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Abstract—Indoor localization plays a vital role in the era of
the Internet of Things (IoT) and robotics, with Wireless Fidelity
(WiFi) technology being a prominent choice due to its ubiquity.
We present a method for creating WiFi fingerprinting datasets to
enhance indoor localization systems and address the gap in WiFi
fingerprinting dataset creation. We used the Simultaneous Local-
ization And Mapping (SLAM) algorithm and employed a robotic
platform to construct precise maps and localize robots in indoor
environments. We developed software applications to facilitate
data acquisition, fingerprinting dataset collection, and accurate
ground truth map building. Subsequently, we aligned the spatial
information generated via the SLAM with the WiFi scans to
create a comprehensive WiFi fingerprinting dataset. The created
dataset was used to train a deep neural network (DNN) for indoor
localization, which can prove the usefulness of grid density. We
conducted experimental validation within our office environment
to demonstrate the proposed method’s effectiveness, including a
heatmap from the dataset showcasing the spatial distribution of
WiFi signal strengths for the testing access points placed within
the environment. Notably, our method offers distinct advantages
over existing approaches as it eliminates the need for a predefined
map of the environment, requires no preparatory steps, lessens
human intervention, creates a denser fingerprinting dataset,
and reduces the WiFi fingerprinting dataset creation time. Our
method achieves 26% more accurate localization than the other
methods and can create a six times denser fingerprinting dataset
in one-third of the time compared to the traditional method. In
summary, using WiFi RSSI Fingerprinting data surveyed by the
SLAM-Enabled Robotic Platform, we can adapt our trained DNN
model to indoor localization in any dynamic environment and
enhance its scalability and applicability in real-world scenarios.

Keywords-Wifi Fingerprinting dataset; Robotic platform; In-
door localization; SLAM; Signals strength indicator; Location-
based services; DNN.

I. INTRODUCTION

Indoor localization has become a crucial aspect of our lives.
With the advent of the Internet of Things (IoT), more devices
are connected, and the demand for location-based services is
increasing [1–3]. Indoor localization involves determining the
precise location of objects or individuals within a building
or other indoor environments [4]. Various technologies have
been employed to meet the growing demand for accurate
indoor localization, each with advantages and limitations.
Wireless Fidelity (WiFi) [5–7], Ultra-wideband (UWB) [8],
Bluetooth Low Energy (BLE) [9], and UltraSonic [10] tech-
nologies have been considerably utilized to provide precise
indoor positioning. However, each technology and method
has its strengths and limitations, WiFi-based solutions stand

out among these technologies. WiFi networks are prevalent in
indoor environments, making them easily accessible and cost-
effective for deploying location-based services [11], so WiFi-
based localization is a preferred choice for indoor localization
in many applications.

WiFi technology has been harnessed for indoor localization
through various methods, classified into active and passive
approaches based on the presence of a WiFi module. Active
indoor localization involves the active participation of a device
equipped with WiFi modules. In contrast, passive localization
relies on monitoring existing WiFi signals without requiring
active participation from the object [12]. Within the Active
category, algorithms can be classified as Range-Based or
Range-Free. Range-Based algorithms rely on signal strength
measurements, time of flight, or angle of arrival to estimate
the distance between the device and WiFi access points
[11–13]. These methods often require additional hardware
and infrastructure for precise localization [14]. On the other
hand, Range-Free algorithms eliminate the need for distance
measurements and instead use connectivity patterns or signal
presence for positioning. Instead, they necessitate an offline
step to create a fingerprinting dataset, which involves mapping
the WiFi signals in the environment. Figure 1 demonstrates
the hierarchical relation of different methods utilized in WiFi-
based indoor localization [12].

WiFi fingerprinting, a method of associating signal char-
acteristics with indoor locations, allows for accurate indoor
positioning without relying on line-of-sight (LoS) assump-
tions or precise distance measurements. This approach offers
robustness against multipath effects and non-LoS propaga-
tion, making it highly feasible and advantageous for indoor
localization [11]. However, the current fingerprinting-based
WiFi localization methods have made significant strides [5–7,
15], a research gap exists in the process of creating WiFi
fingerprinting datasets, which is a crucial element for the
effectiveness of algorithms.

Fingerprinting localization methods usually have two
phases: Online and Offline. During the Offline phase, we
should create a map from the environment based on the Re-
ceived Signal Strength Indicator (RSSI) or any other feasible
technology. Then, this map is used to train a localization model
that can estimate the location based on the map’s information.
While in the Online phase, a device can collect the same
information from the environment without knowing the exact



Fig. 1: Classification of WiFi-based Indoor Localization

location, so with the help of the localization model, it can
localize itself within the map.

As existing WiFi fingerprinting localization methods require
an offline step for dataset creation, there is room for enhance-
ment of fingerprinting dataset collection methods in various
aspects. Many recent papers in this field use on-ground griding
for collecting WiFi signal strengths to make their datasets,
which takes a lot of time and effort [5, 6]. In addition, by
traditionally collecting WiFi signals, the density of the sample
points will be small, resulting in poor location prediction
accuracy. Another issue occurs if the surveyed environments
change, which makes the localization model and fingerprinting
dataset invalid. Updating the fingerprinting dataset will be
time-consuming if the data collection approach is not fast and
efficient.

Therefore, we propose a novel approach leveraging a com-
mercialized robotic platform to streamline and simplify the
dataset creation process. Our method aims to overcome the
limitations of current approaches, providing more efficiency
and flexibility. We developed a Python controller program
based on Robot Operating System 2 (ROS2) [16] API that lets
us control our mobile Robot and used a 2D Light Detection
And Ranging (LiDAR) scanner with the help of the Simulta-
neous Localization And Mapping (SLAM) TOOLBOX [17]
algorithm to localize the Robot in the environments. Based on
this accurate auxiliary localization method, we could collect
a dense fingerprinting dataset of RSSI, which lets us train a
localization model that provides more accuracy than state-of-
the-art methods. Our main contributions in this study include:

• A Novel Dataset Creation Method: Using a robotic
platform, we simplified the process of creating indoor
localization datasets, making them more efficient and
flexible.

• Improvements to Localization Accuracy with Deep
Neural Networks: We trained a deep neural network
that significantly improves indoor localization accuracy
for real-world use.

• A Study on the Influence of Reference Point Density
on Model Performance: We studied how the number
of reference points (RPs) affects the accuracy of a DNN
localization model.

The paper is structured as follows: section II presents related
work considering different approaches for WiFi fingerprinting
dataset creation for indoor localization and WiFi localization
methods, and we discuss their methodologies, strengths, and
limitations. In section III, we explained the steps of our
approach for creating a WiFi fingerprinting dataset followed

by section IV, which present implementation details for each
step of the proposed method. section V presents information
about our experiment, showing our approach’s practicality.
In the section VI, we compared our approach with related
works on time efficiency, adaptability, and accuracy. Finally,
we presented possible ideas for future work and summarized
our contribution and work in the section VII.

II. RELATED WORK

Several researchers have addressed the challenges of indoor
localization using various sensors and algorithms to enhance
accuracy and flexibility. Here, we provide an overview of
relevant studies. We highlighted their methodologies, contribu-
tions, and identified their shortcomings. Section II-A discusses
studies that contributed to improving fingerprinting-based
datasets in different aspects, and Section II-B summarizes
studies that focused on building more accurate localization
models.

A. Fingerprinting Dataset Collection

Rizk et al. [18] used a 2D LiDAR scanner for individual
tracking inside a room to collect WiFi fingerprinting samples.
The method is mainly based on individuals walking around
the room with mobile devices that can measure RSSI and
record the information. The method’s main advantage over
traditional fingerprinting is its use of LiDAR, which speeds
up the process and builds the map accurately. Nevertheless,
there is still room to speed up the collection process. In big or
complex environments, the approach will have problems as the
authors have to relocate the LiDAR sensor due to its limited
range or out-of-sight places. The sensor relocation will cause
considerable overhead to the system as the placement locations
must be measured, and the collected data must be aligned.
Also, the proposed method did not address the challenge of
building a dense map. In addition, the approach relies on
individuals roaming around the room and gathering the WiFi
RSSI information; therefore, updating and creating the dataset
requires multiple individuals, which reduces efficiency and
flexibility. Abu Kharmeh et al. [19] introduced a robot-driven
dataset construction framework. The authors used a custom
robot to follow black tape on the ground to build a multi-height
WiFi fingerprinting dataset. The proposed dataset contributes
to the indoor localization systems by providing multi-level
WiFi RSSI. However, the data collocation methodology has
multiple limitations: (1) the authors did not build dense maps
with tight reference points (RPs) because their Robot follows
a black tape grid on the ground to collect data and gather
data only at specific cross points, and (2) the robot navigation
system causes inflexibility and requires significant manual
labor.

Silva et al. [20] accumulated a WiFi RSSI dataset using
monitoring devices installed on a manually pushed trolley
within an industrial setting. The authors’ main contribution
is a public dataset gathered from multiple sensors in an
industrial setting, which can help indoor tracking solutions
with localization systems. However, their method can not build



a dense map due to the localization difficulty for manually
pushed trolly. In addition, the authors used computer vision
to build ground truth, although they did not provide many
reference points due to the overhead of installing ArUco
tags. Thus, collecting data would be time-consuming and
inefficient. Abdullah et al. [21] developed a Windows program
with Matlab for Dual-band WiFi RSSI collection. The authors
have collected WiFi samples from different floors of four
buildings with two different laptops. Also, the authors have
provided an extensive analysis of their dataset that is their main
contribution. However, they have failed to collect enough RPs.
As they manually measured the distance between the RPs,
collecting many RPs would be time-consuming and difficult.

B. Localization Methods

Molina et al. [7] proposed an experimental work at a
university and airport that uses a weighted KNN algorithm.
The authors built a localization system with data that they
had gathered from Access Points (APs) and Ibeacons. In the
proposed method, the authors used WiFi and BLE modules to
collect samples for building an offline fingerprinting dataset
that is later used to determine the users’ location. They have
merged multimodal signals to build an accurate localization
model, although there is still room to enhance the prediction
system. The proposed system’s algorithm and sparsity of
the collected RPs lead to high localization errors because
they used traditional data collection methods that are not
efficient. Sarcevic et al. [6] developed a novel approach to
estimate robots’ location in a 2D space. Unlike other works
that only use communication protocols’ signal strength or
features, the authors integrated the magnetometer data of the
building to increase their accuracy. The authors evaluated the
proposed method in two scenarios and achieved good results.
Although the proposed approach has some drawbacks. First,
magnetometer readings can change easily at different heights
due to the absence of close enough building structures, as these
structures can affect the earth’s magnetic field. Besides, the
designed experiment differs from real-world situations because
the authors have placed multiple APs in the experiments’
rooms in line-of-sight. Finally, using a grid to divide the area
into multiple points for gathering data is not promising. It will
create a low-density dataset and cause manual labor, resulting
in inefficiency.

Rana et al. [15] used a relatively newer technology in WiFi
AP, which provides the round trip time (RTT) instead of the
RSSI. Like the other fingerprinting methods, the authors used
the gathered information to train a localization model that is
based on a Deep Neural Network (DNN) and a Random Forest
(RF) to estimate the location in 2D. The study’s experiment
is evaluated with the collected data by a smartphone from a
room with a 1m grid that is a huge gap compared to the other
methods. The authors have contributed to the indoor local-
ization system by developing a new localization model and
integrating new technology for fingerprint creation. However,
the mentioned RTT feature is only available in relatively new
infrastructure. Also, Updating and maintaining the APs inside

Fig. 2: Method Overview

an institution does not happen often, so the whole data type
does not seem practical. In addition, the authors could have
used a more efficient data collection method and built a more
dense fingerprinting dataset with more RPs other than the one-
meter grid.

In summary, while these studies contribute significantly to
the field, they exhibit common shortcomings, including the
inability to construct dense maps, which will result in low-
accuracy localization. In addition, the essential role of the
individuals in the data collection process prevents efficiency.
Finally, with manual data labeling for the ground truth of the
collected data sample locations, the dataset creation process
would be time-consuming. These limitations motivate the
development of a novel technique, as proposed in our research,
addressing these gaps and advancing the state-of-the-art in
fingerprinting dataset construction with a mobile robot.

III. PROPOSED METHOD

This section briefly overviews our proposed method, and
Figure 2 shows the steps we have taken to create the finger-
printing dataset and localization. Our method involves creating
a detailed dataset of WiFi RSSI in an indoor environment using
a robotic platform and training a deep neural network on this
dataset to enable online indoor localization based solely on
WiFi signal strength. The dataset creation process begins with
Python3 controller execution on the Robot, which interacts
with the ROS2 API, allowing us to control the Robot through a
web interface as it moves around the environment. We navigate
the Robot to collect WiFi data while mapping its surroundings
using a LiDAR sensor with the SLAM TOOLBOX. SLAM
creates a 2D map and provides the Robot’s exact location on
the map in real-time.

After data collection, we synchronize the WiFi RSSI with
the Robot’s position over time using Dynamic Time Warping
(DTW) because the Robot’s position and WiFi samples do
not have the same sampling rate, and their sequences might
not start from the same timestamp. Finally, we convert all the
collected data into CSV format, providing a clear overview
of the Robot’s position over time and the corresponding WiFi
RSSI. With this dataset, we train a neural network to learn
the hidden relationships between the WiFi samples and their
corresponding locations. This model can be used for the
online phase of indoor localization and different applications.
As embedded devices become more powerful, trained neural
networks can be deployed on mobile phones for localization



and navigation inside complex buildings such as universities
or malls.

IV. IMPLEMENTATION

The experiment involves integrating a commercialized
robotic platform, developing a comprehensive methodology
for data collection and map building, and, finally, utilizing
a deep neural network for indoor localization. This section
provides a detailed description of each step employed in this
research.

A. Running Controller
The first step involves executing Python controller code

on the Robot, enabling interaction via a web interface devel-
oped using FASTAPI through the Robot’s WiFi hotspot. This
interface facilitates the initiation and termination of surveys
and the retrieval of recorded survey information. The Python
program was developed to manage the interaction with sensors
and actuators, recording all events, messages, and sensor
readings on various ROS2 topics. The application enhances the
flexibility of experimentation and streamlines data collection
processes. This program harnesses the capabilities of the ROS2
API, enabling seamless communication and control of various
robotic elements.

Additionally, the asynchronous architecture of ROS2 al-
lows multiple nodes to operate in parallel, with each node
responsible for a specific task. We developed multiple nodes
for tasks such as velocity and movement commands, joystick
integration, LiDAR sensor, IMU sensor, camera, and calculat-
ing odometry based on wheel encoders. Nodes may contain
drivers that enable low-level hardware interaction with specific
sensors or actuators. Figure 3 illustrates the interaction of
different elements of the robotic system through ROS2 topics
generated by the RQT program, which is available in ROS2
libraries when the developed application is executed on the
robotic platform. This graphical representation encapsulates
the flow of information, providing insights into the intricate
communication channels within the robotic ecosystem. In opti-
mizing the WiFi setup for seamless data collection within the
robotic system, specific considerations were made regarding
channel selection. Utilizing channels 1, 6, and 11 was a
strategic choice to minimize WiFi’s scan gap and maximize
efficiency. These channels were chosen due to their non-
overlapping nature, reducing signal interference likelihood.
Moreover, these channels are commonly configured on APs,
ensuring compatibility and enhancing communication reliabil-
ity. As a result of scanning fewer channels during the same
period, we can scan more during the surveying period and
collect more WiFi signal samples from the environment.

B. Surveying With Robot
Following the execution of the controller, the Robot is

positioned in the center of the room, and environmental
surveys are conducted. Utilizing joystick controls, the Robot
navigates through the environment, systematically covering
different areas to capture comprehensive WiFi information.

All sensor inputs are stored in a ROS bag file for subsequent
analysis and future reference. By defining the ROS DOMAIN
variable on both the Robot and the development systems, we
can monitor live information and messages transferred among
different ROS2 topics through the WiFi network. Figure 4
shows the development environment during the surveying
process, which aids debugging. On the left side, various ROS2
topics are available for monitoring, and on the right side, the
Robot’s position relative to the generated map is displayed.
We defined our robot parameters and description precisely in
a URDF file, an input file for the ROS2 Robot State Publisher
Node. The graphical representation of the Robot on the map is
accurate and matches the actual Robot’s size and dimension,
generated by the mentioned node. Precise robot definition
plays an essential role in the accuracy of the SLAM method,
as map creation and localization depend on sensors’ positions,
sensors’ readings, and odometry.

C. Running SLAM Algorithm
The SLAM TOOLBOX, chosen for its accuracy and open-

source nature, is employed with a single 2D LiDAR sensor.
The toolbox serves as a ROS2 node that subscribes to the
Odom topic and publishes on the transform and map top-
ics. Our Python application provides the Odom topic, which
calculates the Robot’s position over time based on sensor
values. In our experiments, we used wheel encoders and an
IMU sensor to calculate the odometry. Although the provided
odometry information based on the sensors is accurate, the
estimated location contains some errors over time due to robot
drift, IMU sensor accumulative error, and random noise. The
SLAM TOOLBOX enhances the odometry system by using
scan matching as the Robot moves through the environment.
As we survey the environment, a 2D map is built and pub-
lished on the map topic by SLAM TOOLBOX. Based on the
generated map up to the current time and a new LiDAR scan
sample, SLAM TOOLBOX can estimate the Robot’s location
within the map. Additionally, since the initial location of
the Robot inside the map is known, a transformation from
odometry to the map is published at each timestamp, showing
the exact amount of odometry drifts up to the current time.
This whole correction process results in a more accurate WiFi
fingerprinting map.

D. Time Alignment with DTW
Direct pairwise matching between WiFi scans and robot

odometry is challenging because the SLAM-generated tra-
jectory has a different publishing rate than the WiFi scans.
The frequency of WiFi scan data recorded in ROS2’s bag is
lower (1Hz) than that of the Robot’s location data (100Hz)
published by the Odom and SLAM algorithms. In addition, the
starting time for saving the odometry samples and WiFi scans
is different. To address these issues, DTW is employed to align
the two time series, creating a pairwise match between each
scan and its nearest location with the smallest error. For clarity
and better understanding, we provide the pseudo-code of the
DTW in Algorithm 1. DTW is a technique used to measure the



Fig. 3: ROS2 topics and nodes interaction in the robot

Fig. 4: RVIZ ROS2 experiment monitoring during the test

similarity between two temporal sequences by aligning them
through stretching or compressing time, allowing for non-
linear correspondence despite variations in timing and speed.
It is particularly useful for comparing sequences with varying
lengths or time scales, such as robot odometry data and WiFi
scans.

Algorithm 1 Dynamic Time Warping

Require: Sequence A = {a1, a2, . . . , an}
Require: Sequence B = {b1, b2, . . . , bm}

1: Initialize a cost matrix C of size (n+ 1)× (m+ 1) with
all elements as ∞

2: Set C[0][0] = 0
3: for i = 1 to n do
4: for j = 1 to m do
5: Compute the local cost d(ai, bj)
6: cost = d(ai, bj)+min(C[i− 1][j], C[i][j− 1], C[i−

1][j − 1])
7: C[i][j] = cost
8: end for
9: end for

10: return C[n][m]

E. Creating Fingerprinting Dataset
We constructed a fingerprinting dataset with the aligned data

detailing the Robot’s position over time and the associated
WiFi signal strengths from identified APs. This fingerprinting
dataset can be used to construct a heatmap, such as Figure 5,
which represents spatial variations in WiFi signal strengths, or

TABLE I: WiFi Fingerprinting Dataset Format

Timestamp X Pos Y Pos MAC1 · · · MACN

1707935831.6001 0.0000 0.0000 66.0 · · · NaN
1707935832.5993 0.0026 0.0034 66.0 · · · NaN

· · · · · · · · · · · · · · · · · ·
1707935963.4922 3.4581 10.101 70.0 · · · 83.0

to train a model for localization. Figure 5 (a) shows the signal
strength of an AP placed inside the lab for the experiment(the
exact location of the access point is shown in the figure).
The heatmap is built by calculating the average RSSI of
different samples within each grid box and plotting the average
value using the Viridis color map. Places not covered with
the heatmap do not have any data samples because of the
obstacles, such as the chairs and tables, that hindered our
Robot from navigating there. A guideline for understanding
the signal strengths is provided at the bottom of the figure to
aid interpretation. Stronger signals are illustrated with brighter
colors, while weaker signals are shown with darker colors. At
the bottom center of the image and the top left corner, unusu-
ally powerful signals are observed, probably caused by signal
reflections from obstacles. Figure 5 (b) shows the aligned
locations of the samples where we have WiFi scans. This
dataset, organized in CSV format, contains rows indicating the
Robot’s positions over time and columns representing RSSI
values from all detected WiFi APs throughout the survey. It is
common for some access points to be present only in certain
parts of the map while being out of reach in other areas. As
we built the fingerprinting dataset, we assigned null values for
each access point that is not available at a particular location,
making it easier to handle in future steps. We provide a sample
output of our method in Table I. The resulting CSV file serves
as the final output of the process.

F. Training a Neural Network

After creating a fingerprinting dataset, we can train a model
for indoor localization. The model can predict the location
where we collect signal strength samples. We designed a
deep neural network architecture for doing the mentioned
task, which gets a list of signal strengths for an RP and can
predict the x and y for the given point. The architecture of
the trained network is illustrated in Figure 6. The input layer
size is equal to the total number of access points we found



(a) RSSI Heatmap (b) Location Samples on Map

Fig. 5: Fingerprinting Dataset Visualization

Fig. 6: Neural Network Architecture

in any experiment, and the output layer dimension is 2 for
the prediction of the width and height of the sample from the
map origin. A description of the neural network architecture
is provided in Table II. The network has four layers with
the mentioned dimensions, and the activation function of the
first three layers is ReLU. However, to predict the location,
which can also be negative as it is relative to the origin, we
used a linear activation function on the output layer. We used
Adam optimizer and trained the network for 100 epochs with
Early Stopping to prevent overfiting, and our loss function
is the Mean Absolute Error (MAE) function. Figure 7 is the
model loss during the training phase, which shows the model
convergence and provides information that our model did not
overfit. In addition, as the neural networks cannot tolerate
missing values, for the training, we replaced the null values for
the out-of-reach access points with -100dB, which represents
weak signal strength.

G. Online Localization

After training a neural network in the online phase, we can
use our model to predict a location based on the live WiFi
signal strength. We developed a deep neural network with a
few parameters; this network can easily be deployed on mobile
devices such as users’ phones or other IoT devices, which
might require indoor localization. Different factors, such as
device heterogeneity, might affect the model performance, but
we can still localize the user within the map in real-time. At

TABLE II: Neural Network Description

Parameter Description
Input Layer Signal Strength of all APs

Output Layer Predicts a 2D location
Layer Sizes 256, 128, 32, 2
Activations ReLU, ReLU, ReLU, Linear

Loss Function Mean Squared Error
Optimizer Adam

Mini-batch size 32
Early Stopping Patience 5

Fig. 7: Model Training Loss

any time that localization is demanded, we can scan WiFi
signals available in the environment, and with an inference
from the model, we can estimate the position. Nevertheless,
there are more steps to make this research even more practical;
we can survey a building and develop an application for users’
phones to make indoor localization easily accessible to the end
users.

V. EXPERIMENTS

This section explains the various parts of our experiment,
including (1) the platform and the equipment that we used
for our real-world experiment, (2) the experiment location,
and (3) the ground truth. We used a commercialized robotic
platform to increase the method’s adaptability and practicality.
We tested our method inside our office, simulated a real-
world scenario, and presented our approach in the explained



Fig. 8: Robotic Platform

environment. We collected ground truth data and compared
the signal strength to prove the validity of our fingerprinting
dataset collection approach.

A. Robotic Platform

The experimental framework depends on Yahboom’s Ros-
master X3 [22], a commercially available robotic platform, as
the physical basis for data gathering and localization. The Ros-
master X3 platform serves as the hardware foundation, pro-
viding the necessary sensor and actuator integration interfaces.
Our robotic platform is equipped with multiple sensors such as
2D LiDAR, WiFi module, Cameras, IMU, and wheel encoder,
which we provided extra information about each sensor in
Table III. Our Robot’s core element is a Jetson Orin Nano,
which serves as our robot brain. There are two other auxiliary
boards connected to the Jetson. First, a robotic expansion
board powered by an STM32 microcontroller, which interacts
with analog devices such as IMU and wheels. Second, another
board is a USB hub, which provides enough power and ports
for other sensors installed on the Robot. Jetson runs Ubuntu
20.04 as its operating system, and the ROS2 Galactic version
is installed. However, Jetson is equipped with a powerful Arm
architecture processor with six cores and 4GB of RAM; it
is not an ideal system for development. Thus, our system is
developed and debugged on a desktop.

During the development and experiments, two systems
could communicate via WiFi, and also ROS2 core APIs and
libraries provided a monitoring system over WiFi, making the
process easier. As illustrated in Figure 8, our Robot is equipped
with Mecanume Wheels that allow a mobile robot to have
more movement types. This wheel type lets the robot move
on the x and y axis alongside the rotational movement around
the z axis. However, with this wheel type, a robot can have
more freedom, but modeling the movement and calculating
the odometry based on the wheel’s encoder would be more
challenging.

TABLE III: Robotic Platform Sensors List

Sensor Model Feature

2D LiDAR
Slamtec

RPLIDAR S2

Low Cost & 360 degree
Scanning frequency 10Hz

Scanning Range 0.05 - 50m
WiFi Intel 8265 AC 2.4, 5 GHz

IMU MPU-9250
Nine-Axis

Scanning frequency 400Hz

Camera
ASTRA

PRO PLUS

RGB & Depth Camera
30fps

Range 0.6 – 8m
Wheel Encoders Hall Encoder two hall-effect sensors

B. Location
The experiment was conducted within an office in our

University’s Main Building. This space served as a con-
trolled environment conducive to generating WiFi fingerprint-
ing datasets. The room dimensions spanned 4 meters by 10
meters, yielding an area of 40 square meters. Figure 5 (a)
illustrates a heatmap representation of the constructed WiFi
fingerprinting dataset overlaid on a 2D map generated by
the SLAM algorithm that shows the obstacles and the office
boundaries. During the experiments, we found WiFi signals
of 38 different APs in our office. Some APs are part of the
university internet network, with an identical SSID, but their
MAC address is different. However, these APs are usually
installed in the hallways or offices, not in the line of sight.
Another group of APs we found are the printers and other
IoT-enabled devices placed in different offices in the building.
Some APs are mobile hotspots, which might not be valid in
the future online localization because they might not exist or
be placed elsewhere.

C. Ground Truth
To establish our experiment’s ground truth, we used a robot

to collect data systematically. The data collection process was
performed in two different grid densities: a coarse grid with a
0.99-meter spacing and a finer grid with a 0.66-meter spacing.
In order to prevent extra work, we used the bricks on the
ground, which are 0.33x0.33 meters. The Robot was navigated
across a predefined grid on the ground, collecting data at each
grid point. To streamline the data collection, we developed
a Python application that facilitated the process via a user-
friendly web interface. This web interface could be accessed
over WiFi, allowing for remote control and data management.
The procedure for data collection was as follows:

• Grid Navigation: The robot was moved to a specific
location on the grid.

• Data Collection: Using the web interface, the exact
position of the robot was set, and the ”Collect” button
was clicked to initiate data collection. The robot scanned
for WiFi signals at that location.

• Position Logging: The collected WiFi data and corre-
sponding positional information were recorded.

• Iteration: The robot was then moved to the next grid
point, and the process was repeated until the entire lab
area was surveyed.



TABLE IV: Effectiveness evaluation of the proposed approach in comparing with other approaches

Method Time Efficiency
(Reference Points per Second)

Surveying Platform Prepare Environments Odometry Method

Ours 1 Robot No LiDAR SLAM
[19] 0.14 Robot Yes Black Tape
[18] n/a Crowdsourcing (individuals) Yes Laser-Range Scan Tracking
[20] 0.62 Manually Pushed Trolley Yes ArUco tags with camera

TABLE V: Ground Truth Comparison

Method Time(seconds) RP/m2 RP RP/s

Ours 320 7.27 320 1
Baseline 656 0.57 23 0.035

Baseline Dense 891 1.17 47 0.052

• Exporting: After collecting data from all possible grid
points, we could save the gathered information into a
single file from the web interface.

Each WiFi scan produced data associated with a specific RP,
including the Robot’s location coordinates. This information
was stored in a JSON format, facilitating easy access and
analysis. The JSON file contained an array of objects, each
representing a scan with fields for location coordinates and
the corresponding WiFi scan data. By using two different grid
densities, we aimed to compare the impact of grid size on the
accuracy and reliability of the data collected. The finer grid
was expected to provide more detailed and potentially more
accurate ground truth data, while the coarser grid would offer
a quicker but less detailed overview. Overall, this methodical
approach to ground truth data collection ensured a comprehen-
sive and structured dataset, crucial for the subsequent stages
of our experiment.

VI. EVALUATION

In this section, we evaluate our proposed methodology from
different aspects. First, the effectiveness of WiFi fingerprint-
ing dataset creation explicitly focuses on the time efficiency
and adaptability aspects; second, localization model accuracy
compared to state-of-the-art works; and finally, the effect of
grid density and RPs count in localization error. As shown in
Table IV, we prepared a high-level summary of other similar
fingerprint collection methods, which helps to compare our
method and show its strengths. We compared time efficiency
and adaptability factors in the following section. Then, we
compared the accuracy of different localization methods con-
cerning the RP count and technology employed, summarized
in Table VI. Finally, another comparison was made only to
evaluate the effect of RP count while other parameters were
the same.

A. Time Efficiency
Our method outperforms existing approaches in terms of

time efficiency. Abu Kharame et al. [19] utilized a robotic
platform for dataset construction, but their experiment required
approximately 3 hours to collect 1500 samples using three
WiFi modules. In contrast, our method achieves better speed,

gathering data and building a map much faster. Our method
can gather approximately one scan per second, while Abu
Kharame et al.’s [19] work speed is 0.14 scan per second.
Besides the mentioned work, Silva et al. [20], which is not
based on a robotic platform, require more time to collect the
same amount of WiFi RPs. They could collect 0.62 RPs per
second based on their experiment result. Despite the bottleneck
posed by the WiFi scan rate, which is limited to one scan
per second, our method still outpaces previous works consid-
erably. Specifically, our methodology enables data collection
approximately seven times faster than the previous robotic
work by Abu Kharame et al. This substantial reduction in
time is attributed to the adaptive nature of our approach, which
eliminates the need for preparatory steps.

Table V compares our three experiments focusing on effi-
ciency and speed. As we explained earlier in Section V-C, two
ground truth fingerprinting datasets were used to evaluate the
validity of our methodology. We calculated the pairwise error
of each RP in the ground truth dataset with the closest point in
our approach dataset. This evaluation showed that the average
error among all of the scans from ground truth and the dataset
is less than 3dBm, which shows that our robotic approach can
map the environment correctly. We made a comparison with
the two ground truths namely Baseline and Baseline
Dense provided in Table V, our robotic method collects more
than six times denser datasets than a traditional map-building
process and 19 times more time efficient than the traditional
approaches.

B. Adaptability
Another significant advantage of our proposed methodology

is its adaptability to various environments without requiring
extensive preparation or manual work. Unlike some existing
approaches (e.g., [18–20, 23]) that rely on predefined grids
or markers or require manual work and individuals effort, our
method is inherently adaptive and capable of seamlessly oper-
ating in diverse indoor settings. By leveraging a robotic plat-
form equipped with multiple sensors and employing SLAM
integration, our methodology facilitates efficient data collec-
tion and map building, irrespective of the environment’s layout
or characteristics. This adaptability enhances our approach’s
versatility and contributes to its practical applicability in real-
world scenarios.

C. Localization Accuracy
This section evaluates and compares our proposed localiza-

tion model with other established methods. We utilize multiple
error metrics to provide a comprehensive assessment of model



TABLE VI: Comparison of different methods based on various metrics

Method Year Model RMSE MAE RF RP/m2 Data

Ours 2024 DNN 0.27 0.19 320 7.2 RSSI
Rizk[18] 2023 LSTM - 0.67 128 0.53 RSSI
Molina[7] 2018 WKNN - >5 461 - RSSI & BLE

Sarcevic[6] 2023 MLP 0.51 0.34 426 4.43 RSSI & Magnometer
Rana[15] 2023 DNN & RF 0.34 - 36 0.51 RTT

performance. Additionally, we consider the RP counts per
area, the machine learning model used for localization, and
the technology and the data employed by each method. The
metrics used for comparison are Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). Below, we provide
the definitions and formulas for these metrics, followed by the
comparison table.

Root Mean Square Error: measures the square root of the
average of squared differences between actual and predicted
values, providing insight into the magnitude of the error while
heavily penalizing more significant errors.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1)

Mean Absolute Error: calculates the average of the abso-
lute differences between actual and predicted values, offering
a straightforward interpretation of error magnitude.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

In comparing the methods that used RSSI as their in-
put models, our approach outperforms other methods with
a considerably lower error rate. While Sarcevic et al. used
Magnometer data alongside the RSSI to train their model,
our approach has a lower error rate in both metrics, which
is related to the higher density of our fingerprinting dataset.
To show our method’s superiority, we compared our result
with Rana’s, who has used RTT for indoor localization,
which can provide more information from WiFi infrastructure.
Our location prediction precision is better than their model,
although we only used RSSI. This comparison shows the effect
of RP counts on the localization models.

D. Reference Point Count Effect
In our final analysis, we evaluated the effect of RP counts

on the localization model accuracy. Our approach can collect
denser RP’s grid in smaller amounts of time, which lets us train
a neural network for indoor localization that outperforms state-
of-the-art approaches. We conducted multiple training sessions
on our deep model with different amounts of training data and
created Figure 9 to illustrate the result. In the Figure, the y
axis shows the MAE error, and on the y axis, we provided the
training data percentage and RP count used for that training
session. As we expected, with the random reduction of the
training data in different training sessions, while we preserved
the spatial diversity of the training samples, the model error
increased considerably. If we use only half the training dataset,

Fig. 9: Reference Point Count Effect

the model error will increase by 60%, and by using a quarter
of the fingerprinting dataset, the model error will increase by
160%, which shows the importance of the dataset’s density
and training data for accurate indoor localization.

VII. CONCLUSION AND FUTURE WORK

We improved the fingerprinting indoor localization sys-
tems by addressing the gaps caused by inefficient and time-
consuming fingerprinting dataset collection methods that can
not build a dense data grid. Our proposed method offers a
solution to expedite the creation of fingerprinting datasets for
indoor localization. We built a fingerprinting dataset six times
denser while the collection time was reduced three times.
We collected a comprehensive WiFi fingerprinting dataset by
applying the SLAM algorithm to real-world data for robot
odometry calculation and mapping WiFi scans to various
points using odometry information. This dataset serves as
a valuable resource for indoor localization, accelerating the
offline phase and enhancing accuracy by increasing the number
of available reference points. As mentioned in the ??, our
method achieves 26% more accurate localization than the other
methods.

In future work, our research aims to advance the capabilities
of robotic platforms for building WiFi fingerprinting datasets
by focusing on autonomous environment surveying. Currently,
an individual must operate the robot; although controlling it
with the joystick is relatively easy, it requires human interven-
tion. We must handle challenges such as path planning, nav-
igation, and SLAM to achieve autonomy, enabling robots to
operate without human supervision in dynamic environments.
Additionally, we plan to refine the mapping process to generate
denser and more accurate maps using clustering algorithms
and noise reduction techniques. Integration with emerging
technologies, such as machine learning and sensor fusion,
will further enhance the capabilities of the robotic platform.



Finally, the proposed system must survey the environment
in one continuous trial, which causes challenges in building
a fingerprinting dataset for a multistory building. We want
to utilize SLAM TOOLBOX features to develop our system
with an update and merging abilities for vaster environment
mapping. Overall, these future research directions aim to con-
tribute to advancing robotic systems for environment surveying
and mapping, ultimately facilitating various applications in
different domains.
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