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Motivation

As societies worldwide face the burgeoning chal-

lenges of an aging population, the concept of “Aging-

in-Place” (AiP) has emerged as a pivotal model in

gerontology and public health.

In this work, we propose an Explainable Electrocar-

diogram (ECG)AnomalyDetection Framework to en-

hance the safety and health monitoring of seniors

in their own homes. This approach utilizes sophisti-

cated algorithms to analyze ECG data collected from

wearable devices, enabling the early detection of

cardiac abnormalities. By employing Explainable Ar-

tificial Intelligence (XAI), not only are clinicians able to

receive alerts about potential heart issues, but they

can also understand the rationale behind the AI’s de-

cisions.

RelatedWork

The aging population in several countries presents

unique challenges and opportunities for the AiP con-

cept [1, 2]. The intersection of technology and AiP has

been explored to enhance older people’s independence

and quality of life [3].

Ott et al. (2023) [4] employed deep-learning mod-

els along with tree-based classifiers to discern age-

related changes in ECG data, using XAI techniques

to reveal specific ECG features and signal characteris-

tics that differentiate between age groups. Greenfield

(2012) [5] emphasized ecological frameworks for inte-

grating health care and community initiatives for AiP.
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Explainable ECG Anomaly Detection Framework for Aging-in-Place Intelligence

Our proposed framework includes a pipeline for training a classification model on a public 12/15-lead ECG dataset,

identifying features associatedwith myocardial infarction versus healthy controls, and generating explanation maps

to highlight the reasoning behind the model’s decisions on the single-lead ECG recorded from an edge device.
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Figure 1. The architecture of Explainable ECG Anomaly Detection Framework for Aging-in-Place Intelligence

Experiments

Public ECG dataset: PTB Diagnostic ECG Database:
Sampled frequency: 125Hz.

Number of Samples: 14552.

Number of Categories: 2 – Myocardial Infarction (MI) and Healthy Control (HC).

Explanation method: The gradients of the target class with respect to

the selected layer’s output are pooled and combined with the layer’s

output to generate a heatmap.

Wearable device: Apple Watch Series 5.

Preliminary Results

Our initial results for Healthy Control (HC) and Myocardial Infarction (MI)

classifications:

HC: minimal highlights in the explanation map are observed,

concentrated in the mid-segments of the ECG, indicating less

relevance to the model’s classification.

MI: substantial highlighting is shown, particularly in the early and

mid-segments of the ECG signal. This suggests these areas

significantly influence the model’s decision to identify features

associated with myocardial infarction.
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