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Figure 2: Local Post-hoc XAI Methods for the Semantic Segmentation.

Figure 1: The XAl landscape, categorizing XAl techniques based on explanation scope, data type, modeling phase, architecture, and application domains.
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“An Edge Human-centered Explainable Al framework for

Industrial Visual Quality Inspection Systems”
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Methodology

6 Modules

Module 1. Base Module 2. Base Model Module 3. Module 4. XAl-guided Module 5. Edge Module 6. Saliency and Text-
Model Finetuning Explanation with XAl XAl Evaluation Data Augmentation Model Development based Explanation for the Edge
e
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Figure 3: The methodology of the XAl-integrated Visual Quality Inspection framework integrated with XAI methods with 6 building modules: (1) Base Model
Finetuning with a provided visual quality dataset, (2) Base Model Explanation with XAI, (3) XAl Evaluation, (4) XAl-guided Data Augmentation to improve the
base model performance, (5) Edge Model Development on mobile devices and (6) Saliency and textual Explanation for the Edge. The end-users interact with the
framework via a mobile application, while the domain experts can interact via a web application.
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Figure 4: The implementation details of our proposed XAl-integrated Visual Quality Inspection framework.
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Experiment 1 — A Comprehensive Evaluation
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Module 1 — Base Model Finetuning
DeeplLabv3+

DeepLabv3+ is an advanced semantic
segmentation architecture combining an Atrous
Spatial Pyramid Pooling (ASPP) encoder for
capturing multi-scale contextual information [1].

Backbone: ResNet50, ResNet101, MohileNetv2.
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Figure 5: The architecture of the DeepLabv3Plus model, featuring an encoder
with Atrous Spatial Pyramid Pooling and a decoder for upsampling and refining
segmentation outputs.
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Figure 8: Samples from the TTPLA dataset represent the main objects of cat-
egories in the green masks (a) cable, (b) tower_wooden, (c) tower_lattice, (d)

tower_tucohy.

Model #Params Size(MB) | cable tower_wooden tower lattice tower_tucohy mloU
DLv3P-MobileNetv2-B 4.37M 16.71 | 53.94 80.11 88.19 86.49 77.18
DLv3P-MobileNetv2-E 4.37TM 16.71 | 54.37 86.49 80.98 88.78  77.82
DLv3P-MobileNetv2-M 3.51M 13.39 | 48.74 84.54 78.55 86.12  75.48
DLv3P-ResNet50-B 26.67TM 101.76 | 56.66 92.31 93.18 90.63  83.20
DLv3P-ResNet50-E 26.67TM 101.76 | 57.42 92.97 91.34 93.87 83.90
DLv3P-ResNet50-M 21.36M 81.48 | 53.67 90.39 88.80 91.26 81.53
DLv3P-ResNet101-B 45.66M 174.21 | 57.22 95.23 96.02 9142 84.97
DLv3P-ResNet101-E 45.66M 17421 | 58.36 96.54 92.89 97.61 86.35
DLv3P-ResNet101-M 36.57TM 139.52 | 5443 94.07 90.22 95.09 83.95

—— DLv3P-MobileNetv2
«— DLv3P-ResNet50 85
~+— DLv3P-ResNet101

Dice Loss
o
w
mloU (%)
~
o

—e— DLv3P-MobileNetv2
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(a) Training loss (b) Training mIoU(%)

Figure 9: The training loss in Dice loss and accuracy in mIoU(%) of three base
DeepLabv3Plus models over 1000 epochs.

Table 2: Accuracy comparison of DeepLabv3Plus (DLv3P) variants with different backbones (MobileNetv2, ResNet50, ResNet101) in terms of average IoU (%)
for each category and mloU (%). The models are evaluated at different stages: base (B), enhanced (E), and mobile (M) on the TTPLA validation set.
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loU: measures the overlap between the saliency map and IoU = Area(L” N GT)
the ground truth annotation Area(Lc U GT)
BBox: measures the overlap between the bounding Area(BBox (L) N BBox(GT))
box of the saliency map and the ground truth Bbox = Area(BBox(L¢) U BBox(GT))

bounding box

Deletion: measures the accuracy of saliency
areas by removing pixels from the inputimage in  dpel = AreaUnderCurve(h; vs. i/n,¥i =0, ...n)
order of saliency, from large to small.

Insertion: measures the comprehensiveness of

the saliency area by removing all pixels from the dr,s = AreaUnderCurve(h; vs. i/n, Vi =0, ...n)
input image and recovering them in order of

saliency, from large to small.

University of New Brunswick | Analytics Everywhere Lab 2. August 2024 14
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Method EPBGT BBoxT IoUT Del] InsT
GradCAM 5049 4839 4794 0.521 0.527
GradCAM++ 58.13 5224 5322 0.517 0.547
HiResCAM 60.81 41.69 52.19 0.501 0.559
ScoreCAM 54.01 4395 5194 0434 0.609
XGradCAM 5794 4781 53.09 0.594 0.551
AblationCAM 61.03 51.39 5473 0.498 0.589
GradCAMElementWise 40.95 3591 3925 0.859 0415
EigenCAM 5149 4254 51.03 0.545 0.491
EigenGradCAM 64.11 62.24 6093 0.520 0.534
RISE 6242  63.52 56.13 0.123 0.691

Table 3: The quantitative result of XAl methods on the validation set D,y
on different metrics such as EPBG(%), BBox(%), IoU(%), Drop, Increase, and
running time in seconds. For each metric, the arrow T / | indicates higher/lower
scores are better. The best is in bold, and the second best is in underline.

AblationCAM GradCAMEIeentWise EigenCAM EigenGradAM

Figure 10: The qualitative evaluation of XAI methods in explaining the base DeepLabv3Plus-ResNet101 model on a validation sample. The category is the
tower_lattice. The IoU value between the segmentation and the ground truth is 96.25%.
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Module 4 — XAl-guided Data Augmentation Analytics
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(4 Ground Truth (Optional) | (3 Segmentation

EORP)

Segmentation model Run segmentation XAl Method Textual Explanation
DeeplLabv3Plus-ResNet101 v RISE -

Category Run Explainable Al
tower_lattice -

Textual Explanation

- The explanation map is a visual representation showing the importance of different regions of the image for predicting the category tower_lattice.

- The most focused region in the explanation map seems to be the central part of the tower, with yellow to red gradients, indicating a high degree of importance according to the
model.

- The least focused region in the explanation map appears to be the bottom and peripheral parts of the tower, shown by the cooler colors such as blue, which suggest these
areas have less influence on the model's decision.

- The segmentation accuracy seems high, where the focused region corresponds well with the Al model's prediction and the ground truth. This alignment indicates that the
model focuses on relevant parts of the image to predict the category tower_lattice.

Figure 6: Web-based user interface for domain experts to monitor predictions, explanations, and textual explanations. The input image, segmentation output,
saliency map, and textual explanation are displayed, allowing experts to assess the model’s performance and provide feedback for annotation augmentation.
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Module 4 — XAl-guided Data Augmentation

Data Augmentation Suggestions

Explanation

(a) Good
segmentation

(b) Bad
segmentation

Figure 11: List of input images, ground truth, segmentation of the base
DeepLabv3Plus-ResNet101-B model for the “cable” inspection for two seg-
mentation cases: (a) Good segmentation and (b) Bad segmentation.
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Figure 12: Annotation augmentation approaches: (a) Annotation enlargement
where the annotation size for thin objects like cables is increased by 2 pixels on
both sides. (b) Adding annotations for perplexed objects like the road surface
marks to guide the model in differentiating between white cables and perplexed
objects.
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Algorithm 1: Model Quantization, Pruning, and Opti-
mization for Mobile

/* Apply pruning */
8 for name, module in base_model.named_modules() do

Input: base_model ®: a base model

_ _ 9 if isinstance(module, nn.Conv2d) then
Input: input tensor: an input tensor 10 prune.In_structured(module, name="‘weight’,
Output: mobile_model €: an optimized, quantized, and amount=0.1, n=1, dim=0)
pruned model " end
/* Disable batch normalization x/
1 for module in base_model.modules() do 12 end
2 if isinstance(module, nn.BatchNorm2d) then /* Remove pruning reparameterizations */
3 | module.eval() 13 for name, module in base_model.named_modules() do
4 | end 14 if isinstance(module, nn.Conv2d) then
s end 15 | prune.remove(module, ‘weight’)
/* Apply dynamic quantization */ 16 end
6 base_model = 17 end
torch.quantization.quantize_dynamic(base_model, /* Trace the model */
{nn.Conv2d, nn.Linear, nn.ReL.U, nn.BatchNorm?2d, 18 traced_model = torch.jit.trace(base_model, input_tensor)
nn.AdaptiveAvgPool2d}, dtype=torch.qint8) /* Optimize the traced model for mobile */
/* Forward pass to simulate inference */ 19 mobile_model = optimize_for_mobile(traced_model)

7 base_model(input_tensor)

20

return mobile_model

University of New Brunswick | Analytics Everywhere Lab
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(c) tower_lattice
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Ground truth DLv3P-ResNet101-B DLv3P-ResNet101-E DLv3P-ResNet101-M

(d) tower_wooden

(e) tower_tucohy

Figure 13: Qualitative results of DeepLabv3Plus (DLv3P)-ResNet101 on four categories of the TTPLA dataset. The models are evaluated at different stages: base
(B), enhanced (E), and mobile (M).
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<

Textual Explanation for [tower_lattice]

- The explanation map is a visual representation showing the
importance of different regions of the image for predicting
the category tower_lattice.

- The most focused region in the explanation map seems to
be the central part of the tower, with yellow to red gradients,

Category indicating a high degree of importance according to the
Upload Image model. o .
. - The least focused region in the explanation map appears
tower_lattice 2 to be the bottom and peripheral parts of the tower, shown

by the cooler colors such as blue, which suggest these
areas have less influence on the model's decision.

- The segmentation accuracy seems high, where the
focused region corresponds well with the Al model's
prediction and the ground truth. This alignment indicates
that the model focuses on relevant parts of the image to
predict the category tower_lattice.

Photo Gallery

Camera

Cancel Upload another image Upload another image Upload another image

Figure 7: The iOS user interface of the mobile application for end-users, designed for iPhone 11 Pro. Users can upload an image, initiate visual quality inspection
for a particular category, view the segmentation results along with explanations, and have the option to upload another image.
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Module 6 — Saliency and Textual Explanation for the Edge ﬁAnalytics
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Prompt Template

TeMpLATE 1; ProMPT TEMPLATE FOR THE GPT-4 VisioN

System Message: You are an Explainable Al expert for semantic segmentation models.

The first image is the original image. The second image is the ground truth of category {category} in the original image.
The third image is the prediction of an Al model for category {category} in the original image. The fourth image is the
explanation map of the category {category} in the original image. Think step by step to understand how the explanation
map and prediction align with the ground truth. First, capture the image context in the original image. Secondly, identify
which parts belong to category {category} in the ground truth. Then, you look at the explanation map to see the saliency
map for the segmentation mask of the category {category}. Your task is to check if the focused region in the explanation
map supports the prediction for category {category}. Your final answer must be concise, simple, and separated by bullet
points. First, briefly describe the explanation map. Secondly, describe the most focused region of category {category} in
the explanation. Thirdly, describe the least focused region of category {category} in the explanation. Fourthly, assess the
localization quality if the focused region aligns with the prediction and ground truth for category {category}.

User Message:

image_url: “data:image/jpeg;base64,{input image}”
image_url: “data:image/jpeg;base64,{ground_truth_image}”
image_url: “data:image/jpeg;base64,{segmentation_image}”
image_url: “data:image/jpeg;base64,{explanation image}”

University of New Brunswick | Analytics Everywhere Lab 2. August 2024 21
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TeEMPLATE 2: TEXTUAL EXPLANATIONS OF THE TTPLA DATASET

Input image Ground truth Segmentation Explanation
V v .,._’“3 ¢ ¥

Figure 14: Good segmentation - Category: tower_lattice

Model Output:

- The explanation map is a visual representation showing the importance of different regions of the image for predicting the
category tower _lattice.

- The most focused region in the explanation map seems to be the central part of the tower, with yellow to red gradients,
indicating a high degree of importance according to the model.

- The least focused region in the explanation map appears to be the bottom and peripheral parts of the tower, shown by the
cooler colors such as blue, which suggest these areas have less influence on the model’s decision.

- The segmentation accuracy seems high, where the focused region corresponds well with the AI model’s prediction and
the ground truth. This alignment indicates that the model focuses on relevant parts of the image to predict the category
tower _lattice.

University of New Brunswick | Analytics Everywhere Lab 2. August 2024 22
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Input image Ground truth Segmentation Explanation

Model Output:

Figure 15: Bad segmentation - Category: cable
- The explanation map is a visual representation that indicates which areas of the image the AI model deemed relevant when
determining where the category “cable” is present.
- The most focused region of the cable in the explanation map is evident along the linear features within the road, which
correlate with the yellow lane markings and the road’s edges.
- The least focused region in the explanation appears to be the areas on the pavement free from markings and the natural
vegetation areas on the right side of the image.
- The focused region in the explanation map does not perfectly align with the ground truth for the cable category. The
prediction appears to have false positives along the lane markings. It does not accurately distinguish between the road
markings and actual cables, whereas the ground truth demarcates straight lines purported to be cables adjacent to the road
on both sides. Therefore, there is a discrepancy between the focused regions in the explanation map and the true location
of cables, as shown in the ground truth image.
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Experiment 2 — A Data-Centric Approach
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Substation Equipment Dataset ﬁAnalytics
Lab

Data & Segmentation Results

Model B E M

breaker 9293 9451 92.51
closed_blade_disconnect_switch 49.14 50.26 48.02
closed_tandem_disconnect_switch 83.11 84.34 82.04

current_transformer 62.23 63.25 61.07
fuse_disconnect_switch 90.87 92.77 90.03
glass_disc_insulator 53.55 5542 53.08
lightning_arrester 67.87 69.28 67.41
muflle 88.27 90.06 87.92

open_blade_disconnect_switch 93.34 95.18 93.06
B open_tandem_disconnect_switch 83.85 8554 83.51
(d) porcelain_pin_insulator 30.11 32.03 30.05

potential_transformer 78.54 80.72 78.01
Figure 16: Samples from the Substation Equipment dataset represent the main power_transformer 8573 8779 85.50
objects of categories in the green masks (a) recloser, (b) power_transformer, (c) recloser 68.11 7040  67.50
porcelain_pin_insulator, (d) tripolar_disconnect_switch tripolar.disconnect switch 8322 8524 8279
mloU 7345 75779 72.58

Table 4: Accuracy comparison of three DeepLabv3Plus models with the
ResNet101 backbone at different stages: base (B), enhanced (E), and mobile
(M) in terms of average IoU (%) for each category and mloU (%) on the Sub-
station equipment validation set.
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Input image Ground truth Segmentation  Explanation
: 7 &7 :
L1 X

(a) recloser

(b) power
transformer

(c) porcelain
_pin_insulator

(d) tripolar
disconnect switch

Figure 17: List of input images, ground truth, segmentation of the base
T DeepLabv3l.’ luS‘ReSNetlol’B mode?, and the corresponding explanations for —— Figure 18: Augmentation techniques on the training set of the Substation equip-
University of New Brt four categories of the Substation equipment dataset. mentidataset. 2024 26
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TEMPLATE 3: TEXTUAL EXPLANATIONS OF THE SUBSTATION EQUIPMENT DATASET

Figure 19: Good segmentation - Category: power_transformer

Model Output:

- The explanation map highlights several regions of importance, with some focus around the power transformer but also
attention on other structures.

- The central structures and parts of the power transformer have significant focus in the explanation map.

- The ground and less critical background structures have the least focus.

- The focused regions in the explanation map partially support the prediction for the power transformer. The prediction is
accurate, but the explanation map indicates that the model’s focus is distributed, suggesting it uses broader contextual cues.

University of New Brunswick | Analytics Everywhere Lab 2. August 2024 27
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Figure 20: Bad segmentation - Category: recloser
Model Output:
- The explanation map highlights regions of importance, with significant focus on the left-side components and connectors,
rather than the recloser.
- The labeled components and connectors on the left are the most focused regions in the explanation map.
- The background and some parts of the ground and structure are the least focused regions.
- The focused regions in the explanation map do not support the prediction for the recloser. The model failed to segment
the recloser, indicating a significant issue with the model’s ability to recognize and segment this category.
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Conclusion
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XAl-guided annotation augmentation process relies  Automate the annotation refinement process based

on domain experts' expertise and manual effort on XAl insights
Generating textual explanations on edge devices Explore more lightweight language models or
may introduce latency and computational overhead develop techniques designed for edge computing
Other visual inspection domains in edge computing Investigate the generalizability of the approach

scenarios remains to be explored across visual guality inspection tasks
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