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Knowledge Distillation?

University of New Brunswick | Analytics Everywhere Lab

Teacher Student
Edge Devices

Cloud Servers

• Knowledge distillation transfers knowledge from large, complex "teacher" models to smaller, efficient 

"student" models by training the student to mimic the teacher's outputs. 

• This technique is crucial for deploying AI on resource-constrained edge devices like smartphones and IoT 

hardware, where large models are too computationally expensive to run.

https://www.orientsoftware.com/blog/edge-computing/
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Knowledge Distillation with Soft Labels
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Hinton, G. (2015). Distilling the Knowledge in a Neural 

Network. arXiv preprint arXiv:1503.02531.
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What is Explainable AI (XAI)?
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Training 

data

ML

process

Learned 

Function

End-user

• Why did you do that?

• Why not something else?

• When do you succeed?

• When do you fail?

• When can I trust you?

• How do I correct an error?

BEFORE

Training 

data

New ML

process

End-user

• I understand why

• I understand why not

• I know when you succeed

• I know when you fail

• I know when to trust you

• I know why you erred

TODAY

Explainable 

decision

Decision

Cat: 0.76

(Explainable) 

Learned Func.

• XAI is a set of methods that make AI algorithms understandable and transparent to humans.

• Now, XAI explains the reasoning behind AI decisions (why and when?)
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XAI reveals crucial insights into AI decision-making processes:

• What features can we use to improve the model performance?

•  o         m k   xp      o   mo   “ um  -       d” fo    d-users?

In sensitive contexts like healthcare, the ability to validate or challenge AI models through explanations 

has become a legal requirement.

Going Beyond XAI

University of New Brunswick | Analytics Everywhere Lab



May 28, 2025 8

• In our previous work, we discovered a 

correlation between the model's attention 

patterns and semantic segmentation 

performance. 

• Models with better semantic segmentation 

performance exhibit more concentrated 

heatmaps that focus precisely on target 

objects.

Semantic Segmentation and Explainable AI

University of New Brunswick | Analytics Everywhere Lab

Nguyen, Hung Truong Thanh, Loc Phuc Truong Nguyen, and Hung Cao. "XEdgeAI: A 

human-centered industrial inspection framework with data-centric Explainable Edge AI 

approach." Information Fusion 116 (2025): 102782.
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Knowledge Distillation via Attention Transfer
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Mansourian, A. M., Jalali, A., Ahmadi, R., & Kasaei, S. (2024). Attention-guided 

Feature Distillation for Semantic Segmentation. arXiv preprint arXiv:2403.05451.

Cho, Yubin, and Sukju Kang. "Class attention transfer for semantic 

segmentation." 2022 IEEE 4th International Conference on Artificial 

Intelligence Circuits and Systems (AICAS). IEEE, 2022.

“       o     p        ud    fo u  o       mpo        p     of            ’  p  d    o  .” 

(Zhang et al., 2020; Lee et al., 2022)
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Our contributions are:

• Experiment with the soft label and intermediate saliency map (at the feature refinement 

level) loss using XAI methods (i.e., Grad-CAM) and propose the XAI-Guided Knowledge 

Distillation (XGD) method.

• Apply XGD to encoder-decoder-based semantic segmentation models (e.g., 

DeepLabV3+, PSPNet) on Pascal VOC 2012, Substation, and TTPLA datasets.

Our Contributions

University of New Brunswick | Analytics Everywhere Lab

“Attention helps the student focus on the import nt  spects of the te cher’s predictions.” 

(Zhang et al., 2020; Lee et al., 2022)

Semantic segmentation involves the task of classifying each pixel in an input image 

into one of predefined classes.



     

         

                                  

          

Explainable AI-Guided Knowledge Distillation
(XGD)
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XGD Architecture

3 Loss Components

1. Semantic Segmentation Loss: 

Cross-entropy loss for pixel-wise 

classification

2. Pixel-wise Class Probability 
Distillation: KL divergence between 

teacher and student soft probability 

distributions

3. XAI-based Saliency Map 
Distillation: MSE between GradCAM

saliency maps from teacher and 

student first decoder layers
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• Primary learning objective for pixel-wise 

classification to ensure student network 

learns core segmentation task

• Computes cross-entropy between student 

predictions and ground truth labels.

Semantic Segmentation Loss
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• The pixel-wise distillation enables the student model to 

capture the teacher's knowledge about inter-class 

relationships.

• Minimizing the Kullback-Leibler (KL) divergence between 

the temperature-scaled outputs allows the student to 

learn the relative probabilities that the teacher assigns to 

different classes.

Pixel-wise Distillation Loss (Soft Labels)
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• The saliency map loss aligns the focus of the student and 

teacher models to important regions contributing to the 

mod  ’  p  d    o .

• Calculation of Grad-CAM Saliency Maps: 

• Grad-CAM saliency maps are computed for student and 

teacher models using the same target layer (i.e., the first 

decoder layer).

• The first encoder layer merges high-level semantic 

features from the encoder with low-level spatial details

Saliency Map Loss
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The XGD distillation function represents a multi-objective optimization problem, which is defined as follows:

where 𝛼 ≥ 0 and 𝛽 ≥ 0 are weighting coefficients for the soft label loss and saliency maps loss, respectively.

Altogether: XGD Distillation Function



     

         

                                  

          

Experiements and Results
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Quantitative Results

• Consistent superiority across all three 

benchmark datasets 

(TTPLA, Substation, Pascal VOC 2012)

• Effective across various student architectures 

(DeepLabV3+, PSPNet) 

• Works well with different backbones (ResNet18, 

MobileNetV2) 

• Balances global class knowledge with spatial 

feature refinement
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Qualitative Results
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Evaluated XAI methods for generating saliency maps on TTPLA dataset with DeepLabV3+ ResNet18 student network.

• GradCAM selected as optimal choice: Provides strong performance without significant computational overhead and 

effectively guides student network focus on spatially critical regions.

• EigenGradCAM achieves the best results (+0.12% over GradCAM), but 7x slower (impractical for large-scale 

training).

Ablation Study: XAI methods
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Evaluated impact of weighting coefficients α, β 

and temperature τ on TTPLA dataset with 

DeepLabV3+ ResNet18 student network

• Tested range: {0.05, 0.1, 0.5, 1.0, 2.0}

• Optimal combination: α = 1.0, β = 1.0, τ = 1.0

• Equal weighting (α = β = 1.0) demonstrates 

balanced importance of pixel-wise class 

probability alignment and saliency map 

refinement.

• Effective knowledge transfer requires both 

global and spatial feature guidance

Ablation Study: Hyperparameters
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• Balancing global class knowledge with spatial 

feature refinement can provide computationally 

efficient knowledge distillation approach for 

resource-constrained deployment.

• Extend to Object Detection: Apply XGD 

framework to object detection models.

• Real-time Optimization: Further reduce 

computational overhead for real-time applications.

• Code available at: https://github.com/Analytics-

Everywhere-Lab/xaiseg

Conclusion and Future Works

https://embeddedcomputing.com/technology/iot/edge-computing/edge-ai-is-

overtaking-cloud-computing-for-deep-learning-applications

https://github.com/Analytics-Everywhere-Lab/xaiseg
https://github.com/Analytics-Everywhere-Lab/xaiseg
https://github.com/Analytics-Everywhere-Lab/xaiseg
https://github.com/Analytics-Everywhere-Lab/xaiseg
https://github.com/Analytics-Everywhere-Lab/xaiseg
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