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Abstract. AI-assisted gait analysis holds promise for improving Parkin-
son’s Disease (PD) care, but current clinical dashboards lack transparency
and offer no meaningful way for clinicians to interrogate or contest AI
decisions. To address this issue, we present Motion2Meaning, a clinician-
centered framework that advances Contestable AI through a tightly
integrated interface designed for interpretability, oversight, and proce-
dural recourse. Our approach leverages vertical Ground Reaction Force
(vGRF) time-series data from wearable sensors as an objective biomarker
of PD motor states. The system comprises three key components: a Gait
Data Visualization Interface (GDVI), a one-dimensional Convolutional
Neural Network (1D-CNN) that predicts Hoehn & Yahr severity stages,
and a Contestable Interpretation Interface (CII) that combines our novel
Cross-Modal Explanation Discrepancy (XMED) safeguard with a con-
testable Large Language Model (LLM). Our 1D-CNN achieves 89.0%
F1-score on the public PhysioNet gait dataset. XMED successfully iden-
tifies model unreliability by detecting a five-fold increase in explanation
discrepancies in incorrect predictions (7.45%) compared to correct ones
(1.56%), while our LLM-powered interface enables clinicians to validate
correct predictions and successfully contest a portion of the model’s er-
rors. A human-centered evaluation of this contestable interface reveals
a crucial trade-off between the LLM’s factual grounding and its read-
ability and responsiveness to clinical feedback. This work demonstrates
the feasibility of combining wearable sensor analysis with Explainable AI
(XAI) and contestable LLMs to create a transparent, auditable system for
PD gait interpretation that maintains clinical oversight while leveraging
advanced AI capabilities. Our implementation is publicly available at:
https://github.com/hungdothanh/motion2meaning.

Keywords: Parkinson’s disease care · Gait analysis · Human-centered
contestable AI · Contestable large language model · Explainable AI

1 Introduction

The management of chronic neurodegenerative diseases is shifting from episodic
evaluations to continuous monitoring with wearable sensors, which provide ob-
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jective digital biomarkers for earlier intervention and individualized therapy
[25,5,26]. Parkinson’s Disease (PD), a condition marked by progressive motor
impairments [16], exemplifies this need. Standard clinical tools like the Unified
Parkinson’s Disease Rating Scale (UPDRS) [27] are applied too intermittently
and are vulnerable to observer and patient bias [6,2]. Consequently, they fail to
capture daily motor fluctuations, leading to imprecise treatment, heightened fall
risk, and reduced quality of life [26,17].

Although AI models can accurately quantify gait and predict disease severity
[52,29], their clinical translation is stalled by a critical “last-mile problem.” Current
dashboards present outputs like Hoehn & Yahr stages [12] as opaque, static scores,
preventing clinicians from scrutinizing or overriding predictions that conflict with
their expertise. This opacity undermines trust and the principles of evidence-
based medicine. While Explainable AI (XAI) offers partial solutions like saliency
maps [20,32,30], these are typically one-way communications that fail to support
the dialogic nature of clinical reasoning [34,31]. The crucial gap is not merely
a lack of transparency but the absence of mechanisms for procedural recourse,
enabling clinicians to actively contest and amend AI-driven decisions.

To address this gap, we draw on the principles of Contestable AI (CAI). CAI
extends beyond explanation by embedding structures for dialogue, challenge, and
justification within system design [34,31]. This approach aligns with regulatory
demands for human oversight (GDPR [48], EU AI Act [8]). A contestable system
allows users not only to understand a decision but also to dispute it with domain
expertise, ensuring that such challenges are recorded, processed, and capable of
influencing the final outcome. This study seeks to apply these principles in a
clinician-centered interface for PD care. The key contributions are as follows:

– We design and implement Motion2Meaning, a novel clinician-centered frame-
work that unifies three core components: a deep learning (DL) diagnostic
model, a dual-modality explainability module, and an LLM-driven interaction
layer within a single human-in-the-loop interface.

– We implement a 1D-CNN architecture that performs end-to-end classification
of Hoehn & Yahr severity from raw vGRF time-series data. This model
outputs a probability distribution over the four discrete severity stages.

– We introduce Cross-Modal Explanation Discrepancy (XMED), a novel XAI
technique to automatically flag unreliable predictions. XMED operates on
the principle that trustworthy predictions should have stable explanations
across different methods. It quantifies the divergence between a gradient-
based explanation (Grad-CAM [45]) and a backpropagation-based one (LRP
[20]). A high divergence score signifies inconsistent model reasoning, which
automatically flags the prediction for mandatory clinical review.

– We develop a contestable interaction system powered by a Large Language
Model (LLM) that uses a structured “Contest & Justify” workflow. The LLM
synthesizes the CNN’s prediction, XAI-identified salient features, and the
clinician’s specific challenge to generate clinically-grounded textual justifica-
tions. These justifications form the basis for a transparent, evidence-based
dialogue between the clinician and the AI.
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2 Background and Related Work

This work is situated at the confluence of two research domains. We first review
advances in AI for sensor-based PD gait analysis, where progress in predictive
accuracy has often come at the cost of clinical interpretability. We then connect
this gap to the broader evolution of human-centered AI in healthcare, which argues
for moving beyond passive Explainable AI (XAI) toward the more interactive
and legally robust principles of Contestable AI (CAI).

2.1 AI for Sensor-Based Parkinson’s Gait Analysis

For decades, gait analysis has been central to movement disorder research, but it
was traditionally limited to specialized motion capture laboratories. Wearable
Inertial Measurement Units (IMUs) have transformed this field by enabling
continuous, high-resolution data collection in natural environments [43,24,40,38].
This is vital for PD care, where gait serves as a rich digital biomarker. Neurode-
generation of dopaminergic pathways in the basal ganglia disrupts movement
automaticity, producing measurable deficits in stride length, speed, cadence,
turning velocity, and asymmetry. IMUs are also well-suited to detect episodic
phenomena such as Freezing of Gait (FOG) and medication-related fluctuations
that are difficult to capture in clinic visits [43,35]. Early computational methods
relied on handcrafted biomechanical features derived from statistical, spectral,
and non-linear analyses, which were classified using models such as Support Vec-
tor Machines and Random Forests [37]. Although interpretable, these approaches
were constrained by their dependence on expert-driven feature design and limited
ability to capture complex pathological patterns. More recently, end-to-end DL
has emerged, with one-dimensional Convolutional Neural Networks effective for
local spatio-temporal motifs, and Recurrent Neural Networks or Transformers
capturing long-range dependencies [7,28,39]. Despite SOTA performance, their
opacity poses a major barrier to clinical adoption. This accuracy–interpretability
trade-off erodes trust, as clinicians are reluctant to rely on opaque predictions that
cannot be examined against their expertise [34,31]. The problem is compounded
by dashboards that act only as data presenters, showing parameters or outputs
without revealing model reasoning or enabling clinician input or correction [13,34].

2.2 From Explainable to Contestable AI in Healthcare

Bridging the gap between high-performance AI and clinical use requires human-
centered socio-technical systems that are transparent, interpretable, and trust-
worthy. This effort began with XAI and is now advancing toward CAI, as
illustrated in Figure 1 [31]. XAI seeks to make black-box predictions understand-
able, supporting trust and error detection [33,30,32]. In clinical gait analysis,
XAI remains early, though methods from other medical domains provide guid-
ance. Backpropagation-based approaches, such as Saliency Maps and LRP [20],
highlight critical temporal regions of the input. CAM-based techniques, including
Grad-CAM [45] and Grad-CAM++ [4], localize discriminative regions linked to
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Fig. 1: Progression of human-centered XAI toward CAI.

predictions. Perturbation-based methods [41,36,49] identify influential regions
by altering inputs and monitoring changes in output probabilities. More recent
work emphasizes interactive explanations, allowing users to test counterfactuals
or adjust inputs, and cognitively aligned formats, such as contrastive reasoning
or natural language dialogue [34,31]. These developments recognize explanation
as a social process aimed at shared understanding between humans and AI.

A central challenge in human-AI collaboration is achieving appropriate trust
calibration [42,21], the process by which a user develops an accurate mental
model of an AI’s capabilities to avoid both blind over-trust (automation bias)
and reflexive dismissal (algorithm aversion). Conventional XAI, while providing
transparency, may not suffice for this task. A compelling but incorrect explanation
can actively impair calibration by creating a false sense of security [53]. A system
designed for effective calibration must therefore go beyond one-way explanations
and provide a mechanism for procedural recourse [11]. This is the principle of CAI:
to create an essential feedback loop where clinicians can act on their calibrated
judgments, transforming them from passive observers into active supervisors,
enabling expert-driven recourse that forms the foundation of our Motion2Meaning
framework, which aims to operationalize contestability in a real-world clinical
setting.

3 Methodology

Figure 2 presents an overview of the Motion2Meaning framework, which integrates
two core interfaces into an end-to-end system for gait interpretation.

The first component is the Gait Data Visualization Interface (GDVI).
It is an interactive web-based tool for exploring gait data from the PhysioNet
dataset [10], as depicted in Figure 3. The interface presents raw vGRF signals
in 10-second windows, with controls to toggle sensor channels and select time
segments for detailed inspection. A complementary summary panel uses color-
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Fig. 2: The overview of Motion2Meaning framework: (a) Gait Data Visualization
Interface (GDVI), and (b) Contestable Interpretation Interface (CII).

coded markers to highlight key temporal events, including Stride, Stance, and
Swing Time. This design enables clinicians to rapidly compare gait patterns
against normative data and visually identify potential anomalies.

Fig. 3: The dashboard overview of Gait Data Visualization Interface (GDVI).

The second and also core component of the framework is the Contestable
Interpretation Interface (CII), the dashboard where the human-AI dialogue
occurs. Its workflow is operationalized through three integrated technical pillars:
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1. The workflow begins with the 1D-CNN, our predictive engine designed
following [1], which analyzes a patient’s gait data to generate an initial
classification of the Hoehn & Yahr severity. This prediction is presented not
as a final answer, but as a testable hypothesis for clinical review.

2. To audit the reliability of this hypothesis, the Cross-Modal Explanation
Discrepancy (XMED) module performs an automated consistency check
on the model’s reasoning. It leverages the fundamental differences between
Grad-CAM [45], which identifies where in the signal the model focuses, and
LRP [20], which attributes what specific data points were most influential. A
significant divergence between these two reveals a critical failure mode where
the model may correctly identify a clinically relevant temporal region but
base its decision on a spurious artifact within it. This quantified "attention-
attribution" gap provides a targeted alert for a structurally flawed reasoning
process that a single explanation method would miss.

3. Finally, the LLM-powered "Contest & Justify" workflow enables procedural
recourse. When a prediction is challenged, either due to an XMED alert or
independent clinical judgment, the clinician registers dissent through a struc-
tured typology: Factual Error (contesting input data integrity), Normative
Conflict (flagging contradiction with clinical knowledge), or Reasoning Flaw
(challenging the XAI’s visual evidence). This formal contestation triggers the
LLM to synthesize all available evidence and generate a new, contextualized
justification. This exchange creates a transparent, collaborative negotiation
that culminates in either acceptance or a clinician-driven override, with every
step logged in an immutable record to ensure accountability.

4 Experiment and Results

To evaluate the effectiveness of our Motion2Meaning framework, we conducted a
comprehensive, multi-stage investigation. Our evaluation was designed to answer
three central questions: (1) What is the baseline predictive performance of our
core 1D-CNN model on PD severity classification? ; (2) Can the XMED method
effectively distinguish between reliable and unreliable model predictions? ; (3)
How effectively can LLMs leverage these discrepancy signals to validate correct
predictions and contest erroneous ones in a simulated clinical workflow?

4.1 Dataset and Experimental Setup

Our experiments were conducted using the public PhysioNet Gait in PD dataset,
which contains vertical Ground Reaction Force (vGRF) signals from 93 individuals
with PD and 73 healthy controls [10]. For our deep learning model, we preprocessed
the data by segmenting the variable-length recordings into fixed, non-overlapping
1000-frame windows. To create a focused and interpretable attribution space
for our XMED safeguard, we used a single, highly informative feature for our
analysis: the "Total left force" signal.
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The dataset was partitioned into training (70%), validation (15%), and test
(15%) sets, using multiple random seeds to ensure robustness. We trained our
model using a nested cross-validation strategy on the training data. A 5-fold
outer loop assessed model generalization, while a 3-fold inner loop within each
fold conducted a grid search to optimize hyperparameters. The final optimal
configuration derived from this process is presented in Table 1.

4.2 Human-Centered Evaluation Metrics

To align with CAI and foreground the framework’s human-centered design, we
evaluate Motion2Meaning using human-oriented metrics. We concentrate on LLM-
generated textual explanations, which constitute the most direct interface between
the AI component and clinicians. Our first two metrics are the Flesch readability
tests [18,9], which estimate readability via sentence length and lexical complexity.
Flesch Reading Ease (FRE) ranges from 1 to 100, with higher values indicating
greater accessibility. The Flesch-Kincaid Grade Level (FKGL) estimates the
U.S. school grade needed to comprehend a text. For clinician-oriented medical
materials (e.g., clinical documentation used in diagnostic and care workflows),
typical FRE scores are 50 to 70. These correspond to FKGL 8 to 12 and are
appropriate for readers aged approximately 13 to 18 [51,3]. The corresponding
formulas are given as:

FRE = 206.835− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables
total words

)
,

FKGL = −15.59 + 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables
total words

)
.

Clinical Grounding (CG) evaluates LLM hallucination by quantifying
the verifiability of its explanations against available evidence. We compute it
by first isolating all numerical values in the model’s generated text, and then
determining the percentage of those numbers that match the figures provided
in the input prompt and data. Given the multiset of numerical values extracted
from the LLM’s generated explanation, VE , and the multiset of all numerical
values provided in the input prompt and data, VI , CG is defined as:

CG =
100

|VE |
∑
ν∈VE

I(ν ∈ VI),

where I(·) is the indicator function and the score is defined as 100 if |VE |= 0 (i.e.,
no numerical claims are made). A high score indicates the framework’s ability to
reduce a clinician’s cognitive load and mitigate clinical risk.

Self-Correction Accuracy (SCA), measures the direct impact of our
contestation system on fixing the baseline model’s mistakes. We compute it
by first isolating the set of instances Derr that the baseline model initially
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misclassified, and then calculating the percentage of these specific errors that the
contestable LLMs system successfully overturns to the correct label. Given the
final system’s prediction ŷfinal(xi) and the true label yi for an instance xi ∈ Derr,
SCA is formally defined as:

SCA =
100

|Derr|
∑

xi∈Derr

I(ŷfinal(xi) = yi),

where I(·) is the indicator function. A high score confirms the framework’s
self-remediation capacity, enhancing user trust and clinician-AI collaboration.

4.3 Predictive Model Performance

Upon evaluation on the unseen test set, our model achieved a robust overall
accuracy and weighted F1-score of 0.89, with a detailed breakdown of per-class
performance provided in Table 2. The model demonstrates excellent performance
in identifying the Healthy control group, achieving an F1-score of 0.91. Further-
more, it shows reliable discrimination between the clinically adjacent intermediate
severity levels, with balanced F1-scores of 0.87 for Stage 2 and 0.89 for Stage
2.5. The primary challenge was observed in the most advanced category, Stage 3,
which recorded a slightly lower recall of 0.84. This reduced sensitivity is likely
attributable to the significant class imbalance, as this category contains only 83
samples, which may limit the model’s ability to learn its full intra-class variability.
These results confirm the model’s overall robustness but also highlight a clear
direction for future refinement; techniques such as targeted data augmentation
or class-balancing loss functions could further improve sensitivity for the more
advanced disease stages.

4.4 Analysis of the Contestable AI System

The model’s fallibility, particularly in intermediate and advanced disease stages,
highlights the need for a human-in-the-loop system to identify and correct errors.
We first evaluated our XMED safeguard, which is based on the hypothesis that

Table 1: Optimized hyperparame-
ter configurations for the 1D-CNN
model.
Hyperparameter Value
Number of Convolutional Layers 5
Number of Fully Connected Layers 3
Activation Function ReLU
Dropout Rate 0.5
Learning Rate 0.0003

Table 2: Classification performance of the 1D-
CNN model on the test set.
Class Precision Recall F1-Score Support
Healthy 0.92 0.90 0.91 278
Stage 2 0.85 0.89 0.87 346
Stage 2.5 0.90 0.88 0.89 228
Stage 3 0.92 0.84 0.88 83
Accuracy 0.89 935
Macro Avg 0.90 0.88 0.89 935
Weighted Avg 0.89 0.89 0.89 935
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Fig. 4: Workflow overview of the XMED. The process compares CAM-based
(Grad-CAM) and backpropagation-based (LRP) explanations to quantify model
uncertainty. The input undergoes a forward pass to extract activations from
the target convolutional layer. Grad-CAM computes weighted feature maps via
gradient-based pooling, while LRP propagates relevance scores backward through
the network. Both maps are normalized and compared to identify regions of high
discrepancy, indicating divergent model explanations.

discrepancies between explanation methods can serve as a proxy for model
uncertainty. To test this, we quantified the “high-discrepancy percentage” for a set
of 30 test cases. The results confirm our hypothesis: misclassified cases exhibited a
five-fold higher average discrepancy rate (7.56%) compared to correct predictions
(1.45%). This demonstrates that attributional inconsistency is a reliable signal of
model unreliability.

To calculate this metric, we generated two normalized explanation maps for
each test sample: one using Grad-CAM [45] and another using LRP [20], as
illustrated in Figure 4. We calculated the absolute difference at each timestep,
flagging points where it exceeded a threshold of 0.5. These points were then
merged into coherent high-discrepancy regions, and the final metric was the
fraction of total timesteps falling within these regions.

With the safeguard validated, we investigated whether LLMs could use
these signals for adjudication. We tested Llama 4 Scout (17B) [23] and GPT-4o
(200B) [15] with identical prompts (Template 1) and settings. As summarized in
Table 3, their performance profiles differed significantly. GPT-4o adopted a more
conservative and reliable approach, correctly retaining all 24 correct predictions it
reviewed. In contrast, Llama 4 was more interventionist; it successfully overturned
two of the six incorrect predictions but also incorrectly overturned one correct
case, suggesting different underlying reasoning processes that warrant further
case-level analysis.
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Template 1: Prompt template for Contestable Gait Analysis

SYSTEM MESSAGE: You are a helpful clinical decision support AI for Parkinson’s
disease diagnosis using gait analysis. Always:

1. Think step-by-step before responding.
2. Justify your initial assessment and interpretation of gait metrics, referencing clinical

guidelines or evidence when possible.
3. When finalization request is queried, you must finalize the decision (only answer:

“Healthy”, “Stage 2”, “Stage 2.5”, or “Stage 3”) but you may overturn your prior assessment
if, after reviewing all evidence, you are confident a different answer is correct.

4. Using your clinical analysis and justification, identify the potential reasons for any
change in the final decision (e.g., specific gait abnormalities, asymmetries, variability,
etc.) or in case of no change, justify why the initial assessment was correct. Then
explain how these factors contribute to the final severity.

5. Provide accurate, current information using clinical gait analysis guidelines.
6. Cross-validate findings with multiple sources.
7. Reference sources for non-standard conclusions.
8. Maintain clarity with concise and straightforward responses.

USER MESSAGE:

1. Prediction: {class} (Confidence: {confidence}).
2. Gait metrics: {mean_stride_time}, {swing_percentage}, {stance_percentage}
3. XAI analysis output:

– Discrepancy percentage: {discrepancy_percentage}%.
– Continuous high-discrepancy regions: {[region_1], [region_2],...,[region_n]}.

*Note that the numerical input values (in green) have been pre-calculated by the baseline
model and XMED.

Correct Prediction Case In a representative case of a correct classification
(Figure 5a), the 1D-CNN identified a patient as Stage 0 (Healthy) with high
confidence (0.821) and a correspondingly low XMED discrepancy of 0.8%. Both
LLMs correctly upheld this initial prediction. As detailed in Figure 6, their
justifications were grounded in clinical gait data, with both models observing
that gait metrics were “within normal ranges.” Llama 4 further specified the
“absence of Parkinsonian gait markers,” while GPT-4o correctly interpreted the
minor discrepancy regions as not clinically significant, demonstrating a nuanced
understanding of the XMED signal.

Incorrect Prediction Case A more revealing case involved a low-confidence
(0.462) misclassification by the 1D-CNN, which was correctly flagged by a high
XMED score of 6.5% (Figure 5b). In this instance, the LLMs diverged, as shown
in Figure 7. Llama 4 successfully overturned the prediction, downgrading it from
Stage 2.5 to Stage 2. It correctly reasoned that while the prolonged stance phase
(65.1%) indicated impairment, the abnormality was insufficient to justify the
higher severity rating. In contrast, GPT-4o retained the incorrect Stage 2.5 label,
focusing on the clinical plausibility of the observed gait changes as compensatory
mechanisms. It failed to differentiate the degree of this deviation, highlighting a
more risk-averse adjudicative style that avoids overturning a prediction without
overwhelming contradictory evidence.
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Table 3: Number of classification cases by contestable LLMs with XMED support.
The arrows (↑/↓) indicate higher/lower is better.
Model Retain

Correct ↑
Retain

Incorrect ↓
Overturn
Correct ↓

Overturn
Incorrect ↑

llama-4-scout-instruct (17B) 23 4 1 2
gpt-4o (200B) 24 5 0 1

(a) Correct Prediction (b) Incorrect Prediction

Fig. 5: XMED Visualization for (a) correct and (b) incorrect prediction cases.

In terms of computational efficiency, we observed a clear trade-off. Llama
4 was consistently faster, with a response time (RT) between 7 and 9 seconds,
while GPT-4o was slower, taking between 11 and 15 seconds. However, GPT-4o
produced more concise and direct justifications, with an output token (OT) count
of approximately 499-562, compared to Llama 4’s more verbose outputs of 709-
818 tokens. This suggests that while the smaller model offers lower latency, the
larger model provides superior adjudication quality and more clinically-grounded
reasoning.

4.5 Human-centered Evaluation Results

To assess the framework’s human-centered design in line with CAI principles,
we evaluated Motion2Meaning on four key metrics. For a consistent and robust
evaluation, these metrics were computed and averaged across the 30 test cases
from the previous experiment, with the results summarized in Table 4.

Flesch Reading Ease (FRE) Llama 4 produced substantially more accessible
justifications, achieving an FRE score of 51.6, which falls within the typical
range for clinical documentation (50-70 [51,3]). In contrast, GPT-4o’s score of
34.73 places its output in the “difficult” range, reflecting a clear prioritization



12 L.P.T. Nguyen et al.

llama-4-scout-instruct (17B) RT (s) = 7.4, OT (tok) = 709

gpt-4o (200B) RT (s) = 11.1, OT (tok) = 499

Initial AI Assessment: The initial model prediction is Healthy. To justify this, let's analyze the provided information step by step:
     • Stride Time (L): 1.020 ± 0.026 s (8 cycles): The provided stride time of 1.020 ± 0.026 s falls within this normal range, indicating no
significant abnormality.
     • Stance (L): 0.660 ± 0.023 s (≈64.7% of stride, 9 cycles): The given stance time of approximately 64.7% of the stride is slightly higher
but still within a relatively normal range, suggesting a slightly altered gait pattern but not drastically abnormal. 
     • Swing (L): 0.366 ± 0.020 s (≈35.8% of stride, 9 cycles): The provided swing time of approximately 35.8% is slightly lower than
expected, which could indicate a mild gait asymmetry or alteration.
Considering these factors, the initial AI output predicting a "Healthy" status seems justified given the stride, stance, and swing times are
relatively within normal ranges. The slight variations could be due to individual differences or minor gait asymmetries that do not drastically
deviate from healthy patterns.
Final Decision: Healthy
Reasons for no changing:
     • The stride, stance, and swing times are within or very close to normal ranges. The slight variations could be due to individual
differences or minor gait asymmetries that do not drastically deviate from healthy patterns.
     • There are no significant indicators of Parkinson's disease gait abnormalities, such as marked bradykinesia (slowness), rigidity, or
postural instability, which are typically associated with stages 2, 2.5, or 3.

Justification of Initial Model Prediction: Healthy 
1. Gait events: 
    • Stride time of 1.020 ± 0.026 seconds is within the normal range for healthy individuals, suggesting a regular gait pattern without significant
delays. 
    • Stance Phase: 64.7% of the stride time is typical for healthy gait, where the stance phase usually occupies about 60-65% of the gait cycle.
    • Swing Phase: 35.8% of the stride time aligns with the expected range for healthy individuals, complementing the stance phase.
2. AI output: High confidence level of 0.821, low discrepancy percentage (0.8%) indicates minimal deviation from expected patterns. The
continuous discrepancy regions are isolated and may not significantly impact the overall gait assessment.
Final Decision: Healthy
The stride, stance, and swing times are all within normal ranges for a healthy gait cycle.
The minimal discrepancy percentage and isolated discrepancy regions do not suggest any significant gait abnormalities.
There is no evidence of asymmetry or variability that would indicate a progression to Parkinson's disease stages.

Fig. 6: Example responses from contestable LLMs in a Correct Prediction case.
The final decision (in blue) indicates the model retains the correct initial prediction
of baseline 1D-CNN. Output metrics: response time - RT (s) and number of
output token - OT (tok).

of technical precision over linguistic simplicity. This highlights that readability
is not an inherent model limitation but a highly tunable parameter. A simple
directive within the prompt to target a specific readability level could readily
align a model’s output with the practical demands of a clinical workflow, making
this a key consideration for system design.

Flesch-Kincaid Grade Level (FKGL) Both models produced outputs with
an FKGL appropriate for clinical documentation, which typically targets a Grade
8-12 standard [51,3]. Llama 4 scored an 8.5, equivalent to a mid-8th-grade
reading level, while GPT-4o scored a 10.52, corresponding to an early high school
complexity. These results confirm that both models can generate explanations
that are linguistically accessible to their intended clinical audience, with Llama
4 producing slightly more straightforward text. This finding is crucial, as it
demonstrates that the complexity of the underlying AI reasoning does not have
to result in an equally complex explanation for the end-user.

Clinical Grounding (CG) GPT-4o demonstrated superior factual grounding
with a CG of 0.75, slightly outperforming Llama 4 at 0.72. Both models reliably
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llama-4-scout-instruct (17B) RT (s) = 8.9, OT (tok) = 818

gpt-4o (200B) RT (s) = 15.2, OT (tok) = 562

Initial AI Assessment: The initial model prediction is Healthy. To justify this, let's analyze the provided information step by step:
     • Stride Time (L): 1.211 ± 0.097 s (7 cycles): The stride time of 1.211 ± 0.097 s falls within this range, suggesting a relatively normal
gait cycle duration.
     • Stance (L): 0.789 ± 0.093 s (≈65.1% of stride, 7 cycles): The stance phase of ≈65.1% of the stride is slightly higher than the typical
value, which might indicate a mild gait disturbance.
     • Swing (L): 0.427 ± 0.046 s (≈35.3% of stride, 8 cycles): The swing phase of ≈35.3% is slightly lower than expected, which could be
related to the slightly prolonged stance phase.
Given these observations:
     • Stage 2.5 suggests a moderate level of disease progression, where patients have difficulty with walking and balance but are still able to
live independently.
     • The slightly prolonged stance phase and reduced swing phase could indicate a mild to moderate level of gait impairment.
     • The relatively normal stride time suggests that overall gait cycle duration is preserved.
Final Decision: Stage 2
The adjustment is based on the observed gait abnormalities (slightly prolonged stance phase and reduced swing phase), these might not
be sufficient to conclusively classify the patient at Stage 2.5.
The relatively preserved stride time and the slight deviations in stance and swing phases suggest an early to moderate stage of gait
impairment, aligning more closely with Stage 2.

Analyze the gait events:
     • Stride Time: A stride time of approximately 1.211 seconds is within a typical range for adults, but the variability (±0.097 s) suggests
some inconsistency, which is common in Parkinson's disease, especially in mid-stages due to bradykinesia and gait disturbances
     • Stance Time: A stance time of 65.1% is slightly higher than the typical 60% seen in healthy individuals, indicating a potential
compensatory mechanism for balance issues. Increased stance time is often observed in Parkinson's disease as patients may have difficulty
with balance and stability, leading to prolonged ground contact. 
     • Swing Time: A swing time of 35.3% is slightly reduced compared to the typical 40% seen in healthy individuals. Reduced swing time
can indicate difficulty in initiating movement and reduced foot clearance, both of which are characteristic of Parkinson's disease.

Initial AI Output Justification: Stage 2.5 in Parkinson's disease indicates bilateral involvement with mild postural instability but still
physically independent.

The stride, stance, and swing times, along with their variability, align with characteristics of mid-stage Parkinson's disease.
The increased stance time and reduced swing time suggest compensatory mechanisms for balance and movement initiation difficulties.

Final Decision: Stage 2.5

Fig. 7: Example responses from contestable LLMs in an Incorrect Prediction
case. The final decision (in red) indicates the model retains the incorrect initial
prediction of baseline 1D-CNN, while the final decision (in green) indicates the
model overturns it. Output metrics: response time - RT (s) and number of output
token - OT (tok).

reproduced most quantitative details from the input data, a critical capability
in clinical domains where numerical precision is paramount. However, neither
model achieved perfect accuracy. The persistence of minor hallucinations, even in
state-of-the-art models, is a crucial finding that directly validates the necessity
of a contestable framework. It underscores that human expertise is not merely
beneficial but indispensable for verifying AI-generated claims before they can
inform clinical decisions.

Self-Correction Accuracy (SCA) Llama 4 demonstrated superior responsive-
ness to contestation, achieving a higher SCA score of 0.33 compared to GPT-4o’s
0.17. This suggests the smaller model is more adaptive and willing to revise
its initial assessment in light of contradictory evidence. In contrast, GPT-4o’s
lower score reflects a more conservative, risk-averse behavior, where it tends to
default to the baseline model’s prediction. This finding reveals a crucial trade-off:
while larger models may offer greater factual grounding, smaller models might be
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Table 4: Human-centric evaluation metrics. The arrows (↑/↓) indicate whether
higher or lower values are better.
Model FRE ↑ FKGL ↓ CG ↑ SCA ↑

llama-4-scout-instruct (17B) 51.60 8.50 0.72 0.33
gpt-4o (200B) 34.73 10.52 0.75 0.17

more amenable to the corrective feedback that is central to a truly collaborative
human-AI system.

Our results indicate that Llama 4 produced more readable and adaptive
explanations, whereas GPT-4o demonstrated superior factual grounding at the
cost of higher linguistic complexity. This reveals a critical design trade-off between
factual veracity and adaptive reasoning. The selection of an LLM is therefore
not a simple technical optimization but a decision that fundamentally shapes the
nature of the human-AI partnership, balancing the need for a reliable adjudicator
against that of a collaborative and correctable partner.

5 Discussion

Our work demonstrates the feasibility of Motion2Meaning, a framework that
successfully integrates AI-powered gait analysis with a contestable, human-in-
the-loop interface. The findings confirm that it is possible to build systems
that provide objective insights into motor symptoms while preserving essential
clinical oversight through a structured and auditable workflow. We structure
our discussion around two key themes. First, we reflect on the potential of AI-
powered wearable gait analysis to transform PD care, considering our predictive
model’s performance and limitations. Second, we analyze the challenges and future
directions for developing truly human-centered CAI, drawing specific insights from
the performance of our XMED safeguard and LLM-based interaction components.

5.1 The Potential of AI-Powered Wearable Gait Analysis in PD Care

Our results, showing that a 1D-CNN can effectively classify disease severity
from raw gait signals, reinforce the potential of wearable sensors to shift patient
assessment from episodic clinical snapshots to continuous, longitudinal monitoring.
This objective data stream offers a powerful complement to subjective tools like
the UPDRS, enabling clinicians to more precisely track therapy response, detect
subtle motor fluctuations, and quantify changes in fall risk. The ultimate promise
of this technology is a move toward more personalized and proactive treatment
adjustments that can tangibly improve patients’ quality of life.

However, a purely gait-focused approach has inherent limitations. The nuances
of intermediate disease stages and the multi-system nature of PD, which includes
significant non-motor symptoms like cognitive impairment and sleep disturbances,
underscore that gait is only one piece of a complex clinical picture. Therefore,
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the true value of this technology lies in augmenting, not replacing, holistic
clinical judgment. The critical next step is to move beyond a unimodal biomarker
toward a comprehensive digital phenotype of PD. Future work should focus on
multi-modal fusion, integrating gait data with other streams like speech analysis
and sleep tracking. This approach is essential not only for improving predictive
accuracy but for capturing the true syndromic nature of the disease, leading to
more robust and clinically relevant AI models.

5.2 Toward Human-Centered Contestable AI in Healthcare

The fallibility of our predictive model, despite its reasonable performance, under-
scores the critical need for robust human-in-the-loop systems. Our work addresses
this by creating a multi-layered verification framework where the XMED module
acts as an automated safeguard and the LLM serves as an interactive adjudicator.
This design directly confronts the fundamental challenge of balancing automa-
tion’s efficiency with the necessity of human oversight. However, our findings
also illuminate several key challenges that must be addressed to advance the
development of truly effective and collaborative CAI.

Technical and Methodological Limitations Our evaluation confirms that ex-
planation discrepancies can effectively signal prediction errors, validating XMED’s
potential as an automated safeguard. The scope of this validation, however, has
two key considerations. First, the XMED flagging mechanism relied on an empir-
ically derived discrepancy threshold. While effective for this study, its optimal
calibration for broader clinical use is a natural next step for future work. Second,
our framework was developed and validated exclusively within the context of PD,
which served as a motivating use case. Its applicability and potential modifications
for other diagnostic domains remain an important area for further exploration.

Furthermore, our experiments with LLMs highlight an interesting performance
trade-off between the more adaptive reasoning of Llama 4 and the more factually
grounded but conservative style of GPT-4o. This suggests that the selection of
a model for adjudication involves balancing different priorities. A crucial open
question, therefore, is whether this trade-off is inherent to LLM-based adjudication
or is an artifact of using general-purpose models. The next logical step is to
systematically evaluate models specifically fine-tuned on medical corpora, such as
the Med-PaLM [46,47] and BioMistral [19] families, and to explore the capabilities
of next-generation generalist models like GPT-5 [50], to determine if they can
resolve the tension between adaptability and reliability. The modular design
of our framework is a key strength in this regard, as it readily allows for the
substitution of the predictive model, the LLM adjudicator, or the underlying
dataset. This flexibility ensures that the core principles of our contestable system
can be adapted and refined as new models and new clinical use cases emerge.

Challenges in Clinical Validation A primary challenge arising from our study
is the need for a comprehensive clinical evaluation. While our technical validation



16 L.P.T. Nguyen et al.

provides encouraging proof-of-concept results, the true measure of our framework’s
success lies in its real-world utility. This necessitates a formal clinician-in-the-loop
pilot study to move beyond automated metrics and assess the system’s impact
on actual clinical practice. Such a study would involve close collaboration with
neurologists to evaluate the correctness, clarity, and actionability of the LLM’s
outputs and to measure key workflow metrics like review time and contest rates.
Gathering this contextual, human-centered evidence through detailed case studies
is the essential next step for responsibly translating this research prototype into
a validated clinical tool.

Future Direction on Evaluation Metrics A truly human-centered approach
requires a paradigm shift in evaluation. This involves conducting formal pilot
studies with expert clinicians to move beyond accuracy to a suite of utility
metrics. These can be divided into automated assessments of the AI’s output and
observational measures of user interaction. For instance, an automated metric like
Clinical Terminology Grounding (CTG) could assess if an explanation is grounded
in professional language by calculating the percentage of sentences containing
terms from a predefined clinical lexicon. A high score would indicate reasoning
more plausible to an expert. Observational metrics could quantify interaction
efficiency through measures like Time to Decision (TTD), the duration until a
user validates or contests a finding, and Interaction Length (IL), the number of
conversational turns needed to reach that decision. Beyond these, our evaluation
could be extended by adapting established metrics of user reliance, such as the
Relative AI Reliance (RAIR), Relative Self-Reliance (RSR), and Appropriateness
of Reliance (AoR) proposed in [44], as well as the broader range of measures
collected in [22,14].

6 Conclusion

This work demonstrates that Motion2Meaning unites SOTA AI gait analysis with
a contestable, human-centered framework to deliver objective, accountable, and
clinically viable interpretations of Parkinsonian motor symptoms. By combining
accurate 1D-CNN classification with the XMED safeguard for uncertainty detec-
tion and the LLM-driven “contest and justify” workflow, the system ensures that
clinical expertise remains central to decision making. Beyond advancing PD care,
our results highlight a broader design principle: high-stakes medical AI must not
only explain but also enable contestation, creating systems that are transparent,
auditable, and aligned with regulatory requirements. Looking forward, integrating
multimodal data, expanding to diverse populations, and tailoring domain-specific
LLMs will further strengthen this approach. As global frameworks increasingly
mandate explainability and contestability, Motion2Meaning provides a concrete
step toward trustworthy AI that augments rather than replaces human judg-
ment, setting a foundation for safer and more responsible deployment of AI in
healthcare.
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