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Abstract—With the growing impact of urbanization, indus-
trialization, and climate change, monitoring water bodies like
lakes, rivers, and reservoirs has become essential for detecting
pollutants, managing resources, and preventing environmental
hazards. Water monitoring is a critical process that involves
continuously assessing water characteristics to ensure the safety
and sustainability of water resources. We can develop detection
and prediction systems by analyzing the collected data from
water bodies over time. However, developing and deploying a
reliable water monitoring framework must be investigated and
researched. Therefore, this paper presents a water monitoring
framework to address the power consumption challenge, which
is one of the most important aspects of a remote monitoring
system. We designed and implemented a real-time remote water
monitoring framework to achieve cost and battery efficiency. We
deployed our prototype in a real-world situation and discussed
our challenges and limitations. Our system contains three main
parts: first, an end device, which is in charge of collecting
information from water and transferring the data to the land;
second, a gateway placed on shore to connect the end devices
to a centralized cloud server; and Finally, a cloud platform for
gathering, storing and analyzing the sensor’s information. Also,
we provided a comprehensive study on power consumption and
different end device architectures to reduce power consumption.
Finally, we described different use cases of a water monitoring
system using low-cost sensors.

Index Terms—Marine information monitoring; Internet of
Thing (IoT); Wireless sensor network (WSN); Long Range
(LoRa); LoRaWAN; Smart city;

I. INTRODUCTION

In recent decades, the rapid advancement of computer
systems and the Internet of Things (IoT) has given rise to
the concept of smart cities, which aim to enhance urban
living quality [1]. A key feature of smart cities is their
ability to monitor environmental conditions and provide data-
driven insights for future decision-making. This monitoring
encompasses both terrestrial and marine environments [2].

Thus, monitoring the marine environment offers valuable
insights. These insights can be helpful for both governments
and citizens, such as enabling the detection and prediction of
environmental anomalies or informing the public about water
quality for recreational activities like swimming and fishing.
Consequently, developing and implementing water quality
monitoring systems in urban areas can significantly benefit
governmental decision-making and public welfare. However,

to ensure the effectiveness of these monitoring efforts, it is
essential to address several challenges and limitations. These
challenges can be categorized into technological hurdles, pub-
lic awareness issues, safety concerns, and resource constraints.

Several studies have been done on water monitoring, and
these research has contributed to the field; however, they
have several shortcomings. For instance, Hemdan et al. [3]
proposed an efficient IoT-based smart water quality moni-
toring system. Although, the authors have done experiments
in a laboratory environment without deploying the system in
real-world conditions. This limitation is significant because
real-world deployment is crucial to identifying challenges
often overlooked in controlled environments. Additionally,
the designed experiment overlooked critical aspects such as
communication protocols and power consumption, which are
essential for applying remote sensing technologies in water
quality monitoring.

Similarly, Chen et al. [4] introduced an intelligent wa-
ter monitoring system for smart cities, demonstrating cost-
efficiency and real-time alerts for abnormal water quality read-
ings. However, the study was conducted using a scaled model,
which restricted exploring challenges that arise in actual
environments. The use of Wi-Fi and ESP32 modules, while
effective for short-distance communication, is not suitable for
large-scale, real-world applications. Furthermore, Huang et
al. [5] developed a practical marine wireless sensor network
monitoring system utilizing LoRa and MQTT protocols, high-
lighting the system’s long-range communication capabilities.
Similarly, The study neglected to assess power consumption
and battery life. Lastly, Sendra et al. [6] proposed a LoRa-
based network for water quality monitoring in coastal areas,
which included multiple sensors for real-time data collection.
Although the study advanced the field by evaluating LoRa
coverage and range, it fell short in addressing the challenges
posed by environmental conditions. Similar to Huang et al.
[5], the authors did not discuss the importance of energy
consumption on the system’s functionality over time.

The previous works on smart water monitoring systems have
made significant contributions but exhibit notable shortcom-
ings. Some studies were limited to controlled environments
or scaled models, failing to capture the complexities and
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Fig. 1: Our framework architecture, illustrating different ele-
ments of the system and their connections

challenges of real-world deployment. Additionally, critical
aspects like communication protocols and power manage-
ment were often overlooked. These limitations highlight a
gap in the existing research: the need for a comprehensive
water monitoring system that not only addresses real-world
environmental challenges but also optimizes communication
efficiency and power consumption. In this work, we aim to fill
this gap by designing and deploying a robust IoT-based water
monitoring framework that is tested in real-world conditions,
focusing on long-term sustainability, power efficiency, and
reliable communication across various environmental settings.

Our contributions in this work are as follows:
• A Water Monitoring Framework: We propose an IoT-

based water quality monitoring framework designed to
operate efficiently in diverse environmental conditions.

• Evaluation of Real-World Deployment Challenges:
We conduct an evaluation of the challenges associated
with deploying the proposed framework in real-world
scenarios.

• Power Consumption Analysis: We perform a com-
prehensive analysis of the power consumption of the
proposed framework, optimizing it for long-term sustain-
ability.

In this paper, first, we discussed our designed system in
Section II, explaining different parts of our system. Then, we
explain two sets of experiments that we conducted in Section
III. In Section IV, we discussed different scenarios in which
we can employ our prototype. Finally, we summarized our
work in Section V.

II. PROPOSED METHOD & IMPLEMENTATION

In this section, we detail the components of our framework,
which was designed to be a low-cost, energy-efficient, and
scalable solution for water quality monitoring. We tested our
framework to prove its practicality in a real-world scenario,
which is explained in Section III-2. The framework consists
of several key components, as illustrated in Figure 1.

The first component was the end device, which was de-
ployed on the water to collect data with various sensors.
Figure 2a shows the end device prototype, and Figure 2c
shows the end device deployment on the water. Collected

(a) End device prototype (b) Gateway (c) Deployed prototype on
the water

Fig. 2: Long-Range IoT Water Monitoring Prototype and
Deployment

data was transmitted via a LoRa module to a gateway located
onshore. The gateway served as an intermediary, facilitating
communication between the end devices and the cloud server.
Figure 2b shows the LoRa gateway placed on the shore. The
final component of our framework was a cloud server that
executed multiple applications, enhancing the framework’s
scalability. In the subsequent sections, we described each
component in detail.

A. End Device

To create an energy-efficient framework, we designed the
end device prototype, which relied only on a small battery
for extended periods as its only source of power. A key
objective in our design was to ensure a long connectivity
range, which led us to use LoRa technology. LoRa not
only reduced power consumption but also enabled long-range
communication, which made it ideal for our requirements and
goals.

To further minimize power consumption, we chose the
ESP32 microcontroller as the main controller for the end
device. The ESP32 is known for its low energy consumption
and features a deep sleep mode, which significantly reduces
overall power usage. In deep sleep mode, the ESP32 powers
down the main CPU and most peripherals, leaving only
essential components like the Real-Time Clock (RTC) and
Ultra Low Power (ULP) coprocessor active. This state allows
the device to draw as little as 10 µA of current, making it
ideal for battery-operated applications that require extended
operational life. By using deep sleep mode, the ESP32 can
wake up periodically to perform tasks such as data collection
or communication and then return to sleep, thus conserving en-
ergy. This feature is particularly beneficial in IoT applications,
remote sensors, and other scenarios where power efficiency is
critical.

The proposed framework’s end device comprises sensors
and a controller responsible for transmitting water quality
data to the gateway. To ensure cost-effectiveness, we selected
low-cost sensors, which typically have short wires and lack
attachments. These short wires restrict the placement of the
end device to areas near the water surface, while the controller
must be positioned in a convenient location on a floating
platform (such as a boat or buoy) for deployment and devel-
opment. Additionally, the end device’s communication module
must be elevated to transmit data to a gateway that is placed at
a long distance. To address this challenge, we decoupled the
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controller from the data acquisition system. We employed an
Arduino for data acquisition, which provides ample analog and
digital input channels for seamless integration of additional
sensors. By placing the Arduino and sensors in a box near
the water surface and positioning the transmitter module at an
elevated location, we achieved greater flexibility in deploying
the end device and enhanced adaptability to various low-cost
sensors available on the market.

B. Gateway

We installed a LoRa gateway near the water bodies to
establish communication between the end devices and the
cloud server. Each LoRa gateway can support up to a thousand
connections from various end devices and can provide a line-
of-sight range of up to 10 kilometres when equipped with
an appropriate antenna. The gateway was connected to the
internet, enabling it to route the received data packets from
each end device to our cloud server. We used SenseCAP
M2 Multi-Platform LoRaWAN Indoor Gateway. We used its
web interface to program the gateway to forward the received
packets to our cloud server. The mentioned LoRa gateway
is cheap and suitable for our experiment. However, it is
unsuitable for long-term deployment as it does not have IP67
standards to resist rain and harsh weather.

C. Cloud Server

We used The Things Network (TTN) as the primary tool for
managing the large volumes of data collected from multiple
gateways and sensors. TTN was responsible for authorizing
gateways and end devices, preventing malicious users from
injecting false data into our system. Each end device and the
gateway was first registered in our system, and after regis-
tration, acknowledgments were periodically sent to the server,
which showed their connectivity. Whenever TTN receives new
data from an authorized device, TTN parses the compressed
data received from the gateway into a human-readable format.
This data is then forwarded to an InfluxDB instance running
on the server. InfluxDB is an SQL database optimized for
handling substantial amounts of time-series data and offers
various extensions for retrieving data into other applications.
To provide real-time monitoring and insights into the stored
data, we deployed an instance of Grafana, a robust monitoring
tool. Grafana offers a range of features that allow users to
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Fig. 4: End device current draw and maximum operating hours
with respect to sampling rate

create customized dashboards and set alerts based on specific
conditions. All communication between these components
occurs within a secure network inside a Docker environment
on the cloud server, enhancing the overall security of the
framework.

III. EXPERIMENTS

1) Power Consumption Analysis: We implemented four
versions to evaluate power consumption and calculate how
long our prototype can operate with a standard 10,000 mAh
battery. Initially, we used a Raspberry Pi 4B as the main
controller because it is more convenient for developing code
and attaching peripherals. However, the average current draw
of the controller limited the prototype to under 10 hours of
operation. The Raspberry Pi draws approximately 0.9 A, which
is excessive for an IoT project. In our second attempt, we
replaced the Raspberry Pi with an ESP32C6.

Besides the Raspberry Pi configuration, we illustrated the
current draw of different modules for the other three configu-
rations in Figure 3. In Configuration A, an ESP32C6 is used as
the controller, resulting in a current draw of 93.078 mA. Con-
figuration B employs the deep-sleep mode in both the ESP32
and Arduino modules, reducing the current draw to 64.80
mA, representing a 43% improvement in power efficiency
compared to Configuration A. Configuration C utilizes the
ESP32’s deep-sleep mode and turns off the Arduino and LoRa
modules when they are inactive, further reducing the current
consumption to 7.82 mA. This setup demonstrates a 728%
improvement in battery life compared to Configuration B. We
measured the current draw of the different configurations with
a 1-minute sampling rate.

To calculate the operation hours of the prototype based on
the measured current draw, we used Equation 1. Each battery
has a capacity stated on it. Also, batteries produce different
voltages, but our system works with 5 V. So, in Equation 1, we
converted the capacity based on the battery’s output voltage
and then calculated total operation works with the average
current draw of our circuit.

Time(h) =
Battery Capacity(Ah)× Battery Voltage(V )

Circuit Current(A)× Circuit Voltage(V )
(1)

Finally, when we found our best configuration, we calcu-
lated different operation hours regarding the sampling rate.
Because we turned off two modules in our prototype, we



conserved more energy when not sampling the water with
our sensors. So, we calculated the maximum sampling rate
that allows our prototype to work for about one year with a
5Ah battery. We illustrated our finding in Figure 4. In Figure
4, the blue line shows the circuit current draw regarding the
sampling rate, and the red line shows the maximum operation
hours with a specific sampling rate with a 4500mA (11.1V)
battery. If we sample the water body every 15 minutes, our
system is expected to work for 354 days.

2) Lessons Learned: This section explained some chal-
lenges we faced during our experiment in Grand Lake, New
Brunswick, Canada. We took our prototype to the lake to test
the whole system’s performance for a short period of time. We
collected data for several hours and observed the prototype
during the sampling.

One of the primary challenges in implementing a water
monitoring system on a buoy is ensuring that the platform
remains securely anchored in place, as wind and tidal forces
can easily cause it to drift to unintended locations. Developing
a solution that keeps the system fixed in a designated area
of the lake is essential; also, adding a GPS module to the
prototype can contribute to the quality of collected data if the
end device’s precise location is important. Another significant
concern is the potential for interference from passing water-
craft, such as jet skis and boats. During our experiment in
Grand Lake, shown in Figure 2c, multiple curious jet skies
were lingering around the installed buoy, posing a potential
risk of damaging the system. Curious individuals may tamper
with the system, disrupting its performance by pulling sensors
out of the water or manipulating wired connections. Addition-
ally, designing a reliable floating structure is crucial, as the
platform must remain buoyant on the water. This also involves
constructing a waterproof container to protect the system’s
sensitive components, presenting further technical challenges.

IV. USE CASES

In this paper, we proposed a general water-monitoring
framework considering different goals to achieve. In the fol-
lowing section, we provided examples of use cases in our
framework, which require a water monitoring system that can
remotely collect sensor information from long distances and
operate for a long time.

A. Flood Monitoring

Our prototype can be installed upstream in rivers to monitor
water levels, providing early warnings to decision-makers
before a flood occurs. Offering real-time data can help mitigate
the impact of floods, significantly reduce potential damage to
agriculture and safeguard lives in areas prone to flooding [7].

B. Green Blue Algae

Another potential application of our prototype is the de-
tection of blue-green algae, also known as cyanobacteria, a
harmful bacterium to both humans and animals. According to
Rocher et al. [8], cyanobacteria can be detected using low-
cost turbidity sensors. These sensors can be integrated into

our prototype, enabling the collection and monitoring of data
to identify the presence of blue-green algae effectively. This
functionality could enhance environmental monitoring efforts
by providing a cost-effective solution for early detection of
harmful algal blooms.

C. Water Pollution Management

Another use case for this tool is in water pollution man-
agement. Since sewage and other contaminants can enter open
rivers, integrating sensors that detect heavy metals and monitor
pH levels into the system can help identify pollution. This
allows for timely contamination detection, enabling decision-
makers to take action and remove pollutants from the water,
ensuring safer and cleaner waterways.

V. CONCLUSION AND FUTURE WORK

We designed and implemented a remote water monitoring
framework aiming to build and test a prototype capable of
collecting data from long distances and operating for an
extended time. Also, We tested our prototype in Grand Lake,
NB, Canada, and discussed real-world deployment challenges,
which are not obvious at first sight. Besides, we provided
a comprehensive analysis of power consumption. We tested
several architectures to achieve a prototype that can operate for
about a year with a high sampling rate. Finally, we discussed
some possible applications of our system. In the future, we
want to analyze the system from different aspects. First, we
will evaluate the system’s long-term performance. The second
aspect of our framework that needs to be tested is scalability.
Finally, we plan to gather datasets from various locations over
a sufficient period of time to capture multiple marine cycles.
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