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Knowledge Distillation?
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 Knowledge distillation transfers knowledge from large, complex "teacher" models to smaller, efficient
"student” models by training the student to mimic the teacher's outputs.

» This technique is crucial for deploying Al on resource-constrained edge devices like smartphones and loT
hardware, where large models are too computationally expensive to run.
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https://www.orie ntsoftware.com/blog/edge-computing/
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Hinton, G. (2015). Distilling the Knowledge in a Neural
Network. arXiv preprint arXiv:1503.02531.
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« XAl is a set of methods that make Al algorithms understandable and transparent to humans.

* Now, XAl explains the reasoning behind Al decisions (why and when?)

BEFORE
*  Why did you do that?
*  Why not something else?
e Learn Decision . *  When do you succeed?
Tralnlng > ML > ea .ed > Cat: 0.76 — *  When do you fail?
data process Function : 0. - . When can | trust you?
*+ How do | correct an error?
End-user
TODAY
* | understand why
o _ _ > . * |l understand why not
Training R New ML | (Explainable) Explainable | know when you succeed
data process Learned Func. decision < - * | know when you fail
* | know when to trust you

End-user . |know why you erred
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XAl reveals crucial insights into Al decision-making processes:
« What features can we use to improve the model performance?
 How can we make explanations more “human-centered” for end-users?

In sensitive contexts like healthcare, the ability to validate or challenge Al models through explanations
has become a legal requirement.

I * I Government  Gouvernement
of Canada du Canada

MENU ~
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Montréal Declaration

1 . . L] . * GDPR *
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Semantic Segmentation and Explainable Al

* In our previous work, we discovered a
correlation between the model's attention
patterns and semantic segmentation

performance.

* Models with better semantic segmentation
performance exhibit more concentrated
heatmaps that focus precisely on target

objects.
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Figure 10: The qualitative evaluation of XAI methods in explaining the base DeepLabv3Plus-ResNet101 model on a validation sample. The category is the
tower_lattice. The IoU value between the segmentation and the ground truth is 96.25%.

Nguyen, Hung Truong Thanh, Loc Phuc Truong Nguyen, and Hung Cao. "XEdgeAl: A
human-centered industrial inspection framework with data-centric Explainable Edge Al
approach." Information Fusion 116 (2025): 102782.
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“Attention helps the student focus on the important aspects of the teacher’s predictions.”
(Zhang et al., 2020; Lee et al., 2022)
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Fig. 1. The overall architecture of Class Attention Transler. The feature map 1 . 1 - 1 101 1
is used to generate Class Aftention Maps, Only the student network is trained Flgm‘e 2 PI'OpOSCd Attention gu1ded feature dlStlHﬁthIl.

with the distillation loss and the task loss.

Cho, Yubin, and Sukju Kang. "Class attention transfer for semantic Mansourian, A. M., Jalali, A., Ahmadi, R., & Kasaei, S. (2024). Attention-guided

segmentation.” 2022 IEEE 4th International Conference on Artificial Feature Distillation for Semantic Segmentation. arXiv preprint arXiv:2403.05451.
Intelligence Circuits and Systems (AICAS). IEEE, 2022.
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“Attention helps the student focus on the important aspects of the teacher’s predictions.”
(Zhang et al., 2020; Lee et al., 2022)

Semantic segmentation involves the task of classifying each pixel in an input image
into one of predefined classes.

Our contributions are:

« Experiment with the soft label and intermediate saliency map (at the feature refinement
level) loss using XAl methods (i.e., Grad-CAM) and propose the XAl-Guided Knowledge
Distillation (XGD) method.

* Apply XGD to encoder-decoder-based semantic segmentation models (e.g.,
DeeplLabV3+, PSPNet) on Pascal VOC 2012, Substation, and TTPLA datasets.

University of New Brunswick | Analytics Everywhere Lab May 28, 2025 10
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Explainable Al-Guided Knowledge Distillation
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XGD Architecture

3 Loss Components

1.

3.

Semantic Segmentation Loss:
Cross-entropy loss for pixel-wise
classification

Pixel-wise Class Probability
Distillation: KL divergence between
teacher and student soft probability
distributions

XAl-based Saliency Map
Distillation: MSE between GradCAM
saliency maps from teacher and
student first decoder layers
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Figure 1. Overview of our proposed XAlI-Guided Knowledge Distillation with DeepLabV3+.
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* Primary learning objective for pixel-wise W
classification to ensure student network Lseg = H x W W hzl Z CE(Ph w Yh,w)

learns core segmentation task

Prediction Z?*

« Computes cross-entropy between student

3

predictions and ground truth labels.

Ground Truth y
|
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Pixel-wise Distillation Loss (Soft Labels)

The pixel-wise distillation enables the student model to
capture the teacher's knowledge about inter-class

relationships.

Minimizing the Kullback-Leibler (KL) divergence between
the temperature-scaled outputs allows the student to
learn the relative probabilities that the teacher assigns to

different classes.
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W

Lo = W Z Z KL(Qh w ||(:'Ih, w)
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Predlctlon Y/
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« The saliency map loss aligns the focus of the student and
teacher models to important regions contributing to the r
Sa

model’'s prediction.
« Calculation of Grad-CAM Saliency Maps:

« Grad-CAM saliency maps are computed for student and
teacher models using the same target layer (i.e., the first

decoder layer).

« The first encoder layer merges high-level semantic

features from the encoder with low-level spatial details
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The XGD distillation function represents a multi-objective optimization problem, which is defined as follows:
Lxcp = ﬁseg + a - £pi + B - Lsa

where ¢ = 0 and f = 0 are weighting coefficients for the soft label loss and saliency maps loss, respectively.

Algorithm 1: XAI-Guided Knowledge Distillation (XGD)

Input: Training data D, teacher network 7T, student network § with parameters s,
coefficients «, 8, temperature 7, learning rate 7, epochs E.

Output: Optimized student parameters 0%.

for epoch =1,...,FE do

for (z,y) € D do
q’ + softmax(7 (x)/7), ¢° + softmax(S(x;0s)/T) // Soft probabilities
Lieg — CE(q°,y) // Semantic segmentation loss
Lpi — KL(q" ||q®) // Pixel-wise class probability distillation loss
M7 M? + GradCAM(T), GradCAM(S) // Saliency maps
L. — MSE(M7 , M%) // Saliency loss
Lxgp ¢ Leeg - Lpi + 8 Lea // XGD loss
fs < 0s —nVes LxcD // Update the student network parameters

end

end
return s

16
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Experiements and Results
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t Attention-guided KD

Methods FLOPs | #Params TTPLA Substation Pascal VOC

(G) (M) mloU(%) mloU(%) mloU(%)

train val test train val test train val

T: DLV3P-R101 | 112.90 45.67 80.96 7267 71.20 | 81.04 79.90 79.72 | 89.21 78.33
S: DLV3P-R18 7581 67.61 65.25 | 75.64 73.69 73.95 | 83.07 73.39
+PI[11 76.74 68.67 67.01 | 76.21 73.27 7469 | 83.58 73.87
+SKD [7] 7812 7194 67.99 | 78.24 74.01 75.32 | 85.12  74.02
+CWD [8] 36.88 12.33 78.88 72.04 68.84 | 78.21 74.62 75.94 | 86.56 74.54 . .
+AT [26]f 76.94 68.94 67.54 | 76.45 73.54 74.99 | 83.78 73.99 » Consistent superiority across all three
+CAT [10] 77.56 71.49 68.24 | 77.23 7442 75.12 | 83.92 73.65
+XGD (Ours)f 78.95 72.23 69.82 | 78.34 74.94 76.01 | 86.74 74.99 benchmark datasets
S: DLV3P-MBV2 7493 67.32 64.41 | 75.09 70.81 7192 | 82.96 73.31 (TTPLA, Substation, Pascal VOC 201 2)
+PI[11 75.95 65.94 65.37 | 76.03 T71.76 72.16 | 83.14 73.54
+SKD [7] 76.83 69.93 67.94 | 77.83 7231 73.83 | 84.94 73.64 ) ) i
+CWD [8] 12.30 4.38 77.94 7154 68.49 | 78.94 72.65 74.01 | 85.92 73.96 » Effective across various student architectures
+AT [26]1 75.98 67.45 66.11 | 76.34 71.95 7292 | 83.84 73.45 +
+CAT [10] 76.84 69.67 67.81 | 77.12 7142 7203 | 8424 73.54 (DeepLabV3 ’ PSPNet)
+XGD (Ours)f 78.12 71.77 68.93 | 78.03 72.97 7T4.15 | 8529 74.01
S: PSPNet-R18 64.25 59.63 59.86 | 71.11 69.58 71.09 | 82.04 73.15 e \Works well with different backbones (ResNet1 8,
+PI[11 68.29 60.96 60.04 | 73.65 71.33 7239 | 82.19 73.36 )
+SKD [7] 71.92 6245 61.93 | 73.99 71.93 72.83 | 83.01 73.81 MobileNetV2)
+CWD [8] 12.14 11.39 72.91 63.13 62.42 | 74.45 72.74 73.31 | 84.74 74.11
+AT _[26]1 69.12 60.57 60.94 | 73.94 71.84 72.64 | 82.49 73.45 . : :
+CAT [10] 70.13 6198 61.23 | 73.92 71.89 72.01 | 82.93 73.69 Balances global class knowledge with spatial
+XGD (Ours)f 73.11 63.76 62.59 | 74.98 72.02 73.39 | 84.94 74.47 feature refinement

Table 1. Performance comparison with state-of-the-art distillation methods over various
student segmentation networks on TTPLA, Substation, and Pascal VOC 2012 datasets.
The best results are in bold. The second-best results are underlined. The floating-point
operations per second (FLOPs) calculation is based on the crop size of 512 x 512.
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Qualitative Results

(a) Image maer | (c) Teacher 1(d) Student w/o Distillation|  (e) Student+ CAT | (f) Student + XGD (Ours)

Substation

Pascal VOC

IoU =0.7557 | IoU =0.6727 IoU =0.7174 IoU =0.7404

Figure 2. Qualitative segmentation results and saliency maps on TTPLA test, Substation
test, and Pascal VOC 2012 validation. (a) raw images, (b) ground-truth (GT), (c) teacher
network, (d) original student network without distillation, (e) student network with CAT
method, and (f) student network with our XGD method.
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Evaluated XAl methods for generating saliency maps on TTPLA dataset with DeepLabV3+ ResNet18 student network.

- GradCAM selected as optimal choice: Provides strong performance without significant computational overhead and
effectively guides student network focus on spatially critical regions.

« EigenGradCAM achieves the best results (+0.12% over GradCAM), but 7x slower (impractical for large-scale
training).

{a} Image (b} GT {c) XGD / GradCAM {d) XGD / GradCAM++
XAI Method mloU(%) Avg. Time(s)
GradCAM |20 69.82 0.1031 e £ g
GradCAM-++ [17] 68.96 0.1037 IoU - 0.5646 IoU - 0.5623
HiResCAM _[ﬂ] 60.74 0.1224 (e) XGD / L (f) XGD / EigenGradCAM (g) XGD / HiResCAM
EigenGradCAM [21] 69.94 0.7554 '
LayerCAM |18 68.83 0.1021
Table 3. Ablation study of XAI methods in XAI- fou = 0.5631 ol = 0.5680 fol/= 05644
:riiicd (EE;?F ]I;]:f ;‘?} Ll:ztg};i;(flﬁ:;?n student net- Figure 5. Qualitative segmentation results and

saliency maps of student network (DLV3P-R18) with
different XAI methods on Ls, on TTPLA test.
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Loss Baseline Distillation
Evaluated impact of weighting coefficients a, B ﬁg v j Y :;
pi - -
and temperature T on TTPLA dataset with Lsa - - v v
mloU(%) 65.25 67.01 68.77 69.82

DeeplLabV3+ ResNet18 student network

Table 2. Ablation study of distillation loss

e Tested range: {005, 01’ 05, 10, 20} terms on student network (DLV3P-R18) on
TTPLA test. Baseline denotes the segmenta-
tion loss Lseg.

* Optimal combination:a=1.0,=1.0,7t=1.0

« Equal weighting (a = 8 = 1.0) demonstrates <7 S 5 — T 57 g
balanced importance of pixel-wise class E B E = e E e e
probability alignment and saliency map %n- o %z %” -
refinement e P I o

- Effective knowledge transfer requires both () ex (Lps coeflicient) (6) 8 (£sa coeflicient) () Temperature ©
global and spatial feature guidance sinsont, nctwork (DLV3D.LS) in mioULH) on the TTELA dutaset o oo
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« Balancing global class knowledge with spatial
feature refinement can provide computationally

efficient knowledge distillation approach for ( q
resource-constrained deployment. ﬂ

Trained Model

« Extend to Object Detection: Apply XGD Processmg
framework to object detection models.
* Real-time Optimization: Further reduce \?
Dataset Neural Network Edge Al Processor

computational overhead for real-time applications.

« Code available at: https://aithub.com/Analvtics- https://fembeddedcomputing.com/technology/iot/edge-computing/edge-ai-is-
) * * overtaking-cloud-computing-for-deep-learning-applications

Everywhere-Lab/xaiseg
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