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Abstract—Software repositories are the primary source of
information for software artifacts and contain a large amount
of unstructured data, including commits, issue reports, and code
comments. Mining information for different tasks, such as senti-
ment and emotion analysis, has been studied on several artifacts.
While significant progress has been made in sentiment analysis
on various artifacts, the study of emotion analysis remains
under-researched due to a lack of resources, such as relevant
and labeled datasets. This study presents a manually annotated
dataset comprising 12,005 commit messages from the open-
source Apache Tomcat project, exploring emotion and sentiment
analysis through the application of natural language processing
and machine learning techniques. We studied traditional models
(SVM and random forest), deep learning models (bidirectional-
LSTM), and pre-trained language models (LMs), as well as their
ensemble, to evaluate and compare their performance on the
curated dataset. Our findings suggest that software engineering
domain-specific pretrained LMs consistently outperform tradi-
tional and deep learning models. The ensemble of pretrained LMs
performs better on sentiment analysis. Additionally, identifying
sentiment from commit messages outperforms emotion analysis
tasks. We have made model implementations and the curated
dataset available.

Index Terms—Emotion and sentiment analysis, Pretrained
language model, Ensemble learning, Commit messages.

I. INTRODUCTION

Sentiment analysis in software engineering is crucial for
identifying developer sentiments or emotions [1] expressed
through various software artifacts. Although software devel-
opment is a logical and systematic endeavor, the individuals
behind it bring emotions, perspectives, and experience. Under-
standing the underlying emotions and sentiments of software
artifacts is crucial for understanding the impact of sentiment
and emotion on software qualities, work environment, and
team dynamics. Analyzing emotions and sentiments in commit
messages may provide early indications of developers’ state
of mind, which team leads and managers can leverage for
resource allocation.

Software repositories, such as GitHub and GitLab, contain
a vast amount of unstructured data, and mining this data has
become inevitable for the software engineering community.
Most developers’ working notes on their projects are doc-
umented in commit messages, code comments, and project
documentation. Although analyzing and reviewing code has
received more attention from the software engineering research

community [2], [3], analyzing commit messages remains
challenging due to the inconsistent and informal nature of
these messages [4]. Most prior studies include lexicon-based
approaches [5], [6]. As such, words or lexicons played a
crucial role in identifying emotions, rather than relying on
contextual information. The advancement of natural language
processing and machine learning techniques has paved the
way for groundbreaking research in identifying emotions from
software artifacts. Researchers have conducted several studies
to identify emotions in commit messages using traditional
machine learning approaches [7].

There has been a growing research interest in sentiment
analysis on software artifacts [8]–[10]. However, due to several
challenges, very few studies (e.g., [1]) focus on emotion
identification. One of the main challenges is the lack of well-
designed annotation guidelines, which may result in unreliable
[11] and low-agreement datasets that cause biases in learning.
The content of an artifact (e.g., commit messages and code
comments) sometimes belongs to multiple classes [12], mak-
ing it difficult to categorize them into a single class and posing
challenges for the model to differentiate among classes. An-
other challenge is distinguishing between different emotions
in similar content within the project. Developers often express
their emotions and sentiments through commit messages, issue
responses, code comments, and team conversations; however,
it is challenging to determine sentiment and emotion from
most artifacts.

Further, the performance of the models used to classify
sentiment and emotion varies across the datasets [12]. Al-
though a few open-source datasets for emotion and sentiment
analysis [5], [8], [9], [13] exist in the literature, most are
annotated based on the lexicons and lack manual validation.
The limitations of the methods and models in capturing
the underlying interpretations from texts make it difficult to
analyze sentiment and emotion.

In this study, we developed an annotation guideline to
facilitate emotion and sentiment analysis in commit messages.
Following this guideline, we created the largest manually an-
notated dataset. The dataset has undergone several iterations of
pre-processing and validation to make it usable for qualitative
research and emotion and sentiment analysis tasks. We define
two research questions to examine the state-of-the-art models
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for automatic emotion and sentiment analysis of software
commit messages.

RQ1: How well do state-of-the-art machine learning and
deep learning predict emotions and sentiments on commit
messages?

RQ2: How does an ensemble of pretrained language models
perform on emotion and sentiment data?

We present a comparative analysis using pretrained lan-
guage models (LMs), including classical and deep learning
models. The performance of the models shows that the pre-
trained language models outperform deep learning models,
while classical models show a notable performance on this
dataset. Our contribution can be summarized as follows: (1)
we built the largest manually annotated dataset for emotion
analysis on commit messages; (2) we investigated the pre-
trained LMs by fine-tuning the models with the data; (3)
we investigated ensemble learning using pretrained LMs to
compare and improve the performance of individual pretrained
LM; (4) we are the first to provide a comparative analysis
among the classical, deep learning, pretrained models, and
ensemble learning; and (5) we provided a comparison of the
performances between emotion and sentiment tasks.

The summary of our findings includes (1) fine-tuned soft-
ware engineering domain-specific LMs provide better results
compared to other models; (2) the pretrained model, Commit-
BART [14], trained on commit messages yields the best per-
formance for emotion task while ensemble learning provides
the best performance on sentiment task; (3) all the models
except CommitBART and random forest struggled to predict
the surprise class, while XLM-RoBERTa [15] only predicted
neutral and trust classes for emotion analysis; and (4) all the
models are performing better on sentiment tasks due to the
dimensionality of the classes.

For the rest of the paper, Section II discusses an overview of
related work. Section III presents our research method and the
implementation strategies employed. Section IV presents a de-
tailed performance analysis of the two experimental strategies,
along with the proposed ensemble approaches, while Section
V discusses the performance analysis and challenges. Finally,
Section VI concludes the paper.

II. RELATED WORK

Sentiment analysis enables one to identify the emotions
from texts, which helps variously, i.e., quality of products [16],
identifying requirements from user feedback [17], relating
sentiment to the developer performance [18], and trust among
team members [19]. Developers express their emotions and
sentiments during the software development process through
commit messages, issue comments, and other software artifacts
[1]. Therefore, researchers became interested in extracting
emotions and sentiments from software artifacts.

Researchers have been attempting to extract emotions and
developing lexicon-based tools to identify both sentiment and
emotions in software artifacts since the early 2010s [6], [20],
[21]. As a result, researchers have developed several lexicon-
based tools. Most of the lexicon tools, i.e., SentiStrength [22],

and NLTK [23] have been adopted from general texts, where
some tools, i.e., SentiStrength-SE [8], Senti4SD [24], and
SentiSW [9] were designed for software engineering text.

A. Sentiment Analysis

The simplest sentiment analysis task involves classifying
a text into one of two categories (Positive or Negative) or
three categories (Positive, Negative, or Neutral). To extract
developer sentiment, the text must be from sources where de-
velopers communicate or update their daily tasks. As a result,
GitHub is one of the largest information repositories, contain-
ing various software artifacts, such as commit messages, code
comments, and issues. Although most of the commit messages
collected from GitHub belong to neutral classes [25] due to
open-source collaboration, it is still worthwhile to investigate
developer sentiment.

The early studies in this area rely on a lexicon-based
approach to extract sentiment, which involves developing lexi-
cons, such as SentiStrength [22] and Senti4SD [24]. Although
the SentiStrength lexicon was mainly developed from social
media texts, it gained popularity among researchers due to
its performance in software engineering. The use of lexi-
cons involves analyzing the relationship between programming
languages and developer sentiments, as well as changes in
sentiment across the days of a week and developer sentiment
over a day [21].

B. Emotion Analysis

Researchers have done a few studies, e.g., [1], [10], [13]
to identify the emotions1 from commit messages and issue
comments. Although emotions are categorized into eight types,
researchers have used three, four, six, and eight types of
emotions in the literature [1]. Lexicon-based approaches are
also followed in extracting emotions, which include a few
emotion lexicons, i.e., NRC Word-Emotion Association Lex-
icon [10], DEVA [13], TensiStrength [26], etc. Using these
lexicons results in different types of emotion over a single
text. For example, the NRC word-emotion association lexicon,
DEVA, and TensiStrength have eight, four, and three types of
emotions, respectively. Although the emotions were extracted
using a lexicon, in most cases, only one word is used to
identify the emotion of a text [10]. The study in [13] proposed
an automatic tool named DEVA to extract emotions from com-
mit messages and issue comments using the valence-arousal
model, which calculates four types of emotions. Although the
study provides an insightful tool for emotion extraction, the
comparison with other tools was ambiguous.

Machine learning-based approaches have recently been
studied to extract developer sentiments for software arti-
facts, e.g., [7]. Support vector machines, naive Bayes, ran-
dom forests, decision trees, and extreme gradient boosting
are among the most popular algorithms studied. A machine
learning-based sentiment extraction tool was created in the
study by Islam et al. [7], which outperforms existing lexicon-
based sentiment extraction tools. Imran et al. [27] primarily

1anger, fear, anticipation, trust, surprise, sadness, joy, and disgust
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addressed the data scarcity problem in emotion analysis in
SE text by automatically creating new training data using a
data augmentation technique by analyzing the errors made by
popular SE-specific emotion classification tools. The authors
investigated the effectiveness of an emotion classifier, SEnti-
Moji [28], in detecting emotions in GitHub comments.

C. Emotion Analysis using LLMs

Among the very few studies that investigated large language
models (LLMs) for emotions prediction in SE text, like issue
comments, include [29], [30]. In [29], the authors explored
zero-shot LLMs for detecting emotions in software devel-
oper communication. Those LLMs are pre-trained on massive
datasets but not fine-tuned for detecting emotions in SE. The
authors found that the LLMs perform well in the emotion clas-
sification task compared to state-of-the-art models. However,
this comes with a significant cost in terms of computation
required. Topal et al. [30] explored the performance of open-
source LLMs in sentiment analysis. The authors also explored
the impact of various instruction methods and fine-tuning
techniques on the models’ performance and analyzed their
sensitivity to different prompts. The authors considered BERT-
based models as their baseline and found Llama3 and Mistral
to be top-performing in sentiment analysis tasks.

Existing studies mostly rely on a lexicon-based approach
to extract sentiment. Moreover, there is a scarcity of datasets
available for evaluating emotion and sentiment from commit
messages. In this study, we construct a manually annotated
dataset and employ machine learning and pre-trained language
models to analyze sentiment and emotion.

III. RESEARCH METHODOLOGY AND IMPLEMENTATION

This section details the research methodology and imple-
mentation as depicted in Figure 1.

A. Data Collection

To collect commit messages, we choose Apache Tomcat2.
During the data collection, we collected commit IDs, commit-
ter usernames, dates, and messages. We selected the Tomcat
open-source system because it is widely known, actively
maintained, and used in the empirical Software Engineering
research community. Tomcat has a well-documented commit
history. Moreover, we also did not want to select a large or
small system, opting instead for a moderate-sized dataset to
be annotated. Our primary focus was to select an open-source
project with numerous commit messages from developers who
have contributed over a long period. We collected a total of
13,000 recent commit messages. We opted to use PyDriller3

to extract commit messages from GitHub since it is well-
documented and provides all the necessary information related
to commit messages. Although each commit is unique with its
commit ID, the messages can be the same, and each message
can be found in multiple commits; for example, we found
that fix typo occurs in multiple commits. We removed the

2https://github.com/apache/tomcat
3http://dl.acm.org/citation.cfm?doid=3236024.3264598

duplicate commit messages to handle the duplicates and URLs
from the commit messages without further preprocessing.
These filtering and removing duplicate steps resulted in 12,005
commit messages.

B. Filtering Commit Messages

Commit messages contain URLs, commit IDs (i.e., hash
values), and invisible characters. As a part of the preprocess-
ing steps, we first removed the noisy portion (commit IDs,
invisible characters, and blank spaces) of the data. We then
removed a specific word (git-svn-id) due to its high frequency
and lack of meaningful relevance to the emotion identification
task. We also tokenized and performed case conversion (i.e.,
converting all characters to lowercase) before training.

C. Manual Annotation

Given a commit message, we want to categorize its intended
emotion, i.e., whether it is anger, fear, joy, neutral, sadness,
surprise, or trust.

Data Annotation Scheme: As the data annotation scheme for
emotions, we adopted six emotion classes, merging disgust
and anticipation with anger suggested by Shaver et al. [31]
from the wheel of eight emotions [32]. For a significant
number of commit messages, it is challenging to find the
appropriate emotion label from the six classes. As a result,
we also introduced a neutral class to tackle the annotation
issue, resulting in seven emotion classes.

In the following, we discuss the taxonomy of emotions we
provide during the annotation.

Anger is an intense emotion that intends to show irritability,
disgust, envy, jealousy, and annoyance. It deliberately ex-
presses a strong, uncomfortable, and non-supportive response
to a statement.

Fear is an unpleasant emotion expressed during a dangerous
or bad situation to show nervousness, anxiety, worry, panic,
and dread.

Joy is a positive emotion to show happiness, satisfaction,
pleasure, and amusement. The purpose of joy is to express
the well-being and success of an action.

Sadness is a negative emotion with a sense of depression,
regret, embarrassment, rejection, and sympathy.

Surprise is an emotion that expresses positivity to show
amazement and astonishment.

Trust is an emotion of a strong belief in reliability to show
confidence, admiration, and agreement with a statement.

Neutral is used for texts not representing emotions or the
annotators are unable to understand the emotion from the text.

Data Annotation Guideline: We asked annotators to read the
given commit message first to understand the context of the
text and the emotion expressed by the writer of the message.
Based on the Data Annotation Scheme, the annotator decides
the appropriate emotion class once the annotator understands
the expressed emotion. The detailed annotation guideline and
the supplemental materials are available at https://doi.org/10.
5281/zenodo.14449706.
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Fig. 1: The overview of the research methodology.

Fig. 2: The distribution of sentence length associated with each
emotion label.

Annotation Process: We used a pool of annotators con-
sisting of 14 computer science undergraduate and graduate
students. All of the annotators are divided into two groups:
annotators and curators. In the annotators group, we selected
12 students; the rest (those with previous data annotation
experience) were used as curators. Students in the annotator
groups had low to moderate experience in data annotation and
sentiment/emotion analysis from text. In contrast, researchers
in the curators group were experienced in data annotation
and sentiment/emotion analysis in the software engineering
domain. The primary task of the annotator group was to
annotate the commit messages, while the curators concentrated
on consolidating the final labels. Each commit message was
independently annotated by three annotators, following our
annotation guidelines that describe the annotation steps. We
conducted a weekly review meeting to align and discuss
specific annotation cases. The majority agreement for each
commit message selected the final label. However, in cases of

disagreement among the annotators, the curators organized a
discussion to select the final label. This method offers high
accuracy, which is critical for any annotation task. However,
this process is costly and time-consuming for larger datasets.

Annotation Quality: We calculated the Inter-Annotator
Agreement (IAA) to measure the annotation quality. First, we
calculated the Fleiss Kappa (κ) [33] score on the unconsoli-
dated labeled dataset, yielding a value of 0.14, indicating slight
agreement among the annotators. This annotation score indi-
cates the disagreement among annotators for a large number
of data points, i.e., there was no majority label for emotions
among the annotators. The curators consolidated the final
labels for the commit messages with disagreement. Afterward,
we again calculated the κ score and obtained a value of 0.52,
indicating a moderate agreement among annotators with the
help of the curator’s group.

D. Pre-processing

We pre-process the data by removing unnecessary text and
prepare it for training and evaluation.

1) Data Analysis: We analyzed the sentence distributions
by the number of words for each class label presented in Figure
2. Based on the distribution, neutral and trust are the most
common emotions developers express in commit messages,
i.e., around 58% of the data falls within the trust and neutral
classes. Surprise and fear are the least occurring emotions
in our dataset, comprising around 11% of the dataset. We
also incorporate different ranges of sentence length buckets
to investigate the optimal sequence length for pretrained LMs.
We found that around 80% data belongs within the sentence
length of 20 words.

2) Data Split: We divided the dataset into train, validation,
and test splits, containing 70%, 10%, and 20% of the data,
respectively. We used stratified sampling to ensure a balanced
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Class Train Dev Test Total Class Train Dev Test Total

Anger 953 156 276 1,385 Sadness 929 124 273 1,326
Fear 538 91 173 802 Surprise 365 51 111 527
Joy 740 89 204 1,033 Trust 2,678 367 739 3,784

Neutral 2,201 310 637 3,148

TABLE I: Class label distribution across the data splits.

distribution of class labels across the data splits. We provided
the detailed data distribution of the data splits in Table I.

3) Sentiment Data Preparation: Anger, Fear, and Sadness
emotions are expressed in a negative situation while Joy
and Trust show positivity. Moreover, Surprise emotion can
be expressed in positive and negative situations. However,
we chose Surprise emotion as a positive sentiment since we
found positive textual representations in the commit messages.
As a result, to consolidate the sentiment data, we combined
{Anger, Fear, Sadness} emotions as Negative sentiments and
{Joy, Surprise, Trust} emotions as Positive sentiments while
considering neutral emotions as neutral sentiments.

E. Experimental Strategies

We employed two experimental strategies to investigate the
two research questions.

1) First Strategy: As part of this strategy, we address RQ1
to compare the performance of traditional machine learning,
deep learning, and pretrained LMs using both emotion and
sentiment datasets. Indeed, we selected widely used models
effective for sentiment and emotion analysis.

Baseline Model: We incorporate multinomial naive Bayes
(MNB) as our baseline, as it has been widely considered
the standard model in the literature. We capture contextual
information for MNB by using a weighted n−gram (uni, bi,
tri, and quadri-gram).

Classical Models: In prior studies, classical machine learning
models such as the support vector machine (SVM) and random
forest have been widely used due to limited computational re-
sources [13].To investigate classical machine learning models,
we selected SVM and RF to conduct our experiments. We
used the standard parameter settings and a weighted n−gram
tf-idf representation to prepare the data.

Deep Learning: Although deep learning models are exten-
sively used for sentiment and emotion analysis on social
media data, they have not been widely applied to sentiment
or emotion identification for software artifacts to date. We
incorporate bidirectional long short-term memory (LSTM) as
a deep learning algorithm to explore the performance of the
deep learning model. The motivation for choosing LSTM is
that it can capture a long sequence and extract meaningful
information. We use an embedding dimension of 128, as more
than 95

Pretrained Language Models: We choose XLM-RoBERTa
[15], CodeBERT [2], CodeReviewer [3], T5 commit gen-

CodeBERT

CommitBERT

T5-Commit-
Generator

CodeReviewer

Hidden States

Encoder last 
hidden state

Encoder last 
hidden state

Encoder last 
hidden state

Fusion Layer Output Layer Softmax LayerConcatenation

Fig. 3: Concatenation of hidden outputs followed by fusion
and output layer.

CodeBERT

CommitBERT

T5-Commit-
Generator

CodeReviewer

Hidden states

Encoder last 
hidden state

Encoder last 
hidden state

Encoder last 
hidden state

Fusion Layer

Output 
Layer

Softmax 
Layer

Concatenation

Feed Forward 
Network

Fig. 4: Concatenation of hidden outputs followed by fusion
layer, feed-forward network, and output layer.

erator4, and CommitBART [14] pretrained models for our
study because transformer-based pretrained LMs have exhib-
ited notable performance for various NLP downstream tasks.
We maintain the same hyper-parameters for fine-tuning for
fair evaluation across the models. We fine-tune our models
for up to 3 epochs to mitigate overfitting, using an Adam
optimizer with a learning rate of 2e−5, a batch size of 16, and
a maximum sequence length of 256.

2) Second Strategy: To address RQ2, we explore three
different approaches for ensemble learning. We utilize four
different pre-trained LMs, trained on software artifacts, in
all three approaches. In the first approach, we concatenate
the output of the hidden state of CodeBERT and the output
of the encoder’s last hidden layer of the other three models
(CommitBART, T5 Commit Generator, and CodeReviewer).
Then, we feed the concatenated output to the fusion layer,
followed by the output and softmax layer. For the second
approach, we maintain a similar architecture to the first
approach and incorporate a feed-forward network between the
fusion and output layers. The primary difference between the
first and second approaches lies in the softmax layer. For the
third approach, we select the best logits based on the logits
confidence and feed the best logits to the softmax layer. We

4https://huggingface.co/mamiksik/T5-commit-message-generation
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Fig. 5: Third ensemble approach: select the best logits based
on the logits’ confidence.

provide a detailed architecture of the first, second, and third
approaches in Figures 3, 4, and 5, respectively. We train all
the ensemble models for up to 10 epochs with a learning rate
of 2e−5 for the Adam optimizer, a batch size of 32, and a
maximum sequence length of 256. Moreover, we used the
CrossEntropyLoss function to calculate the training and
validation loss.

To evaluate and compare the models, we computed their
accuracy, weighted precision, recall, and F1 macro score to
measure all performance across the different experimental
settings. Considering the imbalanced data, we chose the macro
version of the F1 score.

IV. EXPERIMENTAL RESULTS

This section details the results of the two strategies address-
ing their corresponding research questions.

A. RQ1: Performance of Machine and Deep Learning Models

In Table II (top), we present the results of our first ex-
periment strategy with the original train set of the emotion
dataset. In our first experiments, we found that all the models
outperformed the baseline, except for the XLM-RoBERTa-
large model. Classical models outperform the baseline and
XLM-RoBERTa-large model, while the random forest outper-
forms the bidirectional LSTM and T5 commit generator. While
most pre-trained LMs outperform classical and deep learning
models, XLM-RoBERTa-large failed to demonstrate superior
performance on commit messages. The reason for performing
poorly on commit messages is that the model is trained on
newspapers, Wikipedia, and formal text, which differs from
commit messages. Among the models trained on software
artifacts, CommitBART is the best-performing model, while
CodeBERT shows prominent performance over the test set.

We present the results on the sentiment dataset for the
first strategy in Table II (bottom). This strategy used original
training data to train the model and test data for evaluation.
In our first experimental strategy, we found that all the
models outperformed the baseline except the XLM-RoBERTa-
large model. Classical models provided comparable perfor-
mances, while the random forest outperformed bidirectional
LSTM, CodeReviewer, and the T5 commit generator. More-
over, the bidirectional LSTM outperforms two pre-trained

Model Accuracy Precision Recall F1-macro

Baseline

MNB 39.66 35.74 39.66 21.43

Classical Models

SVM 38.25 35.16 38.25 26.51
RF 42.27 40.00 42.27 28.65

Deep Learning Model

Bidirectional LSTM 38.50 35.75 38.50 27.42

Pretrained Language Models

XLM-RoBERTa-large 37.05 21.34 37.05 13.56
CodeBERT 43.72 44.06 43.72 30.71
CodeReviewer 42.40 41.48 42.40 29.97
CommitBART 43.72 42.96 43.72 32.70
T5 Commit Generator 42.77 39.16 42.77 28.11

Model Accuracy Precision Recall F1-macro

Baseline

MNB 51.45 51.32 51.45 46.51

Classical Models

SVM 51.20 50.65 51.20 49.06
RF 54.61 54.49 54.61 51.57

Deep Learning Model

Bidirectional LSTM 51.99 51.61 51.99 50.07

Pretrained Language Models

XLM-RoBERTa-large 43.73 19.12 43.73 20.28
CodeBERT 55.52 55.19 55.52 53.36
CodeReviewer 52.99 53.36 52.99 49.29
CommitBART 54.03 53.84 54.03 51.77
T5 Commit Generator 52.49 52.14 52.49 49.89

TABLE II: Performance on different models for the first ex-
periment strategy to address RQ1 using emotion (top) and sen-
timent (bottom) datasets. Bold indicates models outperformed
baseline; Underline indicates the best performing model.

LMs (CodeReviewer and T5-Commit-Generator) despite hav-
ing less model complexity and fewer trainable parameters.
However, CodeBERT and CommitBART exhibit superior per-
formance compared to the other models, with CodeBERT
being the best-performing model, achieving an F1-macro score
of 53.36.

Therefore, the current state-of-the-art machine learning,
deep learning, and pre-trained LMs did not perform well
for emotion analysis, most likely due to the high number
of emotion classes (i.e., seven) and poor annotation quality.
However, the performance on the sentiment dataset (with only
three classes) is comparable to state-of-the-art results.

B. RQ2: Performance of Ensemble Learning

Table III (top) presents the performance of the second strat-
egy using the emotion dataset. The performance of ensemble
learning did not perform well on the emotion dataset. We
achieved an F1-macro score of 20.26% for the first ensemble
approach, which could not surpass the baseline. Although the
other two ensemble approaches outperformed the baseline, the
pretrained LMs (trained on software artifacts) and random
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Model Accuracy Precision Recall F1-macro

Baseline 39.66 35.74 39.66 21.43

Approach 1 41.45 28.82 41.45 20.26
Approach 2 37.75 36.29 37.75 27.62
Approach 3 39.45 36.88 39.45 28.30

Model Accuracy Precision Recall F1-macro

Baseline 51.45 51.32 51.45 46.51

Approach 1 56.15 56.16 56.15 54.67
Approach 2 54.82 54.52 54.82 52.85
Approach 3 54.98 55.05 54.98 52.35

TABLE III: Performance on proposed ensemble techniques
to address RQ2 for emotion (top) and sentiment (bottom)
datasets.

Fig. 6: Emotion class-wise best-performing models.

forest exhibit superior performances in emotion analysis. We
achieved F1-macro scores of 27.62% and 28.30% for the
second and third ensemble approaches, respectively.

Table III (bottom) presents the performance of the third
strategy on the sentiment dataset. Despite the poor perfor-
mance on the emotion dataset, the third strategy delivers
good performance on the sentiment dataset. The first ensemble
approach outperformed all the experiments with an F1-macro
score of 54.67%, while the other two ensemble approaches
outperformed all the models except CodeBERT. We achieved
F1-macro scores of 52.85% and 52.35% for the second and
third ensemble approaches. Therefore, the performance on the
emotion dataset after applying ensemble learning decreased
by 4% − 12%. However, ensemble learning provides the
best performance on the sentiment dataset. The observed
decrease in performance for the emotion dataset and the slight
improvement for the sentiment dataset suggest that ensemble
learning is not always beneficial, and its effectiveness may
vary depending on the chosen approach.

V. DISCUSSIONS

For the first strategy, all the models struggled to predict the
Fear, Joy, and Sadness classes, while the prediction for the

         Anger
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Joy

Neutral          

Sadness             

Surprise

      Trust

10 20 30 40 50 60

RF
Bidirectional LSTM
CommitBART
CodeBERT
XLM-RoBERTa-large
T5-Commit-Generator

Fig. 7: Class-wise performances on selected models for the
first experiment strategy on the emotion dataset.

Surprise class was the most challenging for emotion analysis.
The XLM-RoBERTa-large model correctly predicted only the
Neutral and Trust classes, but failed to predict the other
classes correctly. Bidirectional LSTM performed poorly in
the Surprise class while struggling with the Sadness and Joy
classes. The pretrained model T5 Commit Generator could
not predict any Surprise class correctly while delivering the
best performance for the Neutral class and the second-best
performance for the Trust class. While CodeBERT performed
inadequately in the Surprise class, it achieved the best per-
formance for the Sadness and Trust classes and the second-
best performance in the Fear class. Among all the models,
CommitBART outperformed the others in four classes: Anger,
Fear, Joy, and Surprise. We provided the detailed class-wise
performances on selected models in Figure 7. We present
class-wise best-performing models for emotion analysis in
Figure 6.

Figure 8 and Table IV present the detailed class-wise
performance results for the selected models. We also ana-
lyzed the class-wise performance for the first experimental
strategy on the sentiment dataset. We noticed that all the
models performed better, except for the XLM-RoBERTa-large
model, compared to the emotion dataset performance. The
XLM-RoBERTa-large model predicts only the positive class.
However, the classical model and random forest show the best
performance on the Negative and Neutral classes, whereas
CodeBERT exhibits superior performance on the positive
class. Moreover, the performance on the sentiment dataset
is superior to that on the emotion dataset; specifically, the
higher number of classes in the emotion dataset leads to
poorer performance. We expect that a well-balanced and better
human-annotated dataset will yield good performance for both
emotion and sentiment analysis, as evidenced by the results.

We explored three different ensemble learning approaches to
understand the performance of emotion and sentiment analysis.
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TABLE IV: Class-wise performances on selected models for the first experiment strategy on the emotion dataset. Bold indicates
the best performance for the class.

Model Name Class F1 score Model Name Class F1 score

Random Forest

Anger 35.60

XLM-RoBERTa-large

Anger 0.00
Fear 21.93 Fear 0.00
Joy 12.55 Joy 0.00
Neutral 53.24 Neutral 49.19
Sadness 14.78 Sadness 0.00
Surprise 12.41 Surprise 0.00
Trust 50.03 Trust 45.71

Bidirectional LSTM

Anger 37.92

T5 Commit Generator

Anger 37.34
Fear 25.53 Fear 21.31
Joy 15.75 Joy 15.02
Neutral 47.85 Neutral 54.83
Sadness 13.97 Sadness 17.78
Surprise 4.72 Surprise 0.00
Trust 46.21 Trust 50.51

CommitBART

Anger 40.16

CodeBERT

Anger 36.76
Fear 27.89 Fear 27.48
Joy 24.85 Joy 17.04
Neutral 54.65 Neutral 53.41
Sadness 16.82 Sadness 25.05
Surprise 13.14 Surprise 3.48
Trust 51.36 Trust 51.72

TABLE V: Example of contradictory data annotation in the
training set.

hash Commit Message Class

d4c330cfdc2610f86d1cbfda8244797461804577 Fix typos Trust
a15025606e31db384d1ec23f5ac17c4a49bd9579 Fix typo Neutral
cea7a21e61fe55220bda12ace665c33028ed2d02 Fix name typo Sadness
2704d89e3aa279bf791ef4a7c793a30d5d53e55c Correct a typo Joy

In our experiments, the ensemble learning approaches did
not perform as expected on the emotion dataset, whereas
they exhibited superior performance on the sentiment dataset.
This demonstrates that ensemble learning is effective for
performance improvement in sentiment analysis. For the emo-
tion dataset, the first ensemble approach only predicts the
Anger, Neutral, and Trust classes, while it provides the best
performance on the sentiment dataset. The performance on
the emotion dataset significantly decreased due to the large
number of emotion classes compared to the sentiment dataset.

Although deep learning and pre-trained LMs provide com-
parative results, their performances are below 33% for emotion
analysis in our study. We investigated the data quality to get a
more insightful conclusion. We found that the manual annota-
tion process yielded conflicting labels for similar kinds of data.
Table V presents an example of contradictory annotation from
our training data. Also, due to the biases among the annotators,
the quality of data annotation is flawed. Furthermore, we
found that 15% of the training data consists of two or three
words. Although capturing the emotions and sentiment from
a sentence of two or three words is challenging, we did not
remove those texts. We did not remove the two- or three-
word texts to understand the performances across the models
because a significant number of commit messages are of short
text length.

                   Negative

Neutral     

Positive     

10 20 30 40 50 60 70

RF
Bidirectional LSTM
CommitBART
CodeBERT
XLM-RoBERTa-large
T5-Commit-Generator

Fig. 8: Class-wise performances on selected models for the
first experiment strategy on the sentiment dataset.

We identified that capturing human feelings is challenging
if the text contains insufficient information. For example,
fixing an important bug or feature might lead to joy (posi-
tive), whereas fixing some minor issues might lead to anger
(negative). However, the commit messages for both cases
are similar. We also noticed that most texts contain noise,
such as class names, method names, versions, and package
information. These noises affect the overall performance of
the models because they occur in multiple emotion categories.
Removing such noises requires manual efforts because of the
unstructured representation of texts.

A. Comparison

Table VI shows a performance comparison among various
studies in the literature. Some studies have not evaluated au-
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Studies Analysis Dataset Classes Best F1 Score

(2014) Guzman et al. [21] Sentiment GitHub commit comments 2 -
(2016) Sinha et al. [25] Sentiment GitHub commit comments 3 -
(2017) Thelwall [26] Emotion Tweets 2 54.45%
(2018) Islam and Zibran [12] Emotion Jira issue comments 4 78.43%
(2019) Islam et al. [7] Emotion Jira and stack overflow comments 5 80.90%
(2021) Venigalla and Chimalakonda [10] Emotion Github commit comments 8 -
(2022) Imran et al. [27] Emotion GitHub comments 6 48%
(2024) Imran et al. [29] Emotion GitHub, Jira, and Stack overflow comments 6 59.20%
(2024) Topal et al. [30] Emotion Tweets 4 36.5%-56.3%
Our Study Emotion GitHub commit comments 6 32.70%
Our Study Sentiment GitHub commit comments 3 54.67%

TABLE VI: Comparison of Existing Studies on Emotion and Sentiment Analysis in SE.

tomated methods for identifying emotion and sentiment, e.g.,
[10], [21], [25]. Overall, studies considering fewer emotion
or sentiment classes performed well, e.g., [12]. Depending
on the dataset, the performance of machine learning and
deep learning, as well as large language models, also varies
significantly. Thus, benchmarking is extremely challenging
in emotion and sentiment analysis in the SE domain. Early
studies (e.g., [7], [12]) used traditional machine learning
models, whereas more recent studies (e.g., [29], [30]) explored
the ability of computationally expensive large language models
and fine-tuned them. However, researchers should consider the
trade-off between cost and benefits while analyzing emotion
and sentiment in the software engineering domain.

B. Implications for Researchers and Developers

The literature on emotion and sentiment analysis of commit
messages lacks manually annotated data. As a result, studies
on emotion and sentiment analysis using commit messages
have not attracted many researchers. Our study provided the
largest human-annotated dataset for emotion and sentiment
analysis, which may attract the research community to explore
this area. Moreover, our findings suggest that a good annota-
tion guideline is required for constructing a better dataset using
commit messages. This study aims to explore developers’
emotions and sentiments expressed in commit messages; thus,
devising high-performing machine learning models was not
the primary goal of this study.

Our study shows that developers mostly use neutral and
trust emotions while writing commit messages. However, a
significant number of commit messages contain anger and
sadness, indicating that developers often write code with
negative emotions, which can impact the project’s quality.
Moreover, we found that developers do not write long text
(∼80% of commit messages are within 20 words) in commit
messages. Thus, we strongly recommend that developers write
more expressive and meaningful commit messages, which
offer several benefits (e.g., issue tracking), during both soft-
ware development and maintenance and evolution phases. We
also found that developers express different emotions without
significant changes in the commit messages. The manual
annotation of the dataset is highly imbalanced, which may
significantly impact the model’s performance. Moreover, the

annotations are subjective, and the annotators base their an-
notations on their understanding, which may introduce biases
into our dataset. Therefore, it is crucial to account for annotator
bias when developing models utilizing curated datasets. The
hyper-parameters we used to train our models require fur-
ther investigation and experiments for optimal performance.
Investigating optimal hyper-parameters was not within the
scope of this study, i.e., we aimed to explore emotions and
sentiments in the commit messages. Our experiments may
yield better results with optimal hyper-parameters. We have
made model implementations and the curated dataset available
for replication.

VI. CONCLUSION AND FUTURE WORK

This study presents the largest manually annotated dataset
for emotion and sentiment analysis on commit messages and
reports the performance of pre-trained language models (LMs),
deep learning, traditional machine learning, and the ensemble
of pre-trained LMs in predicting emotion and sentiment.
Our first experimental strategy to address RQ1 showed that
state-of-the-art machine learning models perform better on
the sentiment dataset than the emotion dataset. The RQ2
demonstrated that the oversampling technique in our study did
not perform well. Furthermore, findings in RQ2 suggested that
incorporating ensemble learning improves the performance of
the sentiment dataset while negatively impacting the perfor-
mance of the emotion dataset. We also provided a detailed
performance comparison among the models.

We conducted all the experiments using the proposed dataset
and provided an in-depth analysis. Our results indicate that
while the pre-trained LMs outperformed the classical and
deep learning algorithms, their performance was insufficient to
identify emotions accurately. Although the annotation of the
dataset showed moderate agreement, the advancement of pre-
trained LMs for commit messages has yet to be studied. More-
over, a detailed annotation guideline is required to construct a
new dataset for this area. We also identified the challenges
of determining the underlying meaning of the text, which
caused low performance across the models. In addition, further
study of the pre-trained model represents another promising
direction, and we will incorporate new pre-trained models
for commit messages in our future studies. We also aim to
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develop a more diverse dataset that would better demonstrate
the robustness of the proposed approach.
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