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Abstract—The escalating integration of Artificial Intelligence
(AI), particularly in human detection models on camera systems
at the Edge, has led to the proliferation of highly accurate,
yet complex AI architectures. These complexities pose substan-
tial challenges in interpreting predictions and debugging. This
research introduces a diagnostic framework using Explainable
AI (XAI) for model debugging, involving expert-led problem
identification and solution development based on diagnostic
outcomes. We validate this framework through experiments on
the Bytetrack model and its real-world application in an office
camera system at the Edge network. Our findings highlight the
training dataset as the primary source of model bias, proposing
a solution through model augmentation. This framework aids in
pinpointing model biases, a crucial step toward establishing fair,
transparent, and unbiased models, thereby bolstering trust and
confidence.

Index Terms—Explainable AI, Edge Camera, Human Detec-
tion

I. INTRODUCTION

Human detection via security cameras, a critical AI task,
involves deploying an AI model for various alerts, including
fall detection and intrusion warnings. YOLO, with its variant
YOLOX, serves as a leading model for human detection, with
Bytetrack, a YOLOX-based model, excelling in multi-object
tracking by associating all detection boxes [1]–[3]. However,
our experiments reveal Bytetrack’s susceptibility to abnormal
human detection cases, such as obscured bodies (Fig. 1a) and
physically disabled individuals (Fig. 1b). The black-box nature
of these models complicates bug identification, necessitating
advanced debugging and improvement techniques [4]. While
XAI has been used to debug models in tabular data and text
data [5], [6], its application in image data, particularly human
detection, remains limited.

This paper, therefore, introduces an XAI-supported de-
bugging framework for human detection models on security
cameras. The framework involves domain experts for problem
identification and solution suggestion based on diagnostic
outcomes, with potential applicability to object detection and
classification problems.
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Fig. 1. (a) A security camera on the ceiling of an office can detect ordinary
people (green boxes), but not people who cover their bodies with a cloth. (b)
The Bytetrack model cannot detect the disabled woman but still detect the
other, who is not disabled.

II. RELATED WORK

A. Human Detection

Human detection, the process of identifying human presence
in images, videos, or security camera footage, has been
addressed through various techniques. The advent of Deep
Learning (DL) introduced innovative models, notably Faster
R-CNN [7] and YOLO [1], which effectively mitigated chal-
lenges related to object size, varying illumination conditions,
and real-time computational constraints. Building on the im-
pressive object detection results of YOLOX [2], Bytetrack [3]
was developed to focus on human detection, utilizing YOLOX
for detection and Byte for post-processing.

B. Explainable AI

The integration of AI into real-life applications has spurred
the development of numerous XAI methods, broadly cate-
gorized into perturbation-based, backpropagation-based, and
example-based approaches.

Perturbation-based methods, independent of model archi-
tecture, generate perturbed input images by masking pixels
or superpixel regions, followed by prediction analysis to
determine the influence of each pixel or superpixel on the
model’s prediction. Despite their broad applicability, their
computational complexity can be prohibitive. Notable methods
include LIME [8], D-RISE [9], D-CLOSE [10].

Backpropagation-based methods access the model architec-
ture to derive and analyze information for explanations. Promi-
nent methods include Class Activation Mapping (CAM) [11],
GradCAM [12], SeCAM [13], and ScoreCAM [14].



Example-based methods, such as Influence Function [15]
and ExMatchina [16], provide explanations using examples
from the training dataset, analyzing the positive and negative
impacts on input image prediction.

Applying XAI to object detection is more challenging
due to model complexity compared to classification models.
However, several XAI methods, including D-RISE [9], D-
CLOSE [10], SODEx [17], and G-CAME [18], have been
adapted from classification methods for object detection mod-
els.

C. Debugging Model Framework with XAI

While numerous studies have employed a variety of XAI
methods [19], [20], most merely address the question, “Why
does the model make this prediction?” A subsequent question,
“How can we enhance model performance based on the
explanation?” [21], necessitates a strategy for applying XAI
to improve the AI system. The DARPA framework, used in the
military sector, addresses this question by enhancing user trust
in model decision-making [22]. However, to date, no study has
proposed a framework for debugging human detection models.
Therefore, this paper presents a debugging framework for such
models, utilizing XAI as a diagnostic tool to identify problems
and enhance model fairness and performance.

III. METHODOLOGY

We introduce a systematic debugging model framework,
depicted in Fig. 2, consisting of seven interlinked stages, each
dependent on the preceding stage’s outcomes. In instances
where stages allow for multiple methods or assumptions, we
provide guidelines for appropriate strategy selection. Within
this framework, XAI serves as a tool assisting specialists
in pinpointing the model’s root problem and facilitating the
proposal of solutions to enhance model performance.
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Fig. 2. The Debugging Framework for Human Detection Models

A. Data Selection and Extraction of Predictions

Our proposed framework begins with the selection of a
training dataset subset to enhance the model, enabling model
verification and addressing potential training set issues. It is

important to note that public datasets like CrowdHuman [23],
part of Bytetrack’s training data, are susceptible to data poison-
ing [24], compromising data integrity and model performance.

Efficient error detection in the model or training data, with
minimal resource expenditure, is achieved through random
testing [25], [26]. This technique involves random data subset
selection for testing, identifying major errors and inconsisten-
cies without exhaustive dataset testing.

Adhering to the principle that smaller sample sizes can yield
reliable results, we employ a heuristic from statistical sampling
to determine an appropriate sample size relative to the total
population. The maximum sample size should not exceed 10%
of the total dataset or a limit of 1000, ensuring a representative,
robust, and efficient sample [27], [28].

Upon data subset selection, it is input into the model for
prediction generation. These predictions are analyzed, com-
pared with ground truth, and evaluated for model performance,
offering insights into model accuracy, precision, reliability, and
potential improvement areas.

B. Statistical Analysis of Prediction Results

Upon obtaining the model’s predictions, they are system-
atically categorized based on comparison with ground-truth
data. This classification is problem-specific and adjudicated by
field experts. In the context of this study, focusing on human
detection, data is divided into four categories.

The initial dataset split depends on whether the model’s
predicted box count matches the ground truth. If the model
detects fewer people, the image is labeled “Under-detection”;
if more, it is “Over-detection.”

When the model’s box count aligns with the ground truth,
detection quality is further assessed. Each model-detected box
is compared with its corresponding ground truth box using
Intersection over Union (IoU) values. Images with all box
pairs having IoU ≥ 0.5 are labeled “Correct Localization”;
otherwise, they are “Mislocalization”.

This step classifies the selected dataset into groups based
on prediction outcomes. Three categories—“Under-detection,”
“Over-detection,” and “Mislocalization”—indicate areas for
model performance improvement. The subsequent step in-
volves a detailed error source analysis, forming the basis for
strategies to enhance model accuracy in correct people count
detection within an image.

C. Explanation Generation

In this step, we apply XAI methods to get the explanation
for each category of images. Since D-RISE [9], a novel method
for object detection can be used for many different types
of models because it does not require access to the model’s
architecture and D-RISE allows us to get an explanation for
the ground truth box, which helps us compare it with the
box detected by the model, we employ D-RISE for human
detection models. The explanations can help experts diagnose
the cause of the wrong prediction in the next phase.



D. Problem Identification

Based on the XAI results obtained in the previous phase,
experts will be engaged in analyzing each specific category
divided by the statistical analysis (Sec. III-B). The XAI results
provide which regions are being focused by the model on the
input image. Experts scrutinize these regions to determine their
significance and detect potential biases. A comparison of these
regions among images within the same category is conducted
to reveal their commonalities, which then be checked against
the remaining categories for any shared traits. Furthermore,
we compare the XAI outcomes across different models to aid
in the identification and diagnosis of potential issues.

E. Solution Proposal

Solution proposal is a crucial phase in determining how to
elevate the model performance. After determining the problem,
the expert analyzes and checks the dataset and model to find
out the possible causes, which can come from the distribution
of data, labels, bias, or even model architecture. [6] also
suggested some other potential errors, such as natural artifacts,
limited training subsets, incorrect label injection, and out-of-
distribution tests. Sequentially, several approaches, including
adjusting model parameters, improving training data, and
augmenting the training process, can be applied.

F. Solution Assessment

Rather than implementing all possible solutions, we shall
assess the feasibility of proposed solutions on a small dataset
initially. We evaluate the advantages and disadvantages of
each solution, drawing from prior case studies to assess their
relevance to the present problem. The infeasible solutions can
be identified and eliminated, thereby allowing for the selection
of the most suitable solution.

G. Model Enhancement

Finally, employing the efficacious solution from the pre-
vious step, the model is fine-tuned to produce an improved
version that fixes the problem identified in Sec. III-D. Then,
we evaluate the model’s improvement through a comparative
analysis of the model’s performance before and after fine-
tuning, which can be conducted by comparing the model’s
predictive statistics with the selected images in the initial
phase. Furthermore, additional testing may be carried out
using anomalous instances that the original model failed to
predict, with the aim of ascertaining the efficacy of the model’s
improvements in addressing the identified problem.

IV. EXPERIMENT

In our experiment, we clarify each step according to the
process as described in Fig. 2. We utilize the Bytetrack model
pre-trained on MOT17 [29], Cityperson [30], ETHZ [31], and
CrowdHuman [23] dataset for our experiment.

A. Data Selection and Extraction of Predictions

The training dataset comprises four distinct public datasets,
as previously delineated. Among these, MOT17, Cityperson,
and ETHZ consist of image frames extracted from videos,
while CrowdHuman, a benchmark dataset for evaluating object
detectors in crowd scenarios, comprises publicly sourced im-
ages offering a diverse range of contextual backgrounds [23],
[29]–[31]. Notably, the images within CrowdHuman are inde-
pendent and not restricted to extraction from the same video.

Given these dataset characteristics, we opt to employ
CrowdHuman in our experiment, partitioned into 15000, 4370,
and 5000 images for training, validation, and testing, respec-
tively. The training and validation sets collectively contain
470K human instances, each annotated with a head bounding
box, human visible-region bounding box, and human full-body
bounding box. We randomly select 1000 images from the
CrowdHuman training dataset as a subset for model prediction
extraction, as detailed in Sec. III-A.

B. Statistical Analysis of Prediction Results

In this phase, the predicted boxes from the previous step
are compared to the ground truth. We statisticize the model’s
prediction result as in Table I, in which the “Under-detection”
accounts for the highest percentage among these four cases,
with 85.5%.

TABLE I
THE CATEGORIES OF 1000 IMAGES IN THE SUBSET.

Case Number of images

Under-detection 855
Over-detection 17

Correct Localization 108
Mislocalization 20

C. Explanation Generation

The Bytetrack model consists of two components: the
YOLOX model for individual detection and the Byte stage
for processing detected boxes. Specifically, YOLOX plays
a crucial role in box detection as subsequent processing is
dependent on this stage. The Byte processing stage aims to
retain low prediction score boxes that may be obscured by
other objects [3]. Consequently, we employ D-RISE to extract
explanations for YOLOX, using the final box coordinates
predicted by the Bytetrack model [32]. Furthermore, we apply
D-RISE to the YOLOX weight with Bytetrack’s output boxes
to discern differences between Bytetrack and YOLOX, pre-
trained on COCO 2017, as depicted in Fig. 3 [2], [33].

D. Problem Identification

As demonstrated by the XAI explanations in Fig. 3, the
Bytetrack model primarily detects the human body, revealing
its inability to detect partially visible individuals, where only
their heads are visible. This limitation is further explored
through experiments using images of wheelchair-bound in-
dividuals with obscured body parts, leading to the model’s
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Fig. 3. Examples of XAI Explanations with Bytetrack and YOLOX model.
In which, each image in the second column is the XAI Explanations for a
corresponding box.

failure to detect a person, as shown in Fig. 1b. Similar failures
occur when individuals are obscured by objects, as depicted
in Fig. 1a. Thus, the model’s incapacity to identify physically
concealed humans is identified as a problem warranting further
investigation and solutions.

E. Solution Proposal

Based on the problem identified, we propose the following
assumptions:

• Dataset: The average image contains 23 individuals.
Given the high object count per image, the head region
appears smaller than the body region, potentially inducing
a body bias. Additionally, we hypothesize about labeling,
where ground truth box coordinates are outside the image,
as exemplified in the first row of Fig. 3 and Table II.

• Model: Bytetrack attempts to resolve occluded object
issues [3]. For images containing only the head, Bytetrack
seeks a location containing the body.

Based on these assumptions, we propose potential solutions:
• Data enrichment: Incorporate additional training images

where a significant portion of the body region is obscured,
such as portrait photos or images of people in classrooms
or at work.

 

Input image Bytetrack model Fine-tuned Bytetrack model 

Ground truth: 8 boxes Model prediction: 2 boxes Model prediction: 6 boxes 

Ground truth: 4 boxes Model prediction: 2 boxes Model prediction: 4 boxes 

Ground truth: 5 boxes Model prediction: 7 boxes Model prediction: 5 boxes 

Fig. 4. Predictions of the Bytetrack model before and after fine-tuning.

TABLE II
GROUND TRUTH BOXES’ COORDINATE OF THE INPUT IMAGE IN THE FIRST

ROW OF FIG. 3, WHERE 7/8 BOXES ARE OUTSIDE THE IMAGE.

Left Top Right Bottom Outside image

-50 35 531 131 ×
-12 87 451 1325 ×
308 292 635 1228 ×
499 171 988 1201 ×
618 370 1034 1243 ×
608 61 758 444
318 -14 673 745 ×
303 -3 444 437 ×

• Data blurring: Blur the human body in the image based
on XAI results, allowing the model to focus more on the
head area [34].

• Padding: Add padding to the image during preprocessing
so that box coordinates are always within the image.

• Relabeling: Adjust by clipping the outside box coordi-
nates to ensure they are solely within the image.

F. Solution Assessment

We conduct a comprehensive analysis to identify and imple-
ment the most suitable solution to the problem. Each solution
is evaluated as follows:

• Data enrichment: Upon dataset review, our analysis indi-
cates that additional data incorporation would not yield
significant improvements due to the presence of partially
obscured images in the current dataset.

• Data blurring: While blurring has proven effective in
image classification problems [34], its application to the
human detection problem, where the model predicts only
one class (human), is not deemed appropriate.

• Padding: Padding is added to the sides of “Under-
detection” images to examine if the model can detect
humans not bound by the input image frame. While this
approach yields improvements in some cases (Fig. 5), the



model still fails to detect individuals obscured by objects
(Fig. 1).

• Relabeling: Given the dataset’s box coordinates are out-
side the image, differing from the COCO dataset, and
considering the divergent learned features of the models
(Fig. 3), relabeling emerges as a potential and effective
solution.

Following this analysis, relabeling is identified as the most
efficient solution.
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Fig. 5. Example of padding result. (Top, Left, Right, Bottom) = (100, 200,
200, 200) signifies padding of 100, 200, 200, and 200 pixels respectively on
the top, left, right, and bottom.

G. Model and Dataset Enhancement

The CrowdHuman dataset is reannotated by constraining
bounding box coordinates within the image dimensions, as
delineated by the following equations:

x
′

top, left = max(0, xtop, left) (1)

y
′

top, left = max(0, ytop, left) (2)

x
′

bottom, right = min(w, xbottom, right) (3)

y
′

bottom, right = min(h, ybottom, right) (4)

Here, w, h represents the image’s width and height,
respectively. The coordinates (x

′

top, left, y
′

top, left) and
(x

′

bottom, right, y
′

bottom, right) denote the adjusted top-left and
bottom-right points, respectively.

Bytetrack model Fine-tuned Bytetrack model

Fig. 6. Model’s prediction on physically disabled person images. After fine-
tuning, the model performs better than the original pre-trained model.
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Fig. 7. Model’s prediction on a security camera. The fine-tuned model
performs better than the original pre-trained model detecting covered people.

Subsequent model refinement occurs over 10 epochs, with
performance enhancement evaluated in three scenarios:

• Selected training dataset: A subset of 1000 images is
tested post-refinement, with quantitative and qualitative
comparisons made to the pre-refinement model in Table
III and Fig. 4. Notably, the refined model improves
correct localization on 855 “Under-detection” images by
21 instances.

• Physically disabled individuals: The refined model ex-
hibits enhanced detection capabilities on images of phys-
ically disabled individuals, as depicted in Fig. 6.

• Partially obscured individuals in security footage: The
model’s performance in real-world scenarios, such as
office surveillance footage where individuals may be
partially obscured, is tested and shown to improve post-
refinement, as illustrated in Fig. 7.

TABLE III
STATISTICAL RESULT PRE-TRAINED MODEL VERSUS FINE-TUNED MODEL.

THE ARROW ↑/↓ INDICATES THE HIGHER/LOWER VALUE, THE BETTER.
THE BOLD INDICATES THE BETTER RESULT.

Case Pre-trained model Fine-tuned model

Under-detection (↓) 855 834
Over-detection (↓) 17 13

Correct Localization (↑) 108 133
Mislocalization (↓) 20 20

V. CONCLUSION AND FUTURE WORK

This paper proposes a debugging model framework with
XAI for the human detection problem. Based on the XAI
explanations, the experts can identify problems and propose
solutions to improve the model and the dataset. In our ex-
periment, the problem leading to the unfairness and under-
performance of the Bytetrack model, where it cannot detect
the person is partially obscured, is in data labeling, showing
that the label can make the model biased. Our framework can
be extended to other object detection problems that require
focused consideration of specific classes. Moving forward,



we plan to generalize further and extend this methodology
to address a broader range of problems effectively.
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