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Abstract

The aging population faces increased health risks, with falls being a major concern
for individuals over 65, leading to healthcare strain and distress. We propose a semi-
supervised federated learning-based fall detection (SF2D) method that leverages edge
devices to maintain user privacy while ensuring accurate detection. Our approach first
trains an unsupervised autoencoder with federated learning, then uses its encoder to
train a cloud-based classifier with benchmark datasets. Our proposed SF2D improves
accuracy by 1% and recall by 4% over state-of-the-art systems, offering a practical,
accurate solution for fall detection and elderly care.

Keywords: Semi-supervised Federated Learning, Fall Detection, Edge, Cloud

This article is © 2025 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

Falling is a leading cause of mortality, reduced mobility, and cognitive decline in aging
populations [1], making fall detection a critical priority. Fall Detection Systems (FDS) use
sensors and algorithms to detect falls, primarily through three approaches: 1) vision-based
systems, 2) environmental signal detection, and 3) wearable sensors integrated into devices
like smartwatches and fitness trackers [2, 3]. Wearable sensors collect data from accelerom-
eters, gyroscopes, and heart rate monitors, enabling portability and continuous monitoring.
However, challenges in privacy, accuracy, and diversity still impact their effectiveness.

Federated learning (FL) enhances privacy in wearable fall detection systems (FDS) by
processing data locally and transmitting only aggregated insights, preserving user privacy
while improving model accuracy. FL-based fall detection methods, such as Fed-ELM [4], FL-
FD [5], and FEEL [6], integrate techniques like Extreme Learning Machines, sensor-visual
data fusion, user profile-based personalization, and few-shot learning.

However, existing FL fall detection systems rely heavily on labeled data, which is im-
practical and raises privacy concerns [7–10]. Labeling is intrusive and limits real-world ap-
plicability. Moreover, few methods effectively operate without labeled data while ensuring
user privacy. Addressing these limitations is crucial for advancing fall detection technology.

To address these challenges, we propose Semi-supervised Federated Learning Fall
Detection (SF2D), which integrates semi-supervised learning with FL for fall detection.
Semi-supervised FL offers a promising solution to the limitations of current FDS by lever-
aging both labeled and unlabeled data.

By leveraging patterns in unlabeled data with a small labeled set, semi-supervised FL
enables accurate, privacy-preserving detection. Our contributions:

(1) We presented SF2D, a semi-supervised federated learning approach, to tackle the
data labelling challenges with FDS.

(2) We conducted an extensive evaluation of our SF2D based on a benchmark SiSFall
dataset [11]. Our approach, SF2D, outperforms other federated-based FDS [4] using
different metrics.
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Figure 1. Our SF2D Fall Detection System Overview, showcasing the system’s steps for
fall detection and communication between cloud and edge

2. Related Work

Federated Learning (FL) in Fall Detection Systems (FDS):. FL has emerged as a
promising solution to address the limitations of traditional FDS in wearable devices. By
processing data locally, FL mitigates privacy concerns while transmitting only aggregated
insights to a central server. Various studies have explored its potential in healthcare, par-
ticularly for fall detection and personalized monitoring.

Yu et al. [4] proposed an FL-based Extreme Learning Machine (FED-ELM) model, ini-
tially trained on younger subjects and later refined with misclassified elderly data in the
SisFall dataset [11]. Wu et al. [12] introduced FedHome, leveraging a generative convolu-
tional autoencoder to handle non-IID data while ensuring low latency and privacy protection.
Ghosh et al. [6] integrated Few-shot Learning with FL, using clustering for personalized
adaptation and deploying an edge-based prototype for real-world healthcare monitoring.
Furthermore, Qi et al. [5] focused on multimodal data fusion, converting time-series wear-
able data into images and integrating them with camera inputs via a deep convolutional
neural network. Together, these studies highlight FL’s potential in healthcare, improving
personalization, accuracy, and privacy in fall detection and remote monitoring.
Semi-Supervised Federated Learning for Privacy-Preserving Scenario: Current
FDS face challenges due to their reliance on labeled user data, which is difficult to obtain
in real-life situations. Labeling can be intrusive, impractical, and raises privacy concerns
[7–10, 13]. Moreover, few methods operate without labeled data while preserving user
privacy, making it crucial to develop more effective and privacy-aware FDS. A promising
solution is semi-supervised FL, which combines FL and semi-supervised learning to utilize
both labeled and unlabeled data [8, 9]. Zhao et al. [9] demonstrated how FL can integrate
semi-supervised learning to improve performance while preserving privacy. Tashakori et
al. [8] introduced SemiPFL, which enhances adaptability in heterogeneous environments by
leveraging unlabeled data.

However, existing approaches have not specifically addressed wearable-based fall detec-
tion. Hence, our paper proposes SF2D, a semi-supervised FL approach for FDS, using a
small labeled dataset on a central cloud while processing unlabeled data across user devices.
Our method ensures privacy while improving accuracy, bridging the gap between effective
fall detection and data security.

3. Method
In this section, we proposed SF2D, as shown in Figure 1 and Algorithm 1, with seven key

steps: 1 autoencoder initialization, 2 distribution, 3 data collection, 4 local training,
5 federated averaging, 6 classifier training, and 7 classifier distribution. These steps col-
lectively enable a semi-supervised, privacy-preserving, distributed approach to fall detection
using wearable devices and edge computing.
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1. Autoencoder Initialization. SF2D begins by initializing an autoencoder network A
with random parameters θ0A, stored in the cloud. This provides a consistent starting point
for all users, ensuring uniform training and improved model convergence.
2. Distribution. Once the network A is initialized, its parameters θ0A are distributed to
all participating edge devices. Let N users be associated with a unique edge device, and Ei
denote the edge device associated with user i, where i ∈ {1, 2, . . . , N}. Each Ei is tasked
with training the autoencoder parameters θ

(i)
A locally using user-specific data.

3. Data collection. Next, in the data collection phase, each edge device Ei gathers data
Ui = {xj}Mi

j=1 from its associated user’s wearable device, where xj ∈ Rd represents a data
point at the j-th time step or from the j-th observation and Mi is the total number of
data points collected by edge device Ei from the user’s wearable device. The data Ui is used
exclusively for training the autoencoder during the local training rounds and is subsequently
discarded to ensure the user’s privacy. Importantly, our SF2D does not associate with any
user’s labels yj in this step.
4. Local training. Each edge device Ei proceeds to the local training phase, utilizing
the collected data Ui and the distributed parameters from the cloud. Before training, the
following preprocessing steps are applied to the raw sensor data: we resample the data to
a specific frequency (e.g., 50 ms) to reduce noise and ensure uniformity. Then, we apply
an exponentially weighted mean (EWM) filter for noise reduction. Finally, we convert the
data into fixed-size sequences for consistent input to the autoencoder. During this training
phase, the autoencoder is trained for a single epoch on the user’s local data to update the
parameters θ(i)A . The local update of the model is denoted by: θ(i)A ← θ

(i)
A −η∇θALi(θ

(i)
A ,Ui)

where η is the learning rate, and Li is the loss function computed over the local dataset Ui.
5. Federated averaging. After local training, all edge devices send their updated network
parameters θ(i)A to the cloud server. The server then performs federated averaging (FedAvg)
to aggregate the received parameters and create a new global model. The aggregation step

is defined as: θ
(global)
A =

∑N
i=1 Miθ

(i)
A∑N

i=1 Mi
where Mi is the number of data points used by edge

device Ei, which serves as a weight for the FedAvg algorithm. This iterative process of local
training and parameter aggregation continues for a predefined number of epochs. Once
completed, the global autoencoder can provide a meaningful representation of signals in a
transformed domain. Importantly, this process respects user privacy by ensuring that raw
data never leaves the edge devices.
6. Classifier training. Once the autoencoder is trained, the system progresses to the
classifier C training phase. In this step, the encoder E of the autoencoder A is utilized as
the feature extractor, serving as the first layer of a classifier. The classifier C is extended
by adding a fully connected neural network (FCNN) to predict activity labels. C is trained
on a labelled dataset D = {(xk, yk)}Kk=1, where xk ∈ Rd represents a data point, yk denotes
the corresponding label, and K is the total number of data points in the labelled dataset.
The preprocessing steps for classifier training follow the same procedure as the autoencoder
training, adding a momentum-based calculation for fall samples to help distinguish between
fall and non-fall data. Specifically, the same resampling, EWM filtering, and sequence re-
sizing are applied. A momentum calculation is used on fall data, which removes extra parts
from a fall sample to create more distinct feature representations, which helps improve clas-
sification accuracy for detecting fall events. During this training, the encoder’s parameters
θE are frozen, while only the weights of the fully connected layers θC are updated. The en-
coder E serves as a feature extractor, transforming raw signals xk into a lower-dimensional
representation that captures essential characteristics. The fully connected layers then learn
the mapping between these representations and activity labels, such as detecting fall events.
7. Classifier distribution. The trained classifier is distributed back to the edge devices
Ei. Each edge device integrates this classifier to process raw signals from the user’s wearable
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Algorithm 1: Semi-supervised Federated Learning Fall Detection (SF2D)
Input: Number of users N , Global epochs T , Labeled dataset D
Output: Distributed classifier C for edge devices

1 1 Autoencoder Initialization
2 Initialize global autoencoder A with random

parameters θ0
A in the cloud

3 2 Distribution
4 Distribute θ0

A to all edge devices {Ei}Ni=1

5 3 Data Collection
6 foreach edge device Ei do
7 Collect Ui = {xj}

Mi
j=1

8 Discard data after local training
9 4 Local Training

10 foreach edge device Ei in parallel do
11 Preprocess Ui:
12 1. Resample to 50Hz
13 2. Apply EWM filter
14 3. Create fixed-size sequences
15 Update parameters:
16 θ

(i)
A ← θ

(i)
A − η∇θA

Li(θ
(i)
A ,Ui)

17 5 Federated Averaging
18 Aggregate parameters in the cloud:
19 θ

(global)
A ← 1∑

Mi

∑N
i=1 Miθ

(i)
A

20 Distribute θ
(global)
A to all Ei

21 6 Classifier Training
22 Freeze encoder E from trained A

23 Add FCNN layers for classification
24 Preprocess D:
25 1. Apply same preprocessing as Ui
26 2. Add momentum-based fall sample calculation
27 Train classifier C on D to optimize:
28 argminθC

∑
(xk,yk)∈D LCE(C(E(xk)), yk)

29 7 Classifier Distribution
30 Deploy trained C to all edge devices Ei
31 return Distributed fall detection system

Figure 2. Real-world subset users data distribution showing different activities of daily
life from different users (labels are based on the original SiSFall dataset’s labels [11])

device. This enables real-time event classification and fall detection, all while preserving
user privacy. Since raw data remains confined to the edge device throughout the process,
the approach ensures robust privacy preservation and decentralized model operation.

4. Experiment
This section evaluates the practical effectiveness of our SF2D. We designed a real-world

scenario using a benchmark dataset to highlight our method’s strengths under controlled
conditions. Our SF2D was assessed under two semi-supervised training approaches, i.e.,
Centralized and Federated, compared against Fed-ELM [4].
4.1. Dataset. For our evaluation, we employed the SiSFall dataset [11], widely recognized
for FDS assessments. This dataset encompasses 38 participants, divided into young (23)
and older (15) groups. It spans a broad spectrum of activities (15 falls/positive, 19 activities
of daily living (ADL)/negative), enhancing data variability and representation.

To reflect real-world conditions, we divided the SiSFall dataset into two segments: a
benchmark subset stored in the cloud with labels and another serving as real-world user
data without any labels. This user-based division randomly assigned 40% of participants to
the benchmark D and 60% to the real-world segment U . The same participants were used
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Method ACC PR RE F1

Fed-ELM† [4] 98.01 - 95.25 -

CL (Ours)‡ 99.33 99.67 99.63 99.65
FL (Ours)‡ 99.19 99.69 99.47 99.58

† Supervised ‡ Semi-supervised

Table 1. Performance metrics comparison of differ-
ent methods (ACC = Accuracy, PR = Precision, RE
= Recall, and F1 = F1 score).

Figure 3. Autoencoder and Classifier Test Loss
Over Epochs.

Figure 4. Test Accuracy, Precision, Recall, and F1
Score Over Epochs.

in both centralized and federated training setups. Figure 2 illustrates the data volume and
activity distribution among our real-world users U .
4.2. Network architecture. We proposed two neural network architectures:
4.2.1. Autoencoder: The autoencoder was configured with three Long Short-Term Mem-
ory (LSTM) layers with 128, 32, and 128 nodes, respectively. The model used an L2 kernel
regularizer with a weight decay of 0.01 and was optimized using the Adam optimizer. Mean
Squared Error loss function minimized the reconstruction error.
4.2.2. Classifier: The classifier was constructed using a three-layer dense network. The
final layer consisted of two output classes, corresponding to the “Fall” and “ADL”. The net-
work was optimized using the Adam optimizer with a learning rate of 10−4, and categorical
cross-entropy was used as the loss function.
4.3. Training modalities. Our SF2D was trained with two approaches:
4.3.1. Centralized learning (CL): The autoencoder was trained using real-world user
data U in the cloud for 50 epochs. Post-training, the classifier was trained using the bench-
mark subset containing labels D. The classifier was assessed using real-world user data U .
4.3.2. Federated learning (FL): The autoencoder was trained on real-world user data
U using the Flower framework [14] across 50 communication rounds. Subsequent classi-
fier training occurred in the cloud using the benchmark subset with labels D. Classifier
performance was evaluated using real-world user data U .
4.4. Result. Table 1 highlights the performance metrics of different methods evaluated in
our study. Among these, the CL method achieved the highest overall performance, serving as
the baseline with accuracy, recall, and F1 scores of 99.33%, 99.63%, and 99.65%, respectively.
The FL method was followed closely, delivering comparable results and outperforming CL
in precision with a score of 99.69%. Both our CL and FL significantly outperformed Fed-
ELM [4] across all metrics, showcasing the effectiveness of our novel techniques. Notably,
the performance gaps between CL and FL were minimal, underlining the robustness of both
approaches, even in FL settings. These results demonstrate that our proposed methods
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not only surpass the state-of-the-art in predictive performance but also offer substantial
practical advantages. Our FL approach works in a more practical, real-world scenario,
which assumes that there is no label available for the end-user’s data. By achieving near-
baseline performance while preserving data privacy and utilizing semi-supervised training,
our methods exemplify a strategic balance between performance and real-world applicability,
setting a new standard for predictive tasks in sensitive or distributed data environments.

Figure 3 shows that in both training setups, our networks converged at some points.
Similarly, Figure 4 presents the performance metrics for Centralized and Federated training.
The results indicate that Federated training achieves performance comparable to Centralized
training while maintaining user privacy, highlighting its practical advantage.

5. Conclusion and Future work
Our study introduces SF2D, a semi-supervised, privacy-preserving fall detection method

using wearable devices and FL. Our approach leverages edge devices and an unsupervised
autoencoder, ensuring both privacy and accuracy. Future work will focus on data quality
monitoring, drift detection, and model updates within FL. Further evaluation of benchmark
datasets, real-world testing, and alternative preprocessing techniques, such as resampling
and filtering, will provide deeper insights into improving predictive performance.
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