
Syntactic andSemanticAnalysis ofREST, andGraphQLAPIs toAssess andCompare their Linguistic
DesignQuality

Krishno Dey1, Hung Cao2, Francis Palma1

1SE+AI Research Lab, Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
2AELab, Faculty of Computer Science, University of New Brunswick, Fredericton, Canada,

{krishno.dey, hcao3, francis.palma}@unb.ca

Short Abstract
Application Programming Interface(API) serves as the bridge that enables
communication and data exchange between different software systems. A well-
designed API is assumed to have linguistic patterns (good design prac-
tices) and a poorly designed API is assumed to have antipatterns (poor de-
sign practices). The representational state transfer (REST), and GraphQL
architecture are the most popular approaches to developing web APIs. To as-
sess the linguistic design of APIs, we implemented detection algorithms for ten
(anti)patterns employing the detection heuristics. Detection algorithms
rely on syntactic and semantic analysis to assess the linguistic quality
of APIs. We conducted our study on 33 APIs (21 REST, 12 GraphQL)
on a set of 1655 endpoints. Our detection algorithms detected linguistics
(anti)patterns with an average accuracy of 93%, a significant improvement
from state-of-the-art studies.

Application Programming Interfaces (APIs)

Figure 1. Working principle of Application Programming Interfaces (APIs).
Source: (geeksforgeeks.org)

Proposed Methodology

Categorize
Public/Private/
Partner APIs

Antipattern
Detection Tool

Syntactical 
Analysis

Heuristics

LDA Topic Model

Semantical Analysis

Step 1 Step 3 Step 4Step 2

Cosine Similarity

Manual
Validation

REST 
APIs Pre-

processing
Result

Analysis
Recommendation

System

Step 5

GraphQL
APIs

Figure 2. Proposed Methodology. White rectangular boxes represent the steps that are completed and yellow rectangular boxes represent steps that are to be
completed in the future.

Contributions and Results Discussion
• We analyze and present a dataset consisting of 1655 endpoints from 33 REST and GraphQLAPIs.

• Poor linguistic design (anti)patterns are present in REST and GraphQL APIs, i.e., despite the wide adoption of REST and GraphQL APIs,
they still lack quality design.

• Our detection algorithms achieved an average accuracy of 93.08%, precision of 79.9%, recall of 86.59%, and F1-score of 85.98%.

• Antipatterns are more prevalent in REST compared to GraphQL APIs, i.e., GraphQL APIs are well designed compared to REST APIs in
terms of linguistic quality, although the margin of difference is very small.

A
m

or
ph

ou
s 

E
nd

po
in

t

N
on
−s

ta
nd

ar
d 

E
nd

po
in

t

C
R

U
D

y 
E

nd
po

in
t

U
nv

er
si

on
ed

 E
nd

po
in

t

P
lu

ra
liz

ed
 N

od
es

N
on
−d

es
cr

ip
tiv

e 
E

nd
po

in
t

C
on

te
xt

le
ss

 R
es

ou
rc

es

N
on
−h

ie
ra

rc
hi

ca
l N

od
es

N
on
−p

er
tin

en
t D

oc

In
co

ns
is

te
nt

 D
oc

Adobe Audience

Apple App Store

BroadCom

Cisco Flare

ClearBlade

Dropbox

Google Nest

GroupWise

IBM Cloud Pak

IBM Watson IoT

Instagram
Linkedin
Microsoft Power
Node-RED
Oracle Cloud

QuickBooks

Samsung ARTIK

Shopify

SurveyJS
Uber
WM3 Multishop

A
m

or
ph

ou
s 

E
nd

po
in

t

N
on
−s

ta
nd

ar
d 

E
nd

po
in

t

C
R

U
D

y 
E

nd
po

in
t

U
nv

er
si

on
ed

 E
nd

po
in

t

P
lu

ra
liz

ed
 N

od
es

N
on
−d

es
cr

ip
tiv

e 
E

nd
po

in
t

C
on

te
xt

le
ss

 R
es

ou
rc

es

N
on
−h

ie
ra

rc
hi

ca
l N

od
es

N
on
−p

er
tin

en
t D

oc

In
co

ns
is

te
nt

 D
oc

AniList

AppleMusic

Artsy

Braintree

Facebook

GitHub

GitLab

Instagram

Pipefy

Pokeapi
Shopify

Twitter

Figure 3. Detection of (Anti)Patterns in REST APIs (left) and GraphQL APIs (right). The black portion represents antipatterns and the white
portion represents patterns.

Conclusion
• Our detection algorithms yield better detection performance com-

pared to the state-of-the-art methods.

• Our findings confirmed linguistic antipatterns exist in both REST
and GraphQL APIs.

• We observed that both REST and GraphQL APIs are prone to
linguistic antipatterns, with REST having slightly more antipat-
terns.

• The most commonly occurring linguistic antipatterns are Unver-
sioned Endpoint, Amorphous Endpoint, and Pluralized Nodes re-
gardless of the API category.

• We also plan to improve the detection performance and analyze
more APIs and endpoints of other API categories such as gRPC,
OData, and GData, to investigate their linguistic design quality.


