
Evaluating Multi-Global Server Architecture for Federated Learning

Asfia Kawnine Msc Student Analytics Everywhere Lab University Of New Brunswick, Canada Dr Hung Cao Assistant Professor Lab Director Analytics Everywhere Lab University Of New Brunswick, Canada Atah Nuh Mih Msc Student Analytics Everywhere Lab University Of New Brunswick, Canada Dr Monica Wachowicz Adjunct Professor Associate Dean Geospatial Science RMIT University, Australia

Index

- Introduction
- Problem Statement
- Research Hypothesis
- Research Objectives
- Related Works
- Background
- Proposed Methodology
- Dataset Processing
- Experiment
- Results
- Conclusion

Introduction

Problem Statement

Existing Works

Privacy Communication efficiency Heterogeneity Cost minimization

Architecture

Only one central server

Fault tolerance

Communication issue may cause the system to collapse

Research Hypothesis

Implementing multiple global servers in federated learning

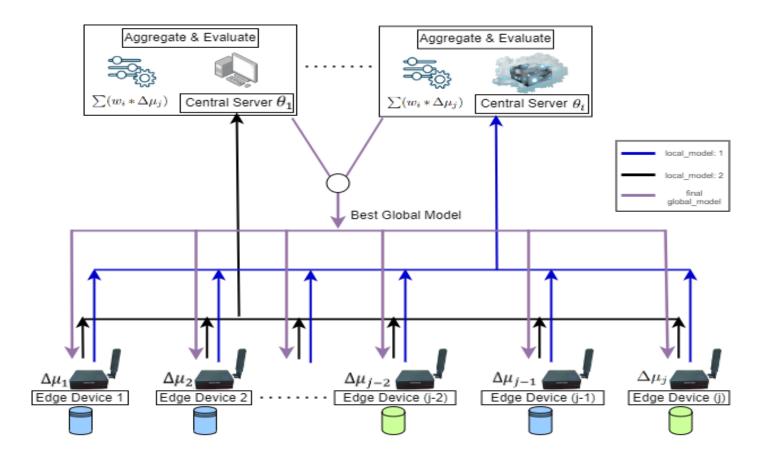
- Can improve training efficiency by exploiting local collaborations and aggregating knowledge.
- Would handle fault tolerance.

Research Objectives

The primary objectives of this research are to:

- 1) Design a federated learning framework with multiple global server,
- 2) Evaluate the performance on multiple global server,
- 3) Ensure communication between the multi-global server and client devices if any challenge occurs.

Related Works


Related Works

- Federated Learning (FL)
 - Decentralized privacy pre-serving approach, introduced by Google (B. McMahan et al 2017)
 - Combination of distributed learning and ensemble learning (S. Niknam et al 2020)
 - Predict how much energy is consumed by households as well as how much solar production is possible (M. Bharadwaj et al 2023)
- Edge Computing and FL
 - Edge devices with limited computational resources can perform FL models (A. Brecko et al 2022)
 - Application: industry, healthcare, finance, transport etc (A. Brecko et al 2022)
 - Smart city sensing is another emerging paradigm where FL and edge computing have great potential. (J. C. Jiang et al 2020)

Background - Aggregation Model

	Mechanism	Advantages	Limitations	
FedAvg	Averaging of local model updates from all participating nodes	Simple and easy to implement	Convergence may be slow due to commu- nication bottleneck	
FedAvgM	Averaging of local model updates with momentum	Faster convergence than FedAvg	Requires additional hyper-parameters to be tuned	
FedAdaGrad	Averaging of local model updates with adaptive learning rate	Fast convergence and can handle non-i.i.d data	Requires additional hyper-parameters to be tuned	
FedYogi	Averaging of local model updates with adaptive learning rate	Handles non i.i.d data and noisy gradients well	Requires additional hyper-parameters to be tuned	
FedAdam	Averaging of local model updates with adaptive learning rate	Fast convergence, handles non-i.i.d data, and noisy gradients	Requires additional hyper-parameters to be tuned	

Proposed Methodology

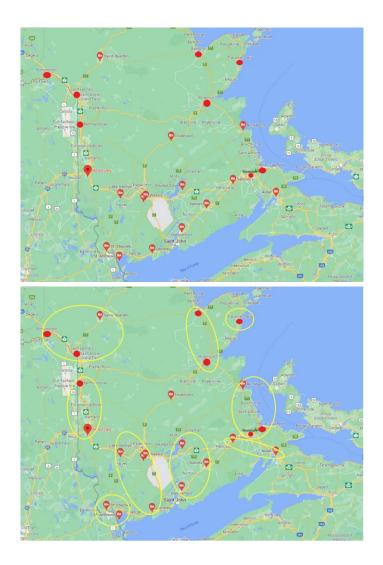
Multi-Global Server Equation

$$\theta_i(t+1) = \theta_i(t) + \eta * \sum (w_i * \Delta \mu_j)$$

- θ_i represents global model
- $\theta_i(t+1)$ represents the updated global model parameters at time step (t+1)
- $\theta_i(t)$ represents the current global model parameters at time step t
- η is the learning rate
- $\sum_{j=1}^{2} (\omega_i * \Delta \mu_{j-1})$ represents the weighted sum of the local model parameter updates from different clients
- ω_i represents the weight assigned to the local model update $\Delta \mu_j$ from client i

Dataset - NB Power Stations

EV RECHARGE EVENTS DATA


#	Column Name	Non-Null Count	Dtype	Examples
0	Connection ID	11273 non-null	string	ab453504-a3b9-4c99-b238-e7ba374aa2f8
1	Recharge Start Time (local)	11273 non-null	datetime	01/01/2020 11:05
2	Recharge End Time (local)	11273 non-null	datetime	01/01/2020 11:12
3	Account Name	4423 non-null	string	="""
4	Card Identifier	11273 non-null	string	MA01091995436141
5	Recharge duration	11273 non-null	datetime	0:06
	(hours:minutes)			
6	Connector used	11273 non-null	string	J1772
7	Start State of charge (%)	11273 non-null	int	4
8	End State of charge (%)	11273 non-null	int	80
9	End reason	11273 non-null	string	The charging cable was disconnected and put back in the
				station.
10	Total Amount	11273 non-null	float64	0
11	Currency	0 non-null	float64	
12	Total kWh	11273 non-null	float64	0.77
13	Station	11273 non-null	string	NBA-10008

Dataset - NB Power Stations

EV STATION DETAILS

#	Column Name	Description	Examples
0	Location #	Number indicating station	1
1	Business Location	Short description of business location(e.g city or business name)	Fredericton City Hall
2	Civic Address	The combination of the building number, street name and	397 Queen St, Fredericton
		jurisdiction.	
3	Station Name (separated by	Unique identifier for a charging station	NBA-017 (L2 Station Name)
	Type)		
4	Rate (depending on Type)	Rate per hour for a charging station	1.50/hr
5	GPS Coordinate	Latitude and longitude coordinates of the charging station	45.964141, -66.643130

Dataset - NB Power Stations

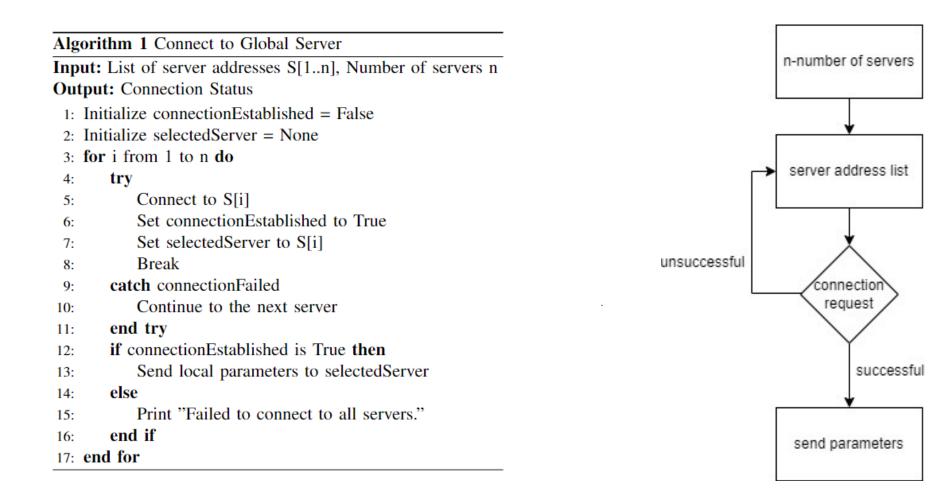
UNIVERSITY of NEW BRUNSWICK EST.788

- Electrical vehicle (EV) charging events
- Provided by New Brunswick Power Consumption (NB power)
- Contains data from April'19 to June'22

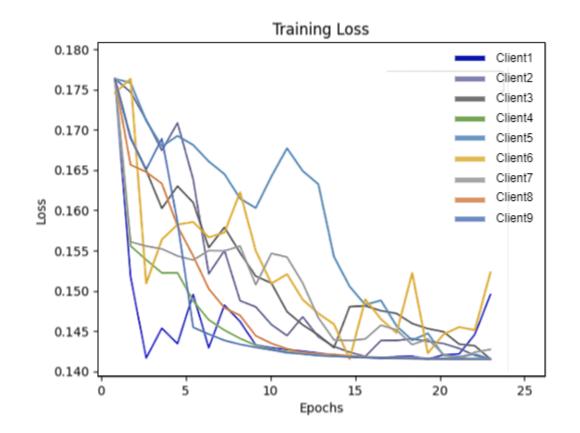
Divided Dataset

Civic Address Region # **GPS** Coordinate 45.432545, -65.948853 10 Millenium Drive, Quispamsis region 1 45.723961, -65.526621 201 Main Street, Sussex 45.9421, -65.831729 10995 Route 10, Youngs Cove region 2 45.961592, -66.641214 515 King Street, Fredericton 45.960819, -66.640818 527 King Street, Fredericton 45.8737, -66.985629 10 Route 635, Lake George 45.850848, -66.559695 415 Nevers road, Wasis 45.964141, -66.643130 397 Queen St, Fredericton 45.172806, -66.464655 7386 Lepreau Village Road, Lepreau 46.553778, -66.136245 330 Main St., Doaktown 45.193045, -67.274172 region 3 22 Budd Avenue, St. Stephen 45.081051, -67.058281 24 Reed Street, St. Andrews region 4 46.131507, -64.743761 275 Macnaughton Ave, Moncton 46.089925, -64.775189 655 Main St, Moncton 46.219248, -64.541482 375 Main Street, Shediac 2731 Mountain Road, Moncton 46.133497, -64.885698 46.667904, -64.867476 12 Park Drive, Richibucto 46.051234, -65.062978 region 5 2986 Fredericton Road, Salisbury 45.870585, -64.280992 170 Aulac Road, Aulac region 6 46.122299, -67.604917 198 Beardsley road, Beardsley 46.746792, -67.713445 16 F Tribe road, Perth-Andover 47.524957, -64.911784 3323 de la Rive, Tracadie-Sheila region 7 47.03071, -65.493625 2433 King George Highway, Miramichi region 8 47.638942, -65.704406 1450 Vanier Blvd, Bathurst region 9 47.077067, -67.767413 121 Route 255, St Andre 100 Grey Rock Road, Edmundston 47.373115, -68.302961 45.7591, -66.766400 224 Rue Canada, Saint Quentin

Sample Dataset

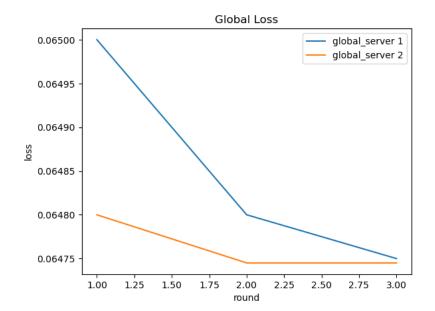

- Renamed and converted to lowercase
- Converted all the time-date columns to same format
- Removed irreverent symbols (="") for the values
- Dropped the personal information, null columns and unrelated columns
- Energy consumption to 3 levels:
 - 0 low
 - 1 average
 - 2 high

	connector_used	duration_min	day_of_week	period	station	gps_lat	gps_long	energy_consumption
15	SAE	21	Saturday	Morning	NBC-10023	45.081051	-67.058281	0
35	SAE	67	Sunday	Morning	NBC-10020	45.193045	-67.274172	1
189	SAE	62	Wednesday	Evening	NBC-10020	45.193045	-67.274172	1
443	CHAdeMO	155	Thursday	Morning	NBC-10020	45.193045	-67.274172	2
586	SAE	16	Saturday	Noon	NBC-10020	45.193045	-67.274172	0
11130	SAE	37	Tuesday	Noon	NBC-10009	46.122299	-67.604917	0
11183	SAE	29	Thursday	Evening	NBC-10009	46.122299	-67.604917	0
11185	SAE	34	Thursday	Evening	NBC-10010	46.746792	-67.713445	0
11194	SAE	0	Friday	Morning	NBC-10009	46.122299	-67.604917	0
11195	J1772	36	Friday	Morning	NBA-10002	46.122299	-67.604917	0


Experiment

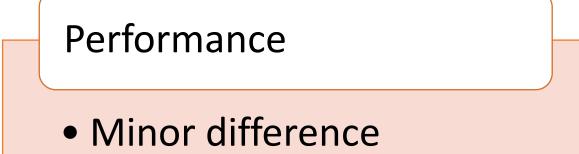
- Global servers: ubuntu cloud server, Intel(R) Core(TM) i7-4790 CPU
- Local/client devices: reComputer-Edge AI Devices
- TabNet:
 - Designed for tabular data
 - A deep tabular data learning architecture that uses sequential attention to choose which features to reason from at each decision step.
- Federated Average (FedAvg)
 - Aggregate the local parameters
 - Weight averaging technique depending on size of dataset

Experiment


Result – Training Loss (Local)

Result

• Servers:


- global_server1: corei7
- global_server2: cloud
- Evaluation Function:
 - While aggregating observe loss reduction
 - Not region specific
- The difference between two server is diminutive
- The aggregating time differs but uncertain

Conclusion

Applications

- Development challenges
- Error tolerant issue

Conclusion

Evaluate:

- Computational speed
- Handling redundant dataset etc.

Introducing a decision device to evaluate and select global device

Experiment on different dataset

ANALYTICS EVERYWHERE LAB

Dr Hung Cao Assistant Professor Lab Director Analytics Everywhere Lab University Of New Brunswick, Canada <u>hcao3@unb.ca</u>

Dr Francis Palma Assistant Professor Faculty of Computer Science University Of New Brunswick, Canada

Dr Monica Wachowicz Adjunct Professor Associate Dean Geospatial Science RMIT University, Australia

Dr Trevor Hanson Professor Faculty of Civil Engineering University Of New Brunswick, Canada

Asfia Kawnine MSc Student

Atah Nuh Mih MSc Student

Alireza Rahimi MSc Student

Simran Dadhich MSc Student

Arman Nik Khah MSc Student

...

Connor Kenneth McLenaghan Undergrad Student