 33 REST and GraphQL APIs to minimize
threats to the external validity of our findings. However, to
confirm the results further, we need to consider more APIs
and endpoints. Our detection algorithms can identify linguistic
antipatterns with an average accuracy of 93%. To minimize
the internal validity of our detection results, we used WordNet,
LDA topic modeling, and the Cosine similarity metric for
semantic analysis. The detection result may also vary based
on how the heuristics of different patterns and antipatterns
are defined and may vary across developers. Moreover, the
definition of ground truth was conducted on 91 endpoints out
of 1,655 analyzed endpoints, which may not represent the
entire population. However, we opted for a confidence interval
of 10 and a confidence level of 95% to minimize the threat.
Thus, the ground truth was defined on 91 endpoints for ten
antipatterns, i.e., 91 × 10 = 910 questions.

/api/getAccess
/bulk/devices/remove
/devices/cameras/device_id/snapshot_url
/datasources/bulk-delete


Furthermore, the accuracy and completeness of the collected
dataset play a major role in detecting linguistic antipatterns.
Anomalies in the dataset may impact the reliability of our
results. Thus, efforts were made to ensure dataset quality during
the data collection process. To minimize the construct validity,
we only collected endpoints that were well-structured and
documented. We performed a thorough analysis of linguistic
patterns and antipatterns to define the detection heuristics and
further minimize construct validity. Additionally, how the three
professionals decide on antipattern instances is subjective. This
subjectivity could introduce potential biases in our detection
performance. To reduce bias, three professionals defined ground
truth, and majority voting was applied to decide on patterns
and antipatterns. To minimize further threats to validity and
increase reliability and reproducibility, we published all our
study resources.

VII. CONCLUSION AND FUTURE WORK

This study evaluated the linguistic design quality of APIs of
distributed systems and microservices. APIs act as the primary
means of communication among services within these systems.
The linguistic quality of APIs plays an important role in their
adoption and use.

APIs applying linguistic patterns are easy to understand
and adopt, while those with antipatterns hinder understanding
and adoption. We analyzed 1,655 endpoints from 33 REST
and GraphQL APIs. We implemented detection algorithms
to perform semantic and syntactic analysis of endpoints
to detect linguistic patterns and antipatterns. Our findings
confirmed that linguistic antipatterns exist in APIs of distributed
systems and microservices (RQ1). Our detection algorithms
achieved an average accuracy of 93.08%, a precision of
79.9%, a recall of 86.59%, and an F1-score of 85.98% (RQ2).
Moreover, we observed that both REST and GraphQL APIs
are prone to linguistic antipatterns, with REST having slightly
more antipatterns (RQ3). Finally, ✗Unversioned Endpoint,
✗Amorphous Endpoint, and ✗Pluralized Nodes are the most
commonly occurring antipatterns in APIs (RQ4).

As part of future work, further investigation is required
to refine our detection algorithms to improve the detection
performance. We also plan to analyze more APIs and endpoints
of other APIs to investigate their linguistic design quality. Fur-
thermore, we also aim to define new patterns and antipatterns
and develop heuristics for their detection. Definition and the
detection of heuristics of new patterns and antipatterns would
increase the quality of analysis of the linguistic design of API.
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Ruiz-Cortés. Graphql: A systematic mapping study. ACM Computing
Surveys, 55(10):1–35, 2023.

[22] Antonio Quina-Mera, Pablo Fernández-Montes, José Marı́a Garcı́a, Edwin
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systematic data collection procedure for software defect prediction.
Computer Science and Information Systems, 13(1):173–197, 2016.

[24] Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook
of latent semantic analysis, 427(7):424–440, 2007.

[25] Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Aritsugi. Semantic
cosine similarity. In The 7th international student conference on advanced
science and technology ICAST, volume 4, page 1, 2012.

[26] Christiane Fellbaum. WordNet: An electronic lexical database. MIT
press, 1998.

[27] Peter Kolb. Disco: A multilingual database of distributionally similar
words. Proceedings of KONVENS-2008, Berlin, 156, 2008.


	Introduction
	Related Work
	Linguistic Patterns and Antipatterns in APIs
	Research Methodology
	Step 1: Data Collection
	Step 2: Pre-processing
	Step 3: Detection of Linguistic Patterns and Antipatterns
	Step 4: Ground Truth Definition
	Step 5: Deliberation

	Results
	Overview of the Detection Results
	Poor Linguistic Design in APIs (RQ1)
	Accuracy of Detection Algorithms (RQ2)
	API Category Prone to Poor Linguistic Design (RQ3)
	Most Common Linguistic Patterns and Antipatterns (RQ4)

	Discussions
	Implications for Developers
	Threats to Validity

	Conclusion and Future Work
	References

