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• Explainability of XAI systems is critical for people to effectively use, interact, and achieve best outcomes with them.

• TODAY: XAI are typically used by developers for debugging and improving their systems.

Current state of Explainable AI (XAI) 
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XAI to end-users

“But little is understood about whether existing XAI explanations are understandable and useful 

to end-users of these systems who often have little to no background in AI.”

Doctor AI Engineer

Why AI drives to this decision?

Because model focuses on 

important regions colored as 

red in this saliency map

Erm… that explanation is not 

produced by the same technique. 

(Bla bla for eternity…)
Then which one 

should I believe?

How can I improve 

the model accuracy?

Erm…



Motivation

17. April 2024University of New Brunswick | Analytics Everywhere Lab 6

“How to deliver a XAI toolbox for semantic segmentation task 

with high plausible and faithful explanations to end-users and 

elevate the model performance with XAI?”
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Use case – Visual Quality Inspection (VQI)
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In our VQI, the updated field images, along with the estimates of their health, are 

continuously updated in the asset management information system. 

This enables asset managers to plan for maintenance and replacement schedules, and gain 

insights into the conditions at the field level.

However, VQI may encounter several research challenges: model calibration (Rožanec et 

al. 2022), out-of-distribution generalization (Yang et al. 2021), and adversarial examples 

(Elsayed et al. 2018). 

Hence, there is a demand for an enhanced VQI framework where the model can be 

validated, debugged, and performance-enhanced. 

This necessitates the integration of XAI to provide transparency and interpretability to the 

decision-making processes of the models. 

Fig 1. Conventional VQI system



17. April 2024University of New Brunswick | Analytics Everywhere Lab 8

This work contributes:

1) An Enhanced VQI Framework by integrating XAI into the conventional semantic segmentation VQI systems, which 

contains 4 Building Blocks: 1 – Model Training, 2 – XAI Integration, 3 – XAI Evaluation and 4 – Model Enhancement 

with XAI Explanations.

2) Evaluation procedure on XAI methods: by using plausibility and faithfulness metrics, we can evaluate XAI 

methods and choose the most suitable method for the model enhancement procedure.

3) Model Enhancement with XAI Explanations: based on the explanation maps and suggestion of a domain expert, 

we can elevate the performance of semantic segmentation models through the annotation augmentation method.

Contributions



Methodology
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Enhanced VQI Framework comprises 4 building blocks:

1. Model Training: focuses on training semantic 

segmentation models. 

2. Model Explanation with XAI: integrates XAI methods 

into models to generate explanations for their 

predictions.

3. XAI Evaluation: evaluates the XAI methods using 

qualitative and quantitative metrics, ensuring the 

explanations are accurate and understandable. 

4. Model Enhancement with XAI: enhances the model's 

performance by augmenting annotations with XAI 

explanations.
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We employ the public TTPLA dataset for segmenting power-grid 

hardware assets (Abdelfattah et al. 2020).

The dataset comprises 1242 high-resolution images with 8987 

instances of transmission towers and power lines, classified into four 

categories: cable, tower_wooden, tower_lattice, tower_tucohy.

The images, annotated in the COCO format, present unique 

challenges due to the nature of the objects and diverse backgrounds, 

lighting conditions, and object sizes.

Enhanced Visual Quality Inspection 
Dataset – TTPLA (Transmission Towers and Power Lines Aerial-image) 
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This block focuses on the training models: FCN-VGG16, DeepLabv3-ResNet50, DeepLabv3-ResNet101.

Splitting dataset: 80%-20% training-test set, with all images resized to 500x500 pixels.

Loss function: Dice loss, which is particularly useful for imbalanced classes in the image segmentation task, as it 

considers the overlap between the predicted and ground truth masks (Sudre et al. 2017)

Enhanced Visual Quality Inspection 
Building Block 1 – Model Training

Building Block 1: Model Training
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Explanation maps of all methods are extracted from the predictions of the segmentation model on the test set, 

which will be used for the evaluation step.

XAI methods utilized: 

• GradCAM (Selvaraju et al. 2017)

• GradCAM++ (Chattopadhay et al. 2018) 

• XGradCAM (Fu et al. 2020)

• HiResCAM (Draelos and Carin 2020)

• ScoreCAM (Wang et al. 2020)

Enhanced Visual Quality Inspection 
Building Block 2 – Model Explanation with XAI
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This block evaluates the XAI methods, focusing on the plausibility and faithfulness of their 

explanations. 

Plausibility, the alignment of explanations with human intuition:

• Energy-Based Pointing Game (EBPG) (Wang et al. 2020) evaluates the precision and denoising 

ability of XAI methods to identify the most influential region in an image for a given prediction.

• Intersection over Union (IoU) (Bau et al. 2017; Chang et al. 2018) assesses the localization 

capability and the significance of the attributions captured in an explanation map.

• Bounding Box (Bbox) (Schulz et al. 2020) is a variant of the IoU metric that adapts to the size of 

the object of interest.

Faithfulness, the alignment of explanations with the model's predictive behavior:

• Drop (Fu et al. 2020) measures the average decrease in the model's prediction when the 

explanation is used as input.

• Increase (Fu et al. 2020) quantifies the frequency at which the model's confidence increases 

when the explanation is used as input.

Enhanced Visual Quality Inspection 
Building Block 3 – XAI Evaluation

Building Block 3: XAI Evaluation
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This block enhances the model's performance based on XAI explanations 

and expert’s suggestion.

• Data augmentation strategies, such as altering data distribution or 

adjusting data and labels, have been used to enhance model 

performance (Zhang et al. 2020, Chu et al. 2021). 

• A XAI method is utilized to guide annotation augmentation. 

• The COCO annotations from the TTPLA dataset are relabeled based on 

expert recommendations.

• The model is then retrained on the enhanced training dataset with 

augmented annotations.

Enhanced Visual Quality Inspection 
Building Block 4 – Model Enhancement with XAI

Building Block 4: Model Enhancement

with XAI



Results
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The performance of the three models is assessed using the IoU metric (Murphy 1996).

DeepLabv3-ResNet101 model demonstrates the best overall performance across the four categories.

Hence, DeepLabv3-ResNet101 is chosen as the main model in next building blocks, as it has a good performance in 

the segmentation task and is lightweight enough for the explanation task.

Building Block 1 – Model Training
Quantitative Result of Model Performance
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The explanation maps of implemented XAI 

methods are extracted on the DeepLabv3-

ResNet101 on the test set.

Since each method delivers different 

explanation maps with varied behavior, we 

need to proceed to Building Block 3 – XAI 

Evaluation to choose a suitable XAI method 

for the Model Enhancement step.

Building Block 2 – Model Explanation with XAI
Qualitative Evaluation
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HiResCAM and GradCAM++ also demonstrate 

strong performance across several metrics.

Here, we choose HiResCAM as the main XAI 

method for the next step due to its time-efficiency.

Building Block 3 – XAI Evaluation
Quantitative Evaluation
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• The model effectively segments the cable from a clean or 

mixed-objects background. 

• However, when the background contains objects resembling 

the target object, the model's performance decreases. 

• The explanations reveal that the model's attention is directed at 

the object itself.

• However, in complex cases, the model lacks contextual 

attention to surrounding objects and background.

Building Block 4 – Model Enhancement with XAI
Bad performance on the cable class

Input image Annotation Segmentation Explanation

Fig. The list of input images, COCO annotations (ground truth), 

segmentation results of the DeepLabv3-ResNet101 model, and 

the explanations in the increasing order of complexity.
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Therefore, as we employ the annotation augmentation 

procedure to enhance the model's performance, a domain 

expert is enlisted to suggest 2 annotation augmentation 

approaches for each sample:

• Annotation enlargement: Given that the model can 

leverage surrounding contextual information to improve its 

performance, we propose to enlarge the annotations of 

thin objects, especially thin cables, which the model often 

overlooks based on the saliency maps. We increase the 

object's size by 2 pixels on both sides.

• Adding annotations for perplexed objects: As the 

model often confuses cables with perplexing objects like 

road surface markings, we propose adding `void` 

annotations to categorize these perplexing objects as 

unlabeled objects.

Building Block 4 – Model Enhancement with XAI
Approaches



17. April 2024University of New Brunswick | Analytics Everywhere Lab 22

Building Block 4 – Model Enhancement with XAI
Enhancement Results
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This work proposed an Enhanced VQI Framework employing 

XAI techniques to enhance interpretability and performance 

in semantic segmentation tasks. 

The model enhancement procedure, guided by XAI's 

explanation maps, effectively improved model performance 

in complex object segmentation and detection, especially in 

challenging contexts where objects and backgrounds are 

indistinguishable.

Conclusion

Doctor AI Engineer

Why AI drives to this decision?
Because model focuses on 

important regions colored as red 

in this saliency map

Erm… that explanation is not produced by 

the same technique. 

(Bla bla for eternity…)Then which one should I 

believe? How to improve 

the model accuracy?

Here you are, 

Enhanced VQI

Framework!
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Future of XAI
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