ECAvg: An Edge-Cloud Collaborative Learning Approach using Averaged Weights

Atah Nuh Mih*, Hung Cao*, Asfia Kawnine*, Monica Wachowicz

*Analytics Everywhere Lab, University of New Brunswick, Canada

‡RMIT University, Australia

Index

- Introduction
- Existing Challenges
- Related Works
- Proposed Solution
- Scope of the Work
- Methodology
- Implementation
- Experiments and Results
- Discussion
- Conclusion
- Future Works

Introduction

Recent trends in edge computing

Robustness of cloud computing

• Leveraging edge and cloud for machine learning

Existing Challenges

Viewpoint problem with cloud training, edge inference

Resource constraints of edge devices for on-device training

How to leverage the strengths of both types of devices???

Related Works

Edge-Cloud Collaboration

- Big data driven edge-cloud collaboration architecture (Yang 2020)
- Co-edge (Hu et al. 2020)

Federated learning

- Federated learning in resource constrained edge devices (Wang et al. 2019)
- Federated learning for edge networks (Khan et al. 2020)
- Secure and efficient federated learning for smart grid with edgecloud collaboration (Su et al. 2021)

Our Proposed Solution

Edge and Cloud can 'collaborate' with each other

Proximity of edge to data source

Hardware capabilities of cloud computing

Pre-training on edge with local data

Fine tuning on server with global data

Scope of the Work

We propose ECAvg as a collaborative edge-cloud approach

Edge devices for pre-training Cloud for model aggregation and fine-tuning

MNIST

3 experiments, 3 different architectures: CIFAR10 CIFAR100

Explore the role of transfer learning in our approach

Methodology

- Environments:
 - Central server
 - and M client edge devices

- Data:
 - D_i for each i client
 - Ď aggregated on server

Methodology

Training:

- Each client computes the parameters θ_i on its local dataset D_i and sends to the server
- Server averages the parameters into a global model h_{avg} with parameters θ_{avg}
- θ_{avg} are fine-tuned on the global dataset into θ^{*}_{avg} and updated to the client models
- Client devices retrain on data

Implementation

Setup:

Desktop as server device

Two A203 Mini PC (developed upon Jetson Xavier NX) client devices

Datasets:

 D_1 on $Edge_1$ and D_2 on $Edge_2$

Models:

Two identical client models, M_1 and M_2

Server model M built from averaged M_1 and M_2 weights

Implementation

Training

 M_1 and M_2 trained on D_1 and D_2 respectively on the edge

Weights of M_1 and M_2 averaged into a server model M

M finetuned on aggregate data \check{D}

Fine-tuned weights of M updated on edge models M_1 and M_2

 $\rm M_1$ and $\rm M_2$ retrained on respective data

3 separate experiments

Experiment 1: MobileNetV2 on CIFAR10

Experiment 2: ResNet50 on CIFAR100

Experiment 3: Simple neural net with one hidden layer on MNIST

Datasets:

CIFAR10 split into two nonoverlapping sets, each with 5 classes

One set per client device

Complete CIFAR10 dataset on server

Models:

Two identical MobileNetV2 classifiers pretrained on ImageNet

Training

As described in Implementation

• Results

• Testing Results

Device	Setup	Acc	Precision	Recall	F1 Score
Edge 1	Before Update	0.3886	0.4096	0.3886	0.3597
Edge 1	After Update	0.8116	0.8134	0.8116	0.8090
Edge 2	Before Update	0.3688	0.3809	0.3688	0.3641
Edge 2	After Update	0.8740	0.8862	0.8740	0.8711
Server	ImageNet weights	0.3660	0.4096	0.3660	0.3203
Server	Averaged weights	0.6696	0.6946	0.6696	0.6641

Datasets:

CIFAR100 split into two nonoverlapping sets, each with 50 classes

One set per client device

Complete CIFAR100 dataset on server

Models:

Two identical **ResNet50** classifiers pretrained on ImageNet

Training

As described in Implementation

• Results

• Testing Results

Device	Setup	Acc	Precision	Recall	F1 Score
Edge 1	Before Update	0.3964	0.4441	0.3964	0.3927
Edge 1	After Update	0.5156	0.5355	0.5156	0.5127
Edge 2	Before Update	0.4878	0.4955	0.4878	0.4809
Edge 2	After Update	0.5180	0.5308	0.5180	0.5140
Server	ImageNet weights	0.2100	0.2076	0.2100	0.1910
Server	Averaged weights	0.3745	0.3938	0.3745	0.3639

Datasets:

MNIST split into two nonoverlapping sets, each with 5 classes

One set per client device

Complete MNIST dataset on server

Models:

Two identical simple neural networks classifiers

Training

As described in Implementation

• Results

• Testing Results

Device	Setup	Acc	Precision	Recall	F1 Score
Edge 1	Before Update	0.9722	0.9737	0.9722	0.9725
Edge 1	After Update	0.7544	0.6784	0.7544	0.6980
Edge 2	Before Update	0.9568	0.9594	0.9568	0.9571
Edge 2	After Update	0.5466	0.4836	0.5466	0.4617
Server	No pre-training	0.7938	0.8128	0.7938	0.7854
Server	Averaged weights	0.6417	0.6854	0.6417	0.6285

Discussion

Performance improvements

Improved generalisability by fine-tuning Positive transfer of knowledge between models Task similarity between local and global datasets

Negative transfer learning with simple networks

Performance loss due to negative transfer learning

Avoided in Exp 1 and Exp 2 due to complex model architectures and regularization

Neural network in Exp 3 lacked these benefits and thus negative transfer learning occurred

Conclusion

Edge and cloud can complement each other in through a collaborative paradigm

ECAvg as a collaborative learning approach

Performance improvements observed when using deep neural network architectures

Decrease in performance for simple architectures

Future Works

INCLUDING MORE CLIENT EDGE DEVICES

VARYING THE DATASET SPLIT RATIO

FUTURE APPLICATIONS

ANALYTICS EVERYWHERE LAB

Dr Hung Cao Assistant Professor Lab Director Analytics Everywhere Lab University Of New Brunswick, Canada <u>hcao3@unb.ca</u>

Dr Francis Palma Assistant Professor Faculty of Computer Science University Of New Brunswick, Canada

Dr Monica Wachowicz Adjunct Professor Associate Dean Geospatial Science RMIT University, Australia

Dr Trevor Hanson Professor Faculty of Civil Engineering University Of New Brunswick, Canada

Asfia Kawnine MSc Student

Atah Nuh Mih MSc Student

Alireza Rahimi MSc Student

Simran Dadhich MSc Student

Arman Nik Khah MSc Student

...

Connor Kenneth McLenaghan Undergrad Student