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Abstract—The use of edge devices together with cloud provides
a collaborative relationship between both classes of devices
where one complements the shortcomings of the other. Resource-
constraint edge devices can benefit from the abundant comput-
ing power provided by servers by offloading computationally
intensive tasks to the server. Meanwhile, edge devices can
leverage their close proximity to the data source to perform less
computationally intensive tasks on the data. In this paper, we
propose a collaborative edge-cloud paradigm called ECAvg in
which edge devices pre-train local models on their respective
datasets and transfer the models to the server for fine-tuning.
The server averages the pre-trained weights into a global model,
which is fine-tuned on the combined data from the various
edge devices. The local (edge) models are then updated with the
weights of the global (server) model. We implement a CIFAR-10
classification task using MobileNetV2, a CIFAR-100 classification
task using ResNet50, and an MNIST classification using a neural
network with a single hidden layer. We observed performance im-
provement in the CIFAR-10 and CIFAR-100 classification tasks
using our approach, where performance improved on the server
model with averaged weights and the edge models had a better
performance after model update. On the MNIST classification,
averaging weights resulted in a drop in performance on both
the server and edge models due to negative transfer learning.
From the experiment results, we conclude that our approach is
successful when implemented on deep neural networks such as
MobileNetV2 and ResNet50 instead of simple neural networks.

Index Terms—edge-cloud collaboration, averaging weights,
Edge AI, edge computing, cloud computing, transfer learning

I. INTRODUCTION

In recent years, hardware developments have improved
computational capabilities of edge devices. This potential has
been leveraged by numerous vendors to provide hardware-
accelerated devices for developing Edge AI solutions such
NVIDIA’s Jetson devices and Google’s Coral Dev Board.
These devices benefit from optimised hardware and software
to improve inference time on edge devices.

In spite of these hardware developments, edge devices are
still constrained by memory, power consumption, and storage.
These limitations motivate the use of cloud servers together
with edge devices in a collaborative edge-cloud paradigm [1].
Several approaches have been explored, such as dedicating the
edge device for data collection and inference, while storage
and machine learning (ML) model development is assigned to
the cloud. These methods use resource-efficient architectures
such as MobileNetV2 [2], EfficientNet [3], and YOLOv4 [4].

The trained models are then deployed on the edge devices
for inference in various applications, including pedestrian
detection [5], autonomous vehicles [6], and anomaly detection
[7].

A common challenge faced by this approach is the view-
point problem [8]. Over time, the distribution of data received
on the edge deviates from the data on which the inference
model was trained, thereby reducing the model’s performance.
A new distribution therefore requires repeating the data col-
lection, model training, and deployment processes.

On-device training can be leveraged to alleviate this view-
point problem. The devices benefit from the availability of
data collected onsite to build a model from the new data
distribution. However, the resource constraints on the edge
devices limit the amount of data they can use for training
the models, as training on larger datasets is computationally
intensive. These devices can therefore collaborate with cloud
servers and benefit from their massive computational and
storage capabilities [9].

Several authors have proposed various edge-cloud collabo-
ration approaches. Yang et al. [10] proposed a cloud manufac-
turing system that uses gateways to process data on the edge
and provide support for latency-sensitive applications, while
the cloud performs computationally intensive data mining
services. Hu et al. [11] proposed CoEdge, which greedily
selects edge nodes (based on communication and computa-
tion resources) for deep learning and allocates deep neural
networks over the edge-cloud environment while minimizing
latency.

Federated Learning is another example of edge-cloud col-
laboration. Several authors [12] [13] [14] have proposed
various federated learning mechanisms with edge devices as
client nodes. In these works, the central server averages the
weights from client models and updates the client devices with
the global model. The server aggregates weights, has no data,
and is therefore not directly involved in training the model.
Our Collaborative Learning approach differs from Federated
Learning in that the server both aggregates the weights from
client devices and trains on a central dataset. We average the
pre-trained weights of the edge models into a global model,
and leverage the computing power of the server to fine-tune
the model on the combined dataset collected from the edge
devices. The weights of this global model are then used to
update the local edge models to improve their performance.



In this paper, we propose a collaborative edge-cloud ap-
proach called ECAvg in which both the edge devices and
the cloud servers participate in training. The edge devices
benefit from their close proximity to the data source to pre-
train local models on their respective data. Meanwhile, the
server leverages its computing capability and transfer learning
using pre-trained weights to fine-tune a global model on data
aggregated from the edge devices [15]. This collaborative
paradigm is applicable in many consumer electronics contexts
such as smart manufacturing, smart cities, or IoT.

We aim to show the benefits of using averaged pre-trained
weights from client edge devices to train a global model on
aggregated data. We therefore studied the training performance
of the local edge models on their respective tasks when
updated with this fine-tuned global model.

The main contributions of this work are as follows:
1) We proposed ECAvg - an edge-cloud collaborative learn-

ing approach that uses averaged weights to improve
training performance on server and edge models.

2) We implemented our approach using three different ML
model architectures and experiment with the proposed
methods on CIFAR-10, CIFAR-100, and MNIST; and
evaluate the performance of the models.

3) We explored the role of transfer learning in implement-
ing our proposed ECAvg approach.

Our paper is structured in the following order: Section
I introduces a background of the collaborative edge-cloud
paradigm and discusses the relevant literature. Section II
provides a mathematical formulation of our proposed method
and Section III provides the implementation details. In Section
IV, we experiment with three different datasets and model
architectures and present their results. Section V provides an
in-depth discussion of the success and shortcomings of our
approach. Finally, we conclude our paper in Section VI.

II. PROBLEM FORMULATION

Consider an edge client-server setting with a central server
and M resource-constraint client devices. The server contains
a dataset D̂, and each client edge device i ∈ M contains a
dataset Di where Di ∈ D̂. Di consists of ni labeled samples
and D̂ consists of N labeled samples such that

N =

M∑
i=1

ni

The client devices compute a model hθ, with parameters θ
which maps X input space to Y label space. i.e.

hθ : X → Y

The loss of the model on a sample (x, y) ∈ (X,Y ) is
defined by

l(hθ(x), y

For client i, the model learns a predictive function fi by
calculating the average loss from ni samples in Di.

fi(θ) =
1

ni

ni∑
1

l(hθ(xi), yi)) (1)

The final parameters θ computed by the client devices are
sent to the edge server. The server finds an optimal model that
minimizes the average of client losses. i.e.

havg = minθ
1

N

M∑
i=1

fi(θ) =
1

N

M∑
i=1

∑
l(hθ(xi), yi) (2)

where havg is optimal model with parameters θavg
The server’s computational resources offer an advantage

over the resource-constraint edge devices. havg can therefore
be fine-tuned on the server’s larger dataset D̂ for better perfor-
mance. The fine-tuned model parameters θ∗avg are computed
as follows:

θ∗avg = θavg − µg(θavg) (3)

where µ is the learning rate and g(θavg) is the stochastic
gradient of the predictive function calculated on D̂.

The server updates the client models with θ∗avg .

III. IMPLEMENTATION

Our setup consists of two A203 Mini PC edge devices
and an Intel(R) Core(TM) i7-4790 CPU desktop, which we
consider as a server.

Let’s assume M1 trains on D1 on a hypothetical edge device
E1, and M2 trains on D2 on a hypothetical edge device E2. In
practice, E1 and E2 are the same A203 Mini PC, but we make
this distinction for ease of understanding. We summarize the
process using the following steps:

1) We train identical classifiers (M1 and M2) on the
respective datasets (D1 and D2) for each client edge
device.

2) After training, we transfer M1 and M2 to the server
and average their weights. We build an identical global
model, M̂ and replace its weights with the averaged
weights of the edge models. (Note that the architecture
of the global model is adapted to accommodate the
number of classes on the global dataset after the new
weights have been added).

3) By benefiting from prior knowledge learned in the edge
models (transfer learning) and the server’s computing
resources, we fine-tune the global model on the full
dataset, D̂.

4) The fine-tuned weights of the global model are then up-
dated on the client models M1 and M2, and the models
are once again trained on their respective datasets.

Figure 1 shows an overview of our proposed method.

IV. EXPERIMENT

We conducted three image classification experiments using
the CIFAR-10 dataset [16], CIFAR-100 dataset [16], and the
MNIST dataset [17]. We used MobileNetV2 and ResNet50
on the CIFAR-10 and CIFAR-100 datasets respectively to
evaluate the performance of our collaborative learning ap-
proach with deep learning architectures. We then used a neural
network with a single hidden layer on the MNIST dataset
to evaluate the performance of our approach with a simple
architecture.



Fig. 1. Overview of Proposed Method

A. Experiment I - Applying ECAvg approach on MobileNetV2
with a small class size dataset (CIFAR10)

The CIFAR-10 dataset D̂ consists of 10 classes of images:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. We split the dataset into two smaller datasets of
5 classes each. Dataset 1 (D1) contains airplane, automobile,
bird, cat, and deer; and Dataset 2 (D2) contains dog, frog,
horse, ship, and truck.

We built two identical MobileNetV2 classifiers M1 and M2,
whose weights have been pre-trained on ImageNet. As both
M1 and M2 are pre-trained on ImageNet, they have the same
initialisation and represent hθ in conjunction with the problem
formulation in Section II. We performed the classification task
as described in Section III, where we trained the models on
their respective datasets and transfered their weights to the
server for averaging and fine-tuning. The fine-tuned server
weights were then updated on the edge devices and the models
were re-trained on their local datasets.

1) Results and Observations: Figure 2a and 2b show the
training performance before and after the model update for
edge devices E1 and E2. We noticed significant improvements
in training performance after the model update in both edge
devices, with the models attaining high accuracy from the start
and improving throughout training.

We also evaluated the test performance of the edge models
and server model in terms of accuracy, precision, recall, and
F1 score and summarize the results in Table I.

From Table I, we observed a significant performance im-
provement on the edge devices after the model update. M1

TABLE I
CIFAR-10 TEST RESULTS

Device Setup Acc Precision Recall F1 Score
Edge 1 Before update 0.3886 0.4096 0.3886 0.3597
Edge 1 After update 0.8116 0.8134 0.8116 0.8090
Edge 2 Before update 0.3688 0.3809 0.3688 0.3641
Edge 2 After update 0.8740 0.8862 0.8740 0.8711
Server ImageNet weights 0.3660 0.4096 0.3660 0.3203
Server Averaged weights 0.6696 0.6946 0.6696 0.6641

(on Edge 1) had the following test performance before the
model update: 38.86% accuracy, 40.96% precision, 38.86%
recall, and 35.97% F1 score. After the update, the following
test performance was obtained: 81.16% accuracy, 81.34%
precision, 81.16% recall, and 80.90% F1 score.

Similarly, M2 (on Edge 2) had the following test perfor-
mance before the model update: 36.88% accuracy, 38.09%
precision, 36.88% recall, and 36.41% F1 score. This per-
formance improved to 87.40% accuracy, 88.62% precision,
87.40% recall, and 87.11% F1 score after the model update.

Fig 2c shows the comparison of fine-tuning the server model
with the averaged weights vs an identical model with weights
pre-trained on ImageNet. Initially, the model with ImageNet
weights had a better training accuracy, which did not improve
significantly. The model with averaged weights had a low
performance at the beginning of training, but this steadily
improved throughout training and surpassed the model with
ImageNet weights.

B. Experiment II - Applying ECAvg approach on ResNet50
with a large class size dataset (CIFAR100)

We carried out a similar experiment as in Section IV-A
using the CIFAR-100 dataset [16], consisting of 100 classes
of images. In this experiment, we split the dataset into two
distinct sub-datasets D1 and D2 containing 50 classes each.

We built two identical ResNet50 classifiers M1 and M2

for the two edge devices, where M1 is trained on D1 and
M2 is trained on D2. Initially, the weights of the models are
pre-trained on ImageNet before training on the edge devices.
The trained models weights were transferred to the server and
averaged. We built an identical server model M̂ but adjusted
its architecture to accommodate training on the 100 classes of
the complete CIFAR-100 dataset, D̂. The weights of the server
model were replaced with the averaged weights and the model
was fine-tuned on D̂. After fine-tuning, the edge models were
updated with the fine-tuned weights of the server model.

1) Results and Observations: We present the training re-
sults for the edge and server models in Fig 3. From Fig 3a and
3b, we observe that the training accuracy of the edge models
improve after the model update, as compared to before the
model update. The updated models also have a higher accuracy
at the start of training, indicating that the edge models benefit
from prior knowledge provided by the fine-tuned weights.

In Fig 3c, we compare the performance of the server model
with averaged weights against that of an identical model with
weights pre-trained on ImageNet. The model with averaged



(a) Training on Edge Device E1 (b) Training on Edge Device E2 (c) Training on Server

Fig. 2. Training performance on CIFAR-10 Dataset

weights had a better training accuracy throughout than the
model pre-trained on ImageNet.

We further evaluated the performance of the models on their
respective test datasets and present the results in Table II.

TABLE II
CIFAR-100 TEST RESULTS

Device Setup Acc Precision Recall F1 Score
Edge 1 Before update 0.3964 0.4441 0.3964 0.3927
Edge 1 After update 0.5156 0.5355 0.5156 0.5127
Edge 2 Before update 0.4878 0.4955 0.4878 0.4809
Edge 2 After update 0.5180 0.5308 0.5180 0.5140
Server ImageNet weights 0.2100 0.2076 0.2100 0.1910
Server Averaged weights 0.3745 0.3938 0.3745 0.3639

Prior to the model update on the edge devices, M1 had a
39.64% test accuracy, a 44.41% precision, a 39.64% recall,
and a 39.27% F1 score. M2 had a 48.78% test accuracy, a
49.55% precision, a 48.78% recall, and a 48.09% F1 score.

After the model update, the performance of M1 improved
with a 51.56% test accuracy, a 53.55% precision, a 51.56%
recall, and a 51.27% F1 score. Similarly, M2 had an improved
performance with a 51.80% test accuracy, a 53.08% precision,
a 51.80% recall, and a 51.40% F1 score.

On the server, M̂ with averaged weights had a 37.22%
test accuracy, a 39.38% precision, a 37.45% recall, and a
36.39% F1 score. Meanwhile, M̂ with ImageNet weights had
a 21.00% test accuracy, a 20.76% precision, a 21.00% recall,
and a 19.10% F1 score. These results indicate the advantage
of using averaged weights over using weight pre-trained on
another dataset.

C. Experiment III - Applying ECAvg approach on a simple
neural network with a small class size dataset (MNIST)

The MNIST dataset D̂ consists of 10 classes of images
representing hand-drawn digits 0-9. Similarly, we divide the
dataset into 2 subsets containing 5 classes each, where Dataset
1 (D1) contains the digits 0-4, and Dataset 2 (D2) contains the
digits 5-9. We maintained the 5:5 splitting ratio for D1 and
D2 in this experiment, but we consider experimenting with
different splitting ratios in later experiments.

For the models M1 and M2, we built an identical neural
network consisting of a single hidden layer and an output layer
for the classification task.

1) Results and Observations: Figure 4a and 4b show the
training results on both edge devices. We observed that the
models on both edge devices performed better prior to the
model update, and the update negatively affected the perfor-
mance of the models. The same trend was observed while
evaluating the models on the test datasets as shown in Table
III.

TABLE III
MNIST TEST RESULTS

Device Setup Acc Precision Recall F1 Score
Edge 1 Before update 0.9722 0.9737 0.9722 0.9725
Edge 1 After update 0.7544 0.6784 0.7544 0.6980
Edge 2 Before update 0.9568 0.9594 0.9568 0.9571
Edge 2 After update 0.5466 0.4836 0.5466 0.4617
Server No pre-training 0.7938 0.8128 0.7938 0.7854
Server Averaged weights 0.6417 0.6854 0.6417 0.6285

For M1, the test accuracy dropped from 97.22% to 75.44%,
precision dropped from 97.37% to 67.84%, recall dropped
from 97.22% to 75.44%, and F1 score dropped from 97.25%
to 69.80%. Similarly for M2, the test accuracy dropped from
92.40% to 47.65%, precision dropped from 95.94% to 48.36%,
recall dropped from 95.68% to 54.66%, and F1 score dropped
from 95.71% to 46.17%.

In Figure 4c, we observed a similar loss in performance on
the server models when using averaged weights. The model
without pre-trained weights performed better than that with
averaged weights. A similar observation was made while
testing both models as shown in Table III. The model with
averaged weights had a test accuracy of 72.76%, precision
of 77.97%, recall of 72.76%, and F1 score of 72.32%. In
comparison, the model without any pre-trained weights had
a test accuracy of 79.38%, precision of 81.28%, recall of
79.38%, and F1 score of 78.54%.

V. DISCUSSION

A. Performance improvement with ECAvg approach

By fine-tuning on the server with a larger dataset, the model
M̂ solves a more challenging task with a higher number of
classes, thereby improving generalisability of the model [18].
Updating the edge models with these parameters therefore
results in better performance on their respective datasets.



(a) Training on Edge Device E1 (b) Training on Edge Device E2 (c) Training on Server

Fig. 3. Training performance on CIFAR-100 Dataset

(a) Training on Edge Device E1 (b) Training on Edge Device E2 (c) Training on Server

Fig. 4. Training performance on MNIST Dataset

Models learn general features from the data during pre-
training and their weights are initialized for fine-tuning. By
averaging the weights of M1 and M2 on the server, the server’s
model M̂ benefits from transfer learning to improve training
performance. This improvement is evident in the fact that M̂
with averaged weights has a better accuracy than an identical
model pre-trained on a different dataset. The performance
improvement is also consistent for precision, recall, and F1
score (see Experiment I & II).

The similarity between the local and global datasets pro-
vides common knowledge in the source and target tasks that
is preserved when averaging the weights. By exploiting this
knowledge, the server model gains an advantage over an
identical model whose weights are pre-trained on an unrelated
task (ImageNet). This advantage is also retained downstream
with the model update. The weights of the server model
are fine-tuned on the global dataset and the knowledge is
transferred to the edge models. The similarity of the tasks
therefore results in the preservation of knowledge in the edge
models that benefits the training process.

B. Negative transfer learning with simple network

The loss in performance is due to negative transfer learning
[19]. Our method employs parameter transfer scheme [20],
which results in loss of shared knowledge when the source
and target tasks are similar [21]. When the source task is the
edge datasets and the target task is the server dataset, loss
in performance occurs on the target server model (as seen
in Figure 4c. After the server updates the edge models with
the fine tuned weights, the edge dataset becomes the target

task and a similar loss in performance is observed (as seen in
Figures 4a and 4b).

This negative transfer learning is avoided in the CIFAR-10
and CIFAR-100 tasks due to the complex architectures of the
MobileNetV2 and ResNet50 classifiers respectively. Training
deep neural networks includes techniques such as regular-
ization and hyperparameter tuning that optimize the weights
for better performance. These techniques are not employed
while training the neural network in the MNIST classification,
resulting in negative transfer learning (see Experiment III).

VI. CONCLUSION AND FUTURE WORKS

The use of edge and cloud together provides a collab-
oration between the two classes of devices in which the
edge complements the shortcomings of the cloud and vice
versa [22]. Storage and memory constraints of edge devices
can be overcome by offloading high storage demands and
computationally intensive tasks to the server.

In this paper, we proposed ECAvg - an edge-cloud collab-
orative learning approach in which edge devices perform pre-
training of their local models on their respective datasets. The
local datasets are then aggregated into a single large dataset
on the server and the weights of the local models are also
averaged to build a global model. The server then performs
the computationally intensive task of training the global model
on the much larger aggregated dataset. The local client models
are then updated with the fine-tuned weights of the global
model. Our approach differs from federated learning in that
we avergae the weights and further fine-tune the global model
on the server’s dataset before updating the client models.



We tested our approach with three experiments: Mo-
bileNetV2 on CIFAR-10 classification; ResNet50 on CIFAR-
100 classification; and a simple convolutional neural network
on MNIST classification.

We observed significant performance improvement when
using a deep learning model with our approach on the CIFAR-
10 classification. Our server model with averaged weights
had a better test accuracy (66.96%) than a similar model
with ImageNet weights (36.60%). When the weights of the
global model were transferred to the local edge models, their
performance also improved on their respective datasets. The
test accuracy of M1 on Edge 1 improved from 38.86% to
81.16%, and the test accuracy of M2 on Edge 2 improved from
36.88% to 87.40%. The performance improvements were also
consistent across precision, recall, and F1 score for server and
edge models.

A similar observation was made with the CIFAR-100 clas-
sification, where the server model with averaged weights had
a 37.22% test accuracy, while a similar model with ImageNet
weights had a 16.94% test accuracy. Updating the edge model
M1 resulted in an increase in accuracy from 39.64% to
51.56%. Similarly, the accuracy of M2 increased from 48.78%
to 51.80% after the model update.

A contrasting observation was made on the MNIST classi-
fication when a simple neural network architecture was used.
The server model with averaged weights had a lower test
accuracy (64.17%) than a similar model without any pre-
training (79.38%). Similarly, the model updates resulted in
a drop in performance on the edge models, where the test
accuracy of M1 dropped from 97.22% to 75.44% and the test
accuracy of M2 dropped from 95.68% to 54.66%.

The models in MNIST suffered from negative transfer
learning where the transfer of knowledge from the source
task to the target task negatively affected the learning. This
effect was not observed in the CIFAR-10 and CIFAR-100
classification tasks, where we used deep neural networks,
and the models performed better using our approach. We
conclude that deep neural networks mitigate negative transfer
learning and thereby are essential to our proposed method.
The performance improvements in the CIFAR-10 and CIFAR-
100 classification showed the success of this method for deep
learning.

We implemented our proposed method on two edge devices.
However, this can be further extended to include any number
of edge devices. We will also explore using different ratios for
dividing the dataset into sub-datasets for various numbers of
edge devices.
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