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A B S T R A C T

Recent advancements in deep learning have significantly improved visual quality inspection and predictive
maintenance within industrial settings. However, deploying these technologies on low-resource edge devices
poses substantial challenges due to their high computational demands and the inherent complexity of
Explainable AI (XAI) methods. This paper addresses these challenges by introducing a novel XAI-integrated
Visual Quality Inspection framework that optimizes the deployment of semantic segmentation models on low-
resource edge devices. Our framework incorporates XAI and the Large Vision Language Model to deliver
human-centered interpretability through visual and textual explanations to end-users. This is crucial for end-
user trust and model interpretability. We outline a comprehensive methodology consisting of six fundamental
modules: base model fine-tuning, XAI-based explanation generation, evaluation of XAI approaches, XAI-
guided data augmentation, development of an edge-compatible model, and the generation of understandable
visual and textual explanations. Through XAI-guided data augmentation, the enhanced model incorporating
domain expert knowledge with visual and textual explanations is successfully deployed on mobile devices
to support end-users in real-world scenarios. Experimental results showcase the effectiveness of the proposed
framework, with the mobile model achieving competitive accuracy while significantly reducing model size. This
approach paves the way for the broader adoption of reliable and interpretable AI tools in critical industrial
applications, where decisions must be both rapid and justifiable. Our code for this work can be found at
https://github.com/Analytics-Everywhere-Lab/vqixai.
. Introduction

Industrial Visual Quality Inspection systems are automated mecha-
isms, typically engineered to examine and continuously monitor the
tatus of industrial hardware assets. In the rapidly evolving landscape
f Artificial Intelligence (AI), especially Computer Vision (CV), the
ntegration of vision techniques has revolutionized how manufacturers
utomatically maintain and ensure product quality and compliance,
hereby mitigating human error and augmenting efficiency.

Deep Learning (DL)-based models, such as Deep Neural Networks
DNNs), have markedly improved the precision of numerous visual
uality inspection systems has been significantly enhanced in terms of
ccuracy, efficiency, and running time. However, these advancements
ave significant trade-offs between accuracy, computational complex-
ty, and interpretability. While achieving higher accuracy, the increased
omputational complexity of these models often results in a lack of in-
erpretability. These opaque models, often perceived as ‘‘black boxes’’,
ose challenges for domain experts and end-users in comprehending
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their internal decision-making processes. This opacity becomes a sig-
nificant concern in sensitive domains, where decisions have profound
implications [1–4].

The advent of XAI has steered a new era of model transparency
and interpretability, fundamentally transforming how we understand
and interact with AI systems. XAI methods enable domain experts to
validate the model’s reasoning process and identify potential biases
or errors in the data [5–7] or model [8–12]. Despite the growing
trend on XAI, there remains a significant gap in the practical appli-
cation of these XAI techniques to enhance the performance and inter-
pretability of visual quality inspection models, particularly in resource-
constrained environments like edge devices. This gap highlights a
critical need for innovative solutions that adapt XAI methodologies for
use in environments where computational resources are at a premium.

Our research introduces a cutting-edge framework for industrial
visual quality inspection systems that integrates XAI and LVLM to
(1) improve the accuracy of semantic segmentation models for industrial
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Fig. 1. The XAI landscape, categorizing XAI techniques based on explanation scope, data type, modeling phase, architecture, and application domains.
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assets and (2) provide visual and textual human-centered explanations to
end-users. To this end, we address the following research questions:

1. How can we effectively integrate XAI methods into Industrial
Visual Quality Inspection systems to provide meaningful expla-
nations for model predictions?

2. How can domain expert insights, informed by XAI explanations,
be utilized for data augmentation strategies to improve the
performance of semantic segmentation models?

3. What are the optimal techniques for adapting and optimizing the
enhanced model for deployment on edge devices, ensuring that
it remains both effective and efficient in resource-constrained
environments?

4. How can we design the delivery mechanisms for human-centered
explanations on edge devices, making them accessible and com-
prehensible to end-users without prior expertise in AI or XAI?

To address these research questions, we propose a framework that
s organized into six modules: base model finetuning, XAI-based ex-

planation generation, XAI evaluation, XAI-guided data augmentation,
edge model development, and the generation of visual and textual
explanations for the edge model. Our contributions are as follows:

1. We develop a comprehensive XAI-integrated Visual Quality In-
spection framework that incorporates multiple XAI techniques
directly into the model development process, enhancing both
interpretability and performance.

2. We validate the effectiveness of XAI-guided data augmentation,
demonstrating substantial improvements in the performance of
semantic segmentation models for industrial asset inspection.

3. We introduce a tailored mobile optimization algorithm that
employs pruning and quantization techniques, enabling efficient
deployment of our advanced models on resource-constrained
edge devices.

4. We extend the functionality of our framework by integrating
LVLM to provide clear, contextual textual explanations to end-
users on edge devices, making the system’s decisions transparent
and understandable.
 i

2 
The remainder of the paper is structured as follows: Section 2
presents the XAI landscape and recent development of XAI-based model
mprovement methods. Section 3 provides an overview of related work

in semantic segmentation, XAI techniques, the industrial visual qual-
ity inspection, the application of XAI in industrial settings and the
VLM utilization in the human-centered XAI context. Section 4 presents
ur methodology, detailing each module of the XAI-integrated Visual
uality Inspection framework. Section 5 describes the implementation
etails, including model architecture, the procedure of XAI and LVLM

integration, and the mobile optimization algorithm. Section 6 presents
ur first experiment with experimental results on an industrial assets
ataset, evaluating the performance of the models in different stages,

the effectiveness of XAI-guided data augmentation, and the demonstra-
tion of visual and textual explanations. In Section 7, we further extend
our framework with the data-centric approach, where we evaluate the
ramework ability on a new industrial dataset while inheriting findings
nd models from the previous experiment. Finally, in Sections 8 and

9, we discuss and conclude the key findings and limitations from the
experimental results and future mitigation research directions.

2. Background

This section offers a comprehensive overview of the XAI landscape
and the key factors driving emerging research trends in XAI. Addition-
ally, we summarize common XAI-based approaches for enhancing AI
model performance (see Fig. 1).

2.1. Explainable Artificial Intelligence (XAI) landscape

In this section, we delve into the comprehensive landscape of XAI,
focusing on the critical elements that shape its development and ap-
plication. Specifically, we examine the Modeling Phase, Scope of Inter-
retability, Explanation Stage, Explanation Capability, and Architecture
pproachability, as well as the significance of data-centric approaches

n XAI. Additionally, we discuss various Application Domains to illus-
rate the practical impact of XAI across different fields. This detailed
verview aims to provide a clear understanding of how XAI techniques
re categorized and applied, shedding light on the diverse range of

nterpretability methods.
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2.1.1. Modeling phase
The explainability of an AI model can be divided into three main

phases: Pre-Modeling, Modeling, and Post-Modeling [13].

• Pre-Modeling: This phase focuses on analyzing, characterizing,
and exploring the input data to understand the underlying prop-
erties of its features or to interpret the overall dataset sum-
mary. Typical techniques for data explanation include dataset
descriptions and standardization methods (e.g., metadata descrip-
tions, provenance, variable relationships, statistics, ground truth
correlation, data cleaning, normalization, standardization), ex-
ploratory data analysis, explainable feature engineering, dataset
summarization and enhancement (e.g., identifying meaningful
abnormalities, summarizing interpretable outliers, selecting pro-
totypes, and enhancing data interpretability). These techniques
are generally applied before model creation.

• Modeling: This phase is dedicated to designing, developing, and
implementing explainable model architectures and algorithms.
The aim is to create new, understandable architectures and al-
gorithms or to transform existing ‘‘black box’’ models into trans-
parent ones. Approaches in the Modeling Phase include mixed
explanation and prediction (e.g., multimodal explanations, ra-
tionalizing neural predictions), architectural modifications for
explainability, hybrid explainable models, and regularization for
explainability. These methods are typically employed during the
model creation process.

• Post-Modeling: This phase aims to extract explanations and en-
hance the interpretability of output results. Techniques used for
explaining outputs include macro-explanations, output visualiza-
tions, and interpreting targets at different levels of complex-
ity (e.g., comparing functional (external, interpretative) expla-
nations with mechanistic (internal, algorithmic) explanations).
These methods are typically applied after the model has been
created.

2.1.2. Scope of interpretability
Model interpretability often involves understanding the rationale

ehind a model’s decision-making process. There are two levels of
nterpretability: global explanations and local explanations [14].

• Global explanations: Global explanations provide an overall
understanding of the key features in an AI model. This is achieved
by analyzing how these features impact model accuracy or their
influence on the model’s predictions. Such explanations are valu-
able for guiding policy decisions and testing hypotheses about
feature importance.

• Local explanations: A local explanation provides insight into
how an AI model arrived at a specific prediction or decision.
They can answer questions such as ‘‘Why did the model produce
this output for this input?’’ or ‘‘What if this feature had a different
value?’’ Local explanations are essential for validating and re-
fining the model’s decisions on a case-by-case basis, particularly
when unexpected results occur.

2.1.3. Explanation stage
Model explanations can be achieved in two primary ways: by adopt-

ing a transparent model (intrinsic) or by interpreting the model after it
has been trained (post-hoc) [14].

• Intrinsic: Intrinsically explainable methods are designed for
transparency, providing direct access to their decision-making
logic. Examples include linear regression models, decision trees,
and models that generate explanations during the learning pro-
cess.

• Post-hoc: Post-hoc explanation methods provide insights into
‘‘black-box’’ models, such as DNNs, which are not directly inter-
pretable.
m

3 
2.1.4. Explanation capability
Model interpretability is achieved through various explanation tech-

niques, each tailored to specific needs and contexts. Typically, these
explanations assist users in five forms: text, visualizations, examples,
oncepts, and feature attributions [15].

• By Text: Text-based explanations aim to provide insights into
model decisions by generating relevant words, phrases, or sen-
tences that describe the model’s reasoning. These explanations
can also include symbols that represent the model’s functioning,
effectively mapping the model’s rationale into a comprehensible
form.

• By Visualization: Visual explanations utilize images or visualiza-
tions to interpret a model’s decisions and behavior. Techniques
such as saliency maps, feature highlighting, and dimensionality-
reduced visualizations highlight the features and parts of a data
instance that are most relevant to the model’s decision.

• By Example: Example-based explanations clarify model decisions
by providing representative instances or examples similar to the
query instance. These methods help users understand model be-
havior by comparing decisions to known examples. The types of
examples can include counterfactuals (instances that significantly
change the model’s prediction), adversarial examples (instances
that can deceive models), prototypes (representative instances of
the entire dataset), and influential instances (training instances
that most impact the model’s parameters and predictions).

• By Concept: Concept-based explanations enhance our under-
standing of a model’s decision-making process by conveying the
driving factors behind a prediction in terms of human-
understandable concepts.

• By Feature Attributions: Feature attribution methods calculate
relevance scores to identify and emphasize the specific features
of the input data that have a significant impact on the model’s
output. This approach is commonly used in text and image data,
where it assigns importance to specific words or regions within
the images, thereby clarifying their influence on the model’s
predictions.

2.1.5. Architecture approachability
Post-hoc XAI methods can be categorized as model-specific or

odel-agnostic, depending on their applicability [14].

• Model-specific: Model-specific methods are limited to specific
types of models. For example, interpreting regression weights in
a linear model is a model-specific approach, as the interpretation
is unique to that model type.

• Model-agnostic: Model-agnostic methods can be applied to any
AI model and are used after the model has been trained (post
hoc). These methods typically analyze the relationships between
input and output pairs. By definition, they do not access the
model’s internals, such as weights or structural information.

2.1.6. Data-centric in XAI
Data is fundamental in developing AI systems. For many years,

efforts have been concentrated on model-centric AI, primarily using
fixed benchmark datasets. This focus has led developers to prioritize
refining their models to enhance performance, placing a heavy reliance
on data quality. However, this approach often overlooks the fact that
data can be flawed and unreliable. As a result, there has been a recent
shift towards enhancing the reliability, integrity, and quality of data,
ather than focusing solely on model improvements.

In the data-centric AI approach, models are kept locked and un-
hanged during the experimentation and fine-tuning processes, while
atasets are continuously modified, improved, and augmented. This
ethod ensures that models perform accurately and remain unbiased
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across various data distributions and conditions. Enhancing data ex-
plainability helps the AI community build more robust systems and
ackle complex real-world problems.

Zha et al. [16] summarize the tasks involved in developing data to
implify input and improve diversity, fairness, and understandability.
he authors claim that this procedure potentially leads to better model
erformance, generalization, and robustness. In the field of XAI, most
ethods focus on three main data types: tabular data, images, and text.
n the other hand, there are limited XAI methods for tackling real-

world challenges with time-series or graph data [17]. Several examples
of data-centric approaches in XAI can be found in Section 2.1.7.

2.1.7. Application domains
XAI has gradually been integrated into multiple sectors, such as

utomated transport, healthcare, finance, and education. These real-
orld implementations have demonstrated XAI’s significant potential in

nhancing model transparency, trust, reliability, and user acceptance.
Table 1 provides a summary of the state-of-the-art XAI applications
across these sectors.

• Manufacturing: XAI techniques have been extensively applied in
manufacturing to support the adoption of DL models in safety-
critical aspects. These include predictive maintenance [1], energy
consumption optimization [9], visual inspection [5,27], and qual-
ification [28]. By integrating XAI, the reliability and efficiency of
manufacturing processes are significantly enhanced.

• Transportation: In the transportation sector, XAI is essential for
ensuring safety, enhancing system transparency, and fostering
user trust in autonomous vehicles. By providing clear explana-
tions of autonomous decisions, XAI helps diagnose and rectify
potential issues, contributing to safer and more reliable auto-
mated transport systems [4]. Studies have introduced various XAI
models to improve human–vehicle interaction, explain decisions
made by advanced driver-assistance systems, and enhance the
reliability of autonomous driving systems by mimicking human
decision-making processes [18,19].

• Finance: Financial institutions face increasing pressure to en-
sure their AI models comply with evolving regulations aimed
at safeguarding consumer rights and maintaining market sta-
bility. AI models equipped with XAI capabilities can provide
personalized advice, product recommendations, and risk assess-
ments, thereby enhancing customer experience and building trust.
Achieving a balance between interpretability and model perfor-
mance is crucial for transparency in decision-making processes
related to investments, credit scoring, and risk management [20,
23]. Moreover, XAI improves fraud detection mechanisms by
offering clear explanations of fraud detection decisions, enabling
financial institutions to respond swiftly and accurately [3].

• Healthcare: XAI significantly benefits healthcare, pharmacy, and
bioinformatics by enhancing diagnostic accuracy, building trust,
and ensuring the ethical use of AI technologies. Specifically, XAI
applications not only improve diagnostic and therapeutic out-
comes but also unravel complex biological data, revolutionizing
patient care and medical research. Recently, XAI has further in-
creased diagnostic accuracy by making AI-driven diagnoses more
understandable and trustworthy for both clinicians and patients.
An increasing number of advanced XAI methods are being devel-
oped and implemented to interpret AI decision-making processes,
yielding promising results [2,22,23].

• Education: Integrating XAI into learning systems can signifi-
cantly enhance the interpretability of student data analysis, of-
fering educators and students valuable insights into personalized
learning patterns, content suggestions, performance metrics, and
customized feedback mechanisms [24–26]. By providing clear ex-
planations of these personalized details, XAI empowers learners to
take control of their learning process, fostering a more engaging
and effective educational experience.
4 
2.2. XAI-based model improvement methods

In the rapidly expanding industrial sector, developers require com-
rehensive information on how AI models process data to maintain

accuracy and reliability [29–31]. This is not just about understanding
model decisions; it involves leveraging that knowledge to improve
different aspects of model performance. To meet this demand, XAI
applications have extended beyond theoretical explanations and visual
aids to provide practical insights that actively refine models. How-
ever, a significant gap remains despite the wealth of XAI research.
Very few studies offer a systematic approach to closely examine and
classify how XAI can enhance both model interpretability and func-
ionality [32]. This can create significant challenges for developers

who may not fully comprehend the working mechanisms of emerging
model improvement techniques, potentially resulting in their misuse
or misinterpretation [33]. To address this issue, Weber et al. [34] have
proposed a framework that categorizes XAI-based techniques according
to the component of the training loop they optimize, such as data,
intermediate features, loss function, gradients, or model architecture.
Below are detailed descriptions of the five main augmentation types
and some corresponding notable methods.

2.2.1. Data augmentation
XAI-based data augmentation leverages explanations to reshape

data structure. It takes the original dataset and its attributions as
inputs, generating augmented data by creating new samples or ad-
justing existing data distribution. The main objective is to minimize
ias and errors that result from using the original data structure.
his type of augmentation is often implemented early in the model
raining process, particularly in the initial forward–backward phase,
hich influences all subsequent components [34]. Approaches that
tilize data augmentation techniques for improving model performance
nclude [5–7].

2.2.2. Feature augmentation
XAI-based feature augmentation utilizes explanations to adjust the

odel’s feature representations. First, intermediate features from a
pecific layer and their attributions are taken as input. Then, XAI is
mployed to evaluate each feature’s importance, allowing key features
o be selectively scaled, masked, or transformed. Thereby, feature aug-
entation indirectly influences all higher-level feature representations

nd subsequent training components, including gradient updates and
he final model. This holistic approach helps reduce potential biases
nd enhances the model’s generalization, resulting in more accurate
nd reliable predictions [34]. Techniques that improve model per-

formance through this type of augmentation are proposed in [23,35,
36].

2.2.3. Loss augmentation
XAI-based loss augmentation modifies the loss function using in-

ights derived from local explanations to guide the training process.
his type of augmentation can take different forms, such as adding

regularization terms that adjust the model based on feature relevance or
modifying the loss function to focus on challenging or underrepresented
data points. These adjustments ensure that the model not only focuses
on reducing the overall error but also addresses specific inaccura-
cies identified through explanations, leading to a more balanced and
equitable performance across various conditions. Due to its working
mechanism, loss augmentation indirectly impacts all components of the
backward pass as well as the final model [34]. Notable XAI-based model
improvement methods employing this technique include [37–39].
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Table 1
An overview of XAI applications across various domains categorized by their modeling phase, the scope of interpretability, explanation stage, explanation capability, target audiences,
and model improvement augmentation types.

Domain Ref. XAI contributions Phase Scope Stage Capability Audience Augmentation
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[9] Use 2D SHAP-clustered explanations in
automatic tuning model’s
hyperparameters to predict power
consumption

∙ ∙ ∙ ∙ ∙ ∙

[1] Present a self-explained AutoML with an
interactive visualization module in the
field of predictive maintenance

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

[5] Employ LRP to interpret and improve a
DL model for classifying metal surface
defects

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Tr
an

sp
or

ta
tio

n

[18] Enhance the trust in driver emotion and
distraction detection models

∙ ∙ ∙ ∙ ∙

[4] Produce explanations for actions in
response to the state of action-inducing
objects that could create a hazard

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

[19] Use SHAP to interpret XGBoost, thereby
analyzing factors that influence users’
willingness to engage in ridesharing

∙ ∙ ∙ ∙ ∙ ∙ ∙

Fi
na

nc
e

[20] Enhance the trust and performance of
model in a complex financial
decision-making context

∙ ∙ ∙ ∙ ∙ ∙

[3] Use LIME-based explainers for fraud
detection model on how each instance
contributes to the final model output

∙ ∙ ∙ ∙ ∙ ∙

[21] Comparatively apply SHAP, LIME,
GradCAM, Saliency Maps to explain
credit scoring model predictions

∙ ∙ ∙ ∙ ∙ ∙

H
ea

lth
ca

re

[2] Enhance the trust for the two-stage
object detectors in the thyroid nodule
diagnosis system

∙ ∙ ∙ ∙ ∙ ∙ ∙

[22] Propose an intrinsic explainable
algorithm to enable the data validation
by the medical experts

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

[23] Implement SHAP and LIME for
enhancing interpretability in
cardiovascular disease prediction

∙ ∙ ∙ ∙ ∙ ∙ ∙

Ed
uc

at
io

n

[24] Provide insights into factors influencing
school dropout predictions

∙ ∙ ∙ ∙ ∙ ∙

[25] Identify features important to the
development of an interactive
knowledge discovery tool

∙ ∙ ∙ ∙ ∙ ∙

[26] Study counterfactual explanations
focusing on student performance
prediction

∙ ∙ ∙ ∙
2.2.4. Gradient augmentation
XAI-based gradient augmentation involves two specific types: fea-

ture gradient augmentation and parameter gradient augmentation. Fea-
ture gradient augmentation adjusts gradients of intermediate features
using scaling, masking, or transformation techniques based on their
importance determined by XAI. On the other hand, parameter gradient
augmentation targets gradients of specific model parameters and relies
on XAI insights to fine-tune them precisely. Both methods occur during
he training stage, with feature gradient augmentation impacting a
ore significant part of the network by modifying gradient flow across

all layers below the target. In contrast, parameter gradient augmen-
tation focuses its effects on specific layers, minimizing its broader
network effects. By prioritizing critical gradients during backpropaga-
tion, XAI-based gradient augmentation effectively guides the learning
5 
process, leading to improved performance, faster convergence, and
higher data efficiency [34]. Several methods utilize this augmentation
type to enhance model performance, including [40–42].

2.2.5. Model augmentation
XAI-based model augmentation incorporates two main techniques:

pruning and quantization. Pruning focuses on the model’s architec-
ture, using explanations to assess the importance of its parameters. It
systematically removes less critical parameters to reduce the model’s
complexity and storage requirements while maintaining the overall
performance. Quantization, on the other hand, aims to optimize the
precision of the model’s parameters. It leverages XAI to find and modify
parameters that can tolerate lower precision without causing signifi-
cant performance degradation. It is worth noticing that both methods



H.T.T. Nguyen et al.

i
t
o
X
u

o
m

b
r
t
m
w

o
s
D
s
o

m
d

d

p

m
m

t

Information Fusion 116 (2025) 102782 
are implemented post-training and generally have minimal influence
on aspects like accuracy or robustness. However, they are essential
for increasing the model’s computational efficiency and speeding up
its inference, making it more suitable for deployment in resource-
constrained environments [34]. A wide range of model improvement
methods employing this augmentation approach can be found in [1,9–
12].

3. Related work

In this section, we examine the latest advancements in semantic
segmentation and the application of XAI techniques to enhance model
nterpretability and transparency, particularly in the context of indus-
rial visual quality inspection. We also explore the emerging paradigm
f Explainable Edge AI and current developments in human-centered
AI, which uses LVLM to generate explanations that are accessible to
sers without a background in AI or XAI.

3.1. Semantic segmentation

Semantic segmentation is a process in CV where each pixel in an
image is classified into one of several predefined categories, thereby
segmenting the image into regions with distinct object identities. Unlike
image classification, which assigns a single label to an entire image,
semantic segmentation provides a detailed, pixel-level understanding
f the scene. This section covers recent advancements in semantic seg-
entation models and local post-hoc XAI methods tailored for semantic

segmentation.

3.1.1. Semantic segmentation models
DL backbones such as VGG [43], YOLO [44], ResNet [45], and Mo-

ileNet [46] have revolutionized visual quality inspection by offering
obust feature extraction capabilities that are essential for segmentation
asks. These backbones form the foundation of semantic segmentation
odels, enabling precise identification and classification of objects
ithin an image.

Semantic segmentation is a crucial tool for visual quality inspec-
tion systems, as it enables these systems to focus on critical parts
f an image while ignoring irrelevant regions. Notable examples of
emantic segmentation models include FCN [47], LRASPP [48], and
eepLabV3 [49]. These models represent substantial advancements in

emantic segmentation due to their high performance and applicability
n mobile devices.

DeepLabV3 [49], with its innovative Atrous Spatial Pyramid Pooling
(ASPP) [50] module, significantly enhances semantic segmentation

odels by capturing objects at multiple scales and improving boundary
elineation. The latest iteration, DeepLabV3Plus [51], incorporates

an encoder–decoder structure to further refine object boundaries and
etails, demonstrating superior performance in various segmentation

benchmarks. These continuous improvements in model architecture, ef-
ficiency, and accuracy have greatly advanced visual quality inspection
systems. By enhancing the segmentation of small objects and intricate
details, these developments enable more precise and reliable inspection
rocesses across multiple industries.

3.1.2. Local post-hoc XAI methods for semantic segmentation
This section introduces local post-hoc XAI methods specifically de-

signed for semantic segmentation tasks. It is worth noticing that meth-
ods initially tailored for the classification task can also be adapted to
work with the outputs of semantic segmentation models [52]. These

ethods can be categorized based on their explanation generation
echanisms, including Backpropagation-based, Class Activation Map-

ping (CAM)-based, Perturbation-based [53], and Example-based meth-
ods (Fig. 2):
6 
Fig. 2. Local post-hoc XAI methods for the semantic segmentation.

• Backpropagation-based: Backpropagation-based XAI methods
explain neural network predictions by using the backpropagation
algorithm to compute the gradients of the output with respect to
the input features. These gradients reveal how changes in each
input feature impact the output, thereby highlighting the most
influential features [54,55].

• Class Activation Mapping (CAM)-based: CAM-based XAI meth-
ods explain neural network predictions by producing heatmaps
highlighting important regions in the input data. They work
by extracting feature maps from the final convolutional layer,
weighting them according to their relevance to the predicted
class, and summing the weighted feature maps to generate the
heatmaps. This process identifies which parts of the input are
most influential in the model’s decision [56–65].

• Perturbation-based: Perturbation-based XAI methods explain
neural network predictions by systematically modifying parts of
the input data and observing changes in the model’s output. This
involves altering specific input features, such as occluding image
regions, adding noise, or changing values in structured data. By
comparing the original and perturbed outputs, these methods
identify which changes significantly impact predictions, indicat-
ing the importance of the corresponding input parts. The results
are used to create heatmaps highlighting the most influential
regions or features [66–71].

• Example-based: Example-based XAI methods explain neural net-
work predictions by identifying and presenting similar instances
from the training data. They extract features from the input,
measure similarity with training examples, and find the nearest
neighbors. The most similar examples and their predictions are
then shown to the user, helping them understand how the model
makes decisions based on these similarities [72,73].

In this paper, we employ XAI methods that offer visual explana-
tions, with a focus on CAM-based techniques such as GradCAM [58],
GradCAM++ [57], XGradCAM [62], HiResCAM [74], ScoreCAM [59],
AblationCAM [60], GradCAMElementWise [75], EigenCAM [61], and
EigenGradCAM [61]. These techniques are chosen for their applicabil-
ity and effectiveness in semantic segmentation tasks. Additionally, we
incorporate a perturbation-based XAI method, namely RISE [68], due
o its model-agnostic working mechanism.

3.2. XAI in industrial visual quality inspection

Visual quality inspection is crucial in manufacturing and related
industries for ensuring product quality and reducing costs. Traditional
methods, however, are often time-consuming and expensive [76]. Re-
cent advancements in deep learning have revolutionized visual quality
inspection across sectors such as automotive, electronics, and con-
struction [77–79]. These AI-driven systems have demonstrated excep-
tional performance in automating complex inspection tasks, including
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steel bar quality assessment in construction [27], pear quality inspec-
tion in the food industry [80], and guided visual inspection for asset
maintenance [28].

As AI becomes increasingly prevalent in industrial visual quality
inspection, the importance of XAI has become more prominent. XAI
aims to make AI systems more transparent and interpretable, fos-
tering better collaboration between human experts and AI [15]. In
he industrial quality control and inspection sector, several studies
ave proposed leveraging XAI to enhance model quality and trans-
arency in visual inspection tasks. For example, Rovzanec et al. [81]
ntroduced a framework where explanations provide feedback to in-
pectors, helping improve the underlying classification model for visual
efect inspection. Lupi et al. [82] developed a framework for recon-

figurable vision inspection systems that use XAI to adapt to varying
roduct types and manufacturing conditions, making XAI more acces-

sible to non-specialist users. Gunraj et al. [83] presented SolderNet, a
eep learning-driven system for inspecting solder joints in electronics
anufacturing, which incorporates XAI to explain its predictions and

nhance trust.
Overall, integrating XAI into inspection systems greatly enhances

ransparency, adaptability, and user-friendliness, resulting in improved
erformance and collaboration between human experts and AI. As the
ield evolves, adopting XAI in industrial visual quality inspection is

anticipated to drive more efficient and reliable quality control processes
across various industries [84].

3.3. Edge explainable AI (XEdgeAI)

The fusion of XAI with edge computing, known as Edge Explainable
I (XEdgeAI), marks a significant paradigm shift with the potential to

ransform a wide range of industries. This innovation aims to make
utomated systems more transparent, understandable, and trustworthy.

Recent studies have illustrated the potential of XEdgeAI in various
ields. For instance, Kok et al. [85] developed an XAI-powered edge
omputing solution for optimizing energy management in smart build-
ngs. This system provides explanations of energy usage patterns and
ecision-making processes, enabling building managers to implement

informed energy-saving changes. In another study, Garg et al. [86]
ddressed the challenges of building trust in AI systems within a 6G
dge cloud environment, highlighting the critical role of transparency
nd interpretability in edge computing. In the healthcare domain,
utta et al. [87] designed a human-centered XAI application for edge
omputing to ensure that healthcare professionals can understand and
ct on AI-driven decisions. This approach has great potential to enhance
he quality and reliability of healthcare services.

While XEdgeAI has made significant progress, it still faces several
challenges such as limited resources and security concerns. Therefore,
it is essential to integrate XAI into both edge and cloud environments,
as each plays a critical role in developing intelligent systems. As
esearchers continue exploring the potential of XEdgeAI, this field will
ikely shape the future of AI across various industries. Applications such
s industrial predictive maintenance and quality inspection in edge
omputing environments are expected to benefit greatly from these
dvancements.

3.4. Human-centered XAI with LVLMs

Researchers have employed various innovative strategies to make AI
ystems more transparent and comprehensible to users without a back-
round in AI or XAI. These strategies include aligning AI explanations
ith human psychology [88], simplifying algorithms [89], providing

interactive explanations [90], and offering textual explanations [91–
95].

Recent advancements in Large Language Model (LLM) have led to
he development of LVLMs, which blends language understanding with
ision encoding and reasoning. These models excel in tasks such as
7 
image captioning, document understanding, visual question answering,
and multi-modal in-context learning [96–105]. This progress intro-
uces new opportunities for integrating LVLMs to generate textual

explanations for visual perception tasks, thereby enhancing explain-
ability [106]. As a good example [107], X-IQE evaluates text-to-image
generation methods by generating textual explanations using a hierar-
chical Chain of Thought (CoT) within MiniGPT-4 as the base LVLM.
On the other hand, the LangXAI framework [106] demonstrates how
integrating LVLMs can improve the understandability of visual AI
ystems. By generating textual explanations for saliency maps, LangXAI
lso emphasizes the importance of user-centric design.

4. Methodology

Building upon the advancements of segmentation for visual quality
inspection, XAI-based model improvement, and human-centered expla-
nations, we propose a novel XAI-integrated Visual Quality Inspection
framework that enhances the interpretability and efficiency of visual
quality inspection models on edge devices. Our framework integrates
state-of-the-art semantic segmentation models, such as DeepLabv3Plus
[51], with advanced XAI methods to generate highly plausible and
faithful explanations for the model’s decisions. Furthermore, we intro-
duce an XAI-guided data augmentation module that leverages expert
knowledge to improve the base model’s performance, addressing the
need for continuous model refinement in industrial settings. To ensure
he framework’s applicability in real-world scenarios, we focus on
eveloping an efficient edge model that can be deployed on mobile
evices, enabling on-site visual quality inspections. Additionally, we
ncorporate a human-centric explanation module that generates both
aliency maps and textual explanations using LVLMs, such as GPT-
 Vision [103], to make the inspection results more accessible and

understandable to end-users.
Our proposed XAI-integrated Visual Quality Inspection framework

onsists of six main modules as illustrated in Fig. 3: base model fine-
tuning, base model explanation with XAI, XAI evaluation, XAI-guided
data augmentation, edge model development, and saliency and textual
explanation for the edge.

1. Base Model Finetuning: In the first module, we prepare the
visual quality dataset and finetune a semantic segmentation
model, DeepLabv3Plus, to serve as our base model. The dataset
is preprocessed and split into training and validation sets. The
model is trained using the Dice loss function, which is well-
suited for imbalanced classes in image segmentation tasks.

2. Base Model Explanation with XAI: The second module focuses
on explaining the base model using various XAI methods, in-
cluding GradCAM, GradCAM++, XGradCAM, HiResCAM, Score-
CAM, AblationCAM, GradCAMElementWise, EigenCAM, Eigen-
GradCAM, and RISE. These methods generate saliency maps
highlighting the regions in the input image that have the highest
influence on the model’s segmentation decision.

3. XAI Evaluation: In the third module, we evaluate the XAI
methods using plausibility and faithfulness metrics. Plausibility
is assessed using the Energy-Based Pointing Game (EBPG), In-
tersection over Union (IoU), and Bounding Box (Bbox), which
measure how well the explanations align with human intuition.
Faithfulness is evaluated using Deletion and Insertion metrics,
which quantify the alignment between the explanations and the
model’s predictive behavior. Based on these evaluations, the
most suitable XAI method is selected.

4. XAI-guided Data Augmentation: The fourth module involves
XAI-guided data augmentation. The chosen XAI method is used
to guide the annotation augmentation process, where the train-
ing set annotations are relabeled based on expert recommen-
dations. The model is then retrained on the enhanced training
dataset to demonstrate the potential of annotation augmentation
in improving semantic segmentation models.
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Fig. 3. The methodology of the XAI-integrated Visual Quality Inspection framework integrated with XAI methods with 6 building modules: (1) Base Model Finetuning with a
provided visual quality dataset, (2) Base Model Explanation with XAI, (3) XAI Evaluation, (4) XAI-guided Data Augmentation to improve the base model performance, (5) Edge
Model Development on mobile devices and (6) Saliency and Textual Explanation for the Edge. The end-users interact with the framework via a mobile application, while the
domain experts can interact via a web application.
Fig. 4. The implementation details of our proposed XAI-integrated Visual Quality Inspection framework.
5. Edge Model Development: In the fifth module, we develop the
edge model by quantizing and optimizing the improved base
model for deployment on mobile devices. Dynamic quantiza-
tion is applied to specific layers to reduce model size, and the
model is converted to TorchScript format for efficient execution.
8 
Additional optimizations are performed to enhance the model’s
performance on mobile devices.

6. Saliency and Textual Explanation for the Edge: Finally, in the
sixth module, we generate visual explanations as saliency maps
and textual explanations for the segmentation results obtained
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by the mobile model on edge devices. The chosen XAI method
is used to generate the saliency maps. At the same time, a
LVLM, such as GPT-4 Vision, is utilized to generate human-
readable textual explanations based on the segmented image and
explanation map.

By following this methodology, our framework aims to provide
a high-plausible, interpretable, and efficient visual quality inspection
solution for industrial assets that can be effectively deployed on edge
devices.

5. Implementation

This section presents the implementation details of our proposed
XAI-integrated Visual Quality Inspection framework, comprising six
main modules (see Fig. 4). We describe the data preparation, base
model finetuning, XAI methods, evaluation metrics, XAI-guided data
augmentation, edge model development, and the generation of visual
and textual explanations for the mobile model on edge devices. The im-
plementation leverages and evaluates state-of-the-art techniques, such
as the DeepLabv3Plus model, various XAI methods, and the LVLM, to
create an interpretable and efficient visual quality inspection system.

5.1. Module 1 – Base model finetuning

In this module, we present the process of preparing the visual
quality dataset to build a base model by finetuning the semantic
segmentation model.

5.1.1. Data preparation and preprocessing
The acquired dataset  contains the image set  and the correspond-

ing annotation set .
The varying sizes of images are handled by being dynamically

adjusted, where image 𝐼 ∈  is processed through two primary
transformations: conversion to a tensor and normalization. Initially, we
convert an image from its native representation, where pixel values are
in [0, 255], to a tensor format with values normalized to [0, 1], using
𝐼 ′𝑐 𝑖𝑗 = 𝐼𝑐 𝑖𝑗

255 for each pixel 𝐼𝑐 𝑖𝑗 in channel 𝑐. Subsequently, we apply
channel-wise normalization to this tensor, adjusting each pixel value
to zero mean and unit variance by the formula:

𝐼 ′′𝑐 𝑖𝑗 =

( 𝐼𝑐 𝑖𝑗
255

)

− 𝜇𝑐
𝜎𝑐

(1)

where: 𝜇 = [0.485, 0.456, 0.406] are the mean values for the RGB
channels, 𝜎 = [0.229, 0.224, 0.225] are the standard deviation values for
the RGB channels.

The corresponding Common Objects in Context (COCO) annotations
are stored in JSON format, where the annotated masks are supported
for the semantic segmentation task. These masks are grouped by object
categories and generated by drawing polygons around the specified
objects, and subsequently used as ground truth for model training. In
detail, the mask 𝑀𝑖𝑗 ∶ R2 → {0, 1} indicates the presence (1) or absence
(0) of an object 𝑗 in image 𝑖, based on the polygon coordinates provided
in 𝑖.

We divide the original dataset  into an 80%–20% training train
and validation val sets, with all images 𝐼 ∈  resized to 700 × 700
pixels, with the resizing operation 𝑅(𝐼), such that 𝑅 ∶ R𝐻×𝑊 ×𝐶 →

R700×700×𝐶 . The training set train is used to finetune the model. In
contrast, the validation set val is leveraged to extract the explanation
for the model’s prediction, evaluate the XAI methods’ performance, and
support the domain expert to identify any data error.

5.1.2. Model finetuning
In this section, we describe the finetuning process for the base visual

quality inspection model 𝛩. The fine-tuning of the DeepLabv3Plus
model is conducted using PyTorch.
9 
Fig. 5. The architecture of the DeepLabv3Plus model, featuring an encoder with Atrous
Spatial Pyramid Pooling and a decoder for upsampling and refining segmentation
outputs.

Model preparation. The DeepLabv3Plus architecture is set as the base
model 𝛩, where its architecture is illustrated in Fig. 5. This model
combines the strengths of encoder–decoder architecture with atrous
separable convolution to enhance segmentation precision, particularly
along object boundaries.

The encoder part of DeepLabv3Plus adopts a deep Convolutional
Neural Network (CNN) model as the backbone, such as ResNet [45],
or MobileNet [46], which is modified for segmentation tasks by in-
corporating depthwise separable convolutions that reduce the number
of parameters and computational costs while maintaining effective
feature extraction. The ImageNet pre-trained weights [108] are used
for encoder initialization. The atrous convolution allows the network
to grasp contextual information at multiple scales through the ASPP
module without increasing computational demand.

The decoder module focuses on refining the segmentation outputs,
which is critical for achieving high-resolution and accurate boundary
representation. By gradually restoring spatial information and enhanc-
ing feature resolution, the decoder aids in producing more precise
segmentation maps. The weights and activations of the convolution
layers are in the Single-precision floating-point format (float32).

Loss function and optimization. The Dice loss function is used for train-
ing the model, which is particularly useful for imbalanced classes
in the image segmentation task, as it considers the overlap between
the predicted and ground truth masks [109]. Let P and GT represent
predicted and ground truth masks, respectively. The Dice loss Dice is
defined as:

Dice(P,GT) = 1 − 2 × |P ∩ GT|
|P| + |GT| (2)

The accuracy of segmentation models is assessed using the IoU
metric, also known as the Jaccard coefficient [110], one of the most
commonly used metrics in semantic segmentation. The IoU metric is a
prevalent evaluation measure in semantic segmentation. It quantifies
the overlap between the predicted segmentation and the ground truth
for each class. Mathematically, for the predicted mask P𝑐 and the
ground truth mask GT𝑐 of a category, the IoU is calculated as follows:

IoU𝑐 =
P𝑐 ∩ GT𝑐
P𝑐 ∪ GT𝑐

(3)

The model is optimized using the Adam optimizer [111] with an
initial learning rate 𝛼 = 0.0001. 𝛼 is halved to 1e−5 after 25 epochs to
facilitate convergence as the model approaches optimal performance.
The batch size is set to 8, balancing computational efficiency and
memory constraints during training.
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5.2. Module 2 – Base model explanation with XAI

We implement several XAI methods in this module to explain the
semantic segmentation model. The explanation maps of all methods
re extracted from the predictions of the segmentation model on the
alidation set, which will be used for the evaluation step. We utilize
everal notable CAM-based XAI methods, such as GradCAM [58], Grad-
AM++ [57], XGradCAM [62], HiResCAM [74], ScoreCAM [59], Ab-

ationCAM [60], GradCAMElementWise [75], EigenCAM [61], Eigen-
GradCAM [61] due to their applicabilities and plausibility in the seman-
tic segmentation task. Besides, we also leverage a perturbation-based

AI method, namely RISE [68], due to its model-agnostic mechanism.
The resulting saliency map 𝐿𝑐 of a specific category 𝑐 highlights the

regions in the input image with the highest influence on the model’s
segmentation decision. The saliency map is typically represented as a
eatmap, where warmer colors indicate regions of higher importance,
nd cooler colors represent regions of lower importance.

5.3. Module 3 – XAI evaluation

This component evaluates the XAI methods with plausibility and
aithfulness metrics on their explanations of the models with the
alidation set val. Plausibility measures how well the explanations
lign with human intuition and understanding, while faithfulness mea-
ures how accurately the explanations reflect the underlying model’s
ecision-making process. By evaluating both plausibility and faithful-
ess, we can ensure that the chosen XAI method provides explanations
hat are both understandable to humans and accurately represent the
odel’s behavior. Eventually, the method achieving the highest scores

n most metrics will be chosen as the core XAI method of the model
nhancement step. In the following, we introduce two relevant metrics,
ncluding the plausibility and faithfulness of XAI explanations.

5.3.1. Plausibility evaluation metrics
Plausibility, the alignment of explanations with human intuition, is

assessed using measures like Energy-Based Pointing Game (EBPG) [59],
and Intersection over Union (IoU) [56], and Bounding Box (Bbox)
[112]. Based on human annotations, these measures validate the model
by assessing the statistical superiority of explanations.

• Energy-Based Pointing Game (EBPG): evaluates the precision
and denoising ability of XAI methods to identify the most influ-
ential region in an image for a given prediction [59]. It calculates
how much the energy of the saliency map by pixel 𝐿𝑐 (𝑖, 𝑗) falls
inside the ground truth. A good explanation is considered to have
a higher EBPG. EBPG formula is defined as follows:

EBPG =

∑

𝐿𝑐
(𝑖,𝑗)∈GT

𝐿𝑐
(𝑖,𝑗)∈GT + 𝐿𝑐

(𝑖,𝑗)∉GT
(4)

• IoU [56] assesses the localization capability and the significance
of the attributions captured in an explanation map. It measures
the overlap between the saliency map and the ground truth
annotation. IoU is defined as:

IoU =
Area(𝐿𝑐 ∩ GT)
Area(𝐿𝑐 ∪ GT) (5)

• Bounding Box (Bbox) [112] is a variant of the IoU metric that
adapts to the size of the object of interest. It measures the overlap
between the bounding box of the saliency map and the ground
truth bounding box. Bbox is defined as:

Bbox =
Area(BBox(𝐿𝑐 ) ∩ BBox(GT))
Area(BBox(𝐿𝑐 ) ∪ BBox(GT)) (6)
s
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5.3.2. Faithfulness evaluation metrics
Faithfulness, the alignment of explanations with the model’s pre-

ictive behavior, is evaluated using the Deletion and Insertion met-
rics [68,113,114]. These measures quantify the degree to which the
explanations align with the predictive behavior of the model.

Given a black box model 𝛩, input image 𝐼 , saliency map 𝐿𝑐 , and
number of pixels 𝑁 removed per step.

• Deletion measures the accuracy of saliency areas by removing
pixels from the input image in order of saliency, from large to
small. More accurate saliency areas will have a steeper dele-
tion curve, and a smaller deletion metric value indicates higher
accuracy. Deletion 𝑑Del is defined as:

𝑑Del = AreaUnderCurve(ℎ𝑖 vs. 𝑖∕𝑛,∀𝑖 = 0,… , 𝑛) (7)

where ℎ𝑖 ← 𝑓 (𝐼) while 𝐼 has non-zero pixels, and according to 𝐿𝑐 ,
setting the next 𝑁 pixels in 𝐼 to 0 each iteration until 𝑛 iterations.

• Insertion assesses the comprehensiveness of the saliency area by
removing all pixels from the input image and then recovering
them in order of saliency, from large to small. A more comprehen-
sive saliency area will require fewer pixels to recover the object
and have a faster-rising insertion curve. A higher insertion metric
value indicates a more comprehensive saliency area. The Insertion
𝑑Ins is defined as:

𝑑Ins = AreaUnderCurve(ℎ𝑖 vs. 𝑖∕𝑛,∀𝑖 = 0,… , 𝑛) (8)

where 𝐼 ′ ← Blur(𝐼) and ℎ𝑖 ← 𝑓 (𝐼) while 𝐼 ≠ 𝐼 ′, and according to
𝐿𝑐 , setting the next 𝑁 pixels in 𝐼 ′ to the corresponding pixels in
𝐼 each iteration until 𝑛 iterations.

Finally, we choose the most suitable XAI method  based on the
valuation results with the validation set val and their capabilities for

running on the mobile model 𝜃.

5.4. Module 4 – XAI-guided data augmentation

Data augmentation strategies, such as altering data distribution
or adjusting data and labels, have been employed to enhance model
erformance [115]. In this module, we leverage the advisable XAI

method  , demonstrating the highest faithfulness and plausibility from
the XAI evaluation step, to guide the annotation augmentation process.

To facilitate the augmentation process, we develop a web-based
ser interface that allows domain experts to load any sample from
he dataset and monitor the model’s predictions, explanations in the
orm of saliency maps, and textual explanations. Fig. 6 illustrates the

user interface, which consists of several components. The input image
is displayed on the left, while the segmentation output is shown in
the center. The saliency map, generated by the advisable XAI method
 , is presented on the right, highlighting the regions that contribute
most to the model’s prediction. At the bottom, a textual explanation
is provided, offering a human-readable interpretation of the model’s
ecision-making process. The web-based user interface plays a cru-

cial role in this module, enabling domain experts to closely exam-
ine the model’s behavior and provide informed recommendations for
annotation augmentation.

Using this web UI, domain experts can thoroughly examine the
odel’s predictions and explanations, identifying problems on the val

nd defining solutions for train need to be refined. Based on their
xpertise and the insights gained from the explanations, the experts
rovide recommendations for relabeling the annotations. These recom-
endations are then used to augment the training set, resulting in an

nhanced dataset with improved annotations ̃train.
Subsequently, the base model 𝛩 is retrained on the augmented

training dataset ̃train to achieve the enhanced model 𝛩̃. To assess
he impact of the XAI-guided data augmentation, we evaluate the
nhanced model 𝛩̃ on the original validation set val by comparing
he performance of the base model 𝛩 before and after applying the data
ugmentation. Hence, we can demonstrate the potential of annotation
ugmentation, supported by XAI explanations, in enhancing semantic
egmentation models.
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Fig. 6. Web-based user interface for domain experts to monitor predictions, explanations, and textual explanations. The input image, segmentation output, saliency map, and
textual explanation are displayed, allowing experts to assess the model’s performance and provide feedback for annotation augmentation.
5.5. Module 5 – Edge model development

In this subsection, we will explore the process of transferring the
original model to edge devices. Given the limited computational re-
sources of mobile appliances, adaptations are needed to ensure smooth
compatibility. After optimization, the model undergoes various devel-
opments to be deployed on platforms like Android and iOS. Detailed
descriptions of these processes are presented in the subsequent parts.

5.5.1. Model quantization, pruning and optimization for mobile devices
After acquiring the enhanced model 𝛩̃, we apply quantization,

pruning, and optimization techniques to convert it into a mobile model
𝜃 that can efficiently run on smartphone devices. Algorithm 1 summa-
rizes the entire model quantization, pruning, and optimization process
for mobile deployment.

The first step is to disable batch normalization layers in the base
model. We iterate over all the modules in the model and set the
batch normalization layers to evaluation mode. This step is necessary
to ensure that the model’s statistics remain fixed during quantization.
Next, we apply dynamic quantization to the base model 𝛩. Dynamic
quantization is a technique that reduces the numerical precision of
the model’s weights and activations, thereby decreasing the model
size and improving inference speed without significantly compromis-
ing accuracy. We target specific layers that are known to consume
a substantial amount of computational resources, including the 2D
convolutional layer (Conv2d), linear layer (Linear), rectified linear
unit (ReLU), 2D batch normalization (BatchNorm2d), and 2D adaptive
average pooling (AdaptiveAvgPool2d). We considerably reduce the
model size by quantizing these layers’ parameters to 8-bit integers
using the dynamic quantization function from PyTorch, making it more
suitable for deployment on devices with limited storage and processing
capabilities. We perform a forward pass on the model using a sample
input tensor to simulate the inference process and ensure the quantized
model functions correctly.

After quantization, we apply pruning to the model. Pruning is a
technique that removes less important weights from the model, re-
ducing its size and computational requirements. We iterate over the
named modules of the base model and apply structured pruning to
11 
the convolutional layers (Conv2d). We set the pruning amount to 0.1,
indicating that 10% of channels in each convolutional layer will be
pruned. To remove the pruning re-parameterizations and obtain the
final pruned model, we iterate over the named modules again and
remove the pruning masks.

Next, we trace the pruned model using the just-in-time (JIT) com-
piled tracing function, which converts the PyTorch model into a Torch-
Script representation. TorchScript is a static graph representation that
allows for optimizations and efficient execution on various platforms,
including mobile devices. We pass a sample input tensor to the tracing
function to capture the model’s computational graph.

Finally, we apply mobile-specific optimizations to the traced model
using the mobile optimization function. This function performs a series
of optimizations tailored for mobile environments, such as operator fu-
sion, constant folding, and dead code elimination. These optimizations
help to reduce the model size further and improve its inference speed
on mobile devices.

The resulting mobile model 𝜃 is now quantized, pruned, and opti-
mized for deployment on smartphone devices. The quantization process
reduces the model’s memory footprint, the pruning process removes
redundant weights, and the mobile-specific optimizations enhance the
model’s efficiency during inference.

5.5.2. Mobile model deployment
After acquiring the optimized mobile model 𝜃, we proceed to the

deployment process of the smartphone application, which incorporates
the mobile model 𝜃 for both Android and iOS platforms. The deploy-
ment workflow encompasses packaging the model and its dependencies
and integrating them with the mobile app. For Android devices, we
leverage Maven, which is the process of compiling the app, bundling
the mobile model, and generating an Android Package (APK) or An-
droid App Bundle (AAB) for distribution, which is automated. While
for iOS devices, we utilize CocoaPods, a dependency manager for Swift
and Objective-C projects. Subsequently, the app is built and packaged
using Xcode’s build system.
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Algorithm 1: Model Quantization, Pruning, and Optimization
for Mobile

Input: base_model 𝛩: a base model
Input: input_tensor: an input tensor
Output: mobile_model 𝜃: an optimized, quantized, and pruned

model
/* Disable batch normalization */

1 for module in base_model.modules() do
2 if isinstance(module, nn.BatchNorm2d) then
3 module.eval()
4 end
5 end
/* Apply dynamic quantization */

6 base_model = torch.quantization.quantize_dynamic(base_model,
{nn.Conv2d, nn.Linear, nn.ReLU, nn.BatchNorm2d,
nn.AdaptiveAvgPool2d}, dtype=torch.qint8)
/* Forward pass to simulate inference */

7 base_model(input_tensor)
/* Apply pruning */

8 for name, module in base_model.named_modules() do
9 if isinstance(module, nn.Conv2d) then
10 prune.ln_structured(module, name=‘weight’,

amount=0.1, n=1, dim=0)
11 end
12 end

/* Remove pruning reparameterizations */
13 for name, module in base_model.named_modules() do
14 if isinstance(module, nn.Conv2d) then
15 prune.remove(module, ‘weight’)
16 end
17 end

/* Trace the model */
18 traced_model = torch.jit.trace(base_model, input_tensor)

/* Optimize the traced model for mobile */
19 mobile_model = optimize_for_mobile(traced_model)
20 return mobile_model

Once the mobile app is installed on the end users’ devices, field
ngineers can utilize it to capture real-world images and request se-
antic segmentation using the integrated mobile model 𝜃. The app
rovides an interface that guides field engineers to capture images,
hich leverages the device’s camera capabilities. During the inference
rocess, the mobile model generates a segmentation mask overlaying
n the uploaded picture 𝐼 as the prediction on the edge 𝑦𝜃

𝐼
that

dentifies the visual quality objects being inspected in the image.

5.6. Module 6 – Saliency and textual explanation for the edge

In this section, we present the process of generating visual expla-
ations as saliency maps and textual explanations for the segmentation
esults obtained by the mobile model 𝜃 on edge devices.

The visual explanations provide insights into the model’s decision-
aking process, highlighting the important regions in the input image

that contribute to the segmentation output. To generate the saliency
ap for the edge, the app first performs a forward pass of the input

mage through the mobile model 𝜃 to obtain the segmentation output.
The chosen XAI method  receives the uploaded image 𝐼 , segmentation
output 𝑦𝜃

𝐼
, the detected category 𝑐 and interaction with the model 𝜃 to

generate the explanation map.
The textual explanations, generated using LVLMs, offer a human-

readable interpretation of the segmentation results, enhancing the in-
terpretability and trustworthiness of the mobile app for field engineers.
In this research, we employ a recent member of the LVLMs family, GPT-
4 Vision [103], as the core vision language model due to its robust
 a
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Table 2
Summary of object characteristics by class in the TTPLA dataset, showing the number of
bjects, area percentages, and dimensions (width and height in pixels) with minimum,
aximum, and average values.
Class *#Obj. Min/Max/Avg

area (%)
Min/Max/Avg
width (px)

Min/Max/Avg
height (px)

cable 10 082 0.00/9.88/0.26 4/3840/1181 4/2160/766
tower_lattice 404 0.04/58.28/7.22 34/3840/875 59/2160/1226
tower_wooden 333 0.01/43.61/2.46 25/3684/484 112/2160/1061
tower_tucohy 232 0.02/23.68/3.25 29/3385/738 137/2160/1322

performance across diverse tasks [116] and a strong alignment with
human evaluators [117]. This LVLM processes a designed prompt, the
egmented image, and the explanation map utilizing its pre-trained
nowledge to generate human-readable explanations. The model’s re-

sponses are based on its understanding of the visual content and its
ability to associate relevant textual descriptions. The generated expla-
nations provide a concise and intuitive summary of the segmentation
results, highlighting the main objects the model concentrates on, their
attributes, and their relationships within the image.

Finally, the textual explanations are displayed to the field engineer
alongside the segmented image and the saliency map. This combination
of visual and textual explanations enhances the interpretability of
he segmentation results, allowing field engineers to understand the
odel’s behavior better and the rationale behind its predictions.

Fig. 7 illustrates the iOS user interface of the mobile application
esigned for iPhone 11 Pro. The main screen allows users to upload an
mage by selecting from the photo gallery or capturing a new image
sing the device’s camera. Upon uploading an image, the user can
nitiate the visual quality inspection process by choosing the object’s

category being inspected and tapping the ‘‘Inspect’’ button. The mobile
model 𝜃 then performs semantic segmentation on the uploaded image
𝐼 , generating a segmentation mask 𝑦𝜃

𝐼
that identifies the visual quality

objects being inspected. The segmentation mask is overlaid on the
original image, providing a clear visual representation of the detected
objects.

6. Experiment 1: A comprehensive evaluation

This section details the experimental setup, results, and analysis
of our XAI-integrated Visual Quality Inspection framework, which is
pplied to an industrial hardware assets dataset for inspecting trans-

mission towers and power lines using aerial imagery. We begin by
training the base DeepLabv3Plus model with different backbones and
assessing its performance on the validation set. Next, we conduct a
series of comprehensive analyses to identify the optimal explaining

ethod for implementation. Using this method, we apply data aug-
mentation techniques to enhance the model’s performance and generate
textual explanations that provide human-understandable insights into
the model’s decision-making process. During the performance compar-
ison stage, we consider the base model alongside the enhanced and
mobile models.

6.1. Dataset

This experiment uses the TTPLA dataset for detecting and segment-
ng power-grid hardware components from aerial imagery [118]. The
ataset encompasses 1242 high-resolution aerial images featuring 8987
nstances of transmission towers and power lines. These instances are
lassified into four distinct categories: cable, tower_wooden, tower_lattice,
nd tower_tucohy, each representing a specific type of power-grid infras-
ructure component. Table 2 summarizes the object characteristics by

class, detailing counts, area percentages, and dimension ranges (width
and height) for analysis.

The dataset is annotated in the COCO format, facilitating detection
nd segmentation tasks, including semantic and instance segmentation.
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Fig. 7. The iOS user interface of the mobile application for end-users, designed for iPhone 11 Pro. Users can upload an image, initiate visual quality inspection for a particular
category, view the segmentation results along with explanations, and have the option to upload another image.
Fig. 8. Samples from the TTPLA dataset represent the main objects of categories in
the green masks (a) cable, (b) tower_wooden, (c) tower_lattice, (d) tower_tucohy.

The diverse representation of objects against varying backgrounds,
under different lighting conditions, and at multiple scales poses unique
challenges to object detection and segmentation efforts. Furthermore,
the TTPLA dataset supports the detection and semantic segmentation
tasks and extends its utility to instance segmentation. This capability is
crucial for identifying and differentiating between individual transmis-
sion towers and power lines, allowing for a deep analysis of the power
grid infrastructure.

Fig. 8 showcases a selection of aerial images from the TTPLA
dataset, illustrating the diversity and complexity of the power-grid
infrastructure components it encompasses, highlighting the challenges
involved in the segmentation task due to the diverse backgrounds,
lighting conditions, and object sizes.

6.2. Base model performance

In this section, we evaluate the performance of the base model 𝛩
after the finetuning process. We leverage the DeepLabv3Plus model
with three different backbones, namely MobileNetv2, ResNet50, and
ResNet101. Each model is trained on the train for 1000 epochs, where
the training loss and accuracy are presented in Fig. 9. The training loss,
shown in Fig. 9(a), steadily decreases for all three models, indicating
successful learning and convergence during the finetuning process. The
DeepLabv3Plus with ResNet101 backbone achieves the lowest training
loss, followed by ResNet50 and MobileNetv2.

The results reported in Table 3 demonstrate the effectiveness of
the DeepLabv3Plus architecture for the visual quality inspection on the
validation set val. The ResNet101 backbone, with its deeper network
structure, captures more complex features and achieves the highest
13 
Fig. 9. The training loss in Dice loss and accuracy in mIoU(%) of three base
DeepLabv3Plus models over 1000 epochs.

segmentation accuracy. The ResNet50 backbone balances performance
and computational efficiency, while the MobileNetv2 backbone offers
a lightweight option suitable for resource-constrained environments.

Overall, the finetuning process successfully adapts the base model 𝛩
to the specific visual quality inspection task, achieving high IoU scores
across different object categories, which can be a strong foundation for
further optimization and deployment on edge devices.

6.3. Explanation evaluation

To select the most advisable XAI method  for our framework, we
perform both qualitative and quantitative evaluations of the explana-
tions generated by several implemented XAI methods.

6.3.1. Qualitative evaluation
The explanation maps of implemented XAI methods for the base

model 𝛩 on the TTPLA validation set val are demonstrated in Fig. 10.
The figure presents a visual comparison of the explanation maps gen-
erated by various XAI methods, including RISE, EigenGradCAM, Eigen-
CAM, GradCAM, AblationCAM, GradCAMElementWise, GradCAM++,
HiResCAM, ScoreCAM, and XGradCAM. The first row of the figure
shows the input image, ground truth annotation, and the segmenta-
tion output produced by the model. The subsequent rows display the
explanation maps generated by each XAI method.
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Table 3
Accuracy comparison of DeepLabv3Plus (DLv3P) variants with different backbones (MobileNetv2, ResNet50, ResNet101) in terms of average
IoU (%) for each category and mIoU (%). The models are evaluated at different stages: base (B), enhanced (E), and mobile (M) on the TTPLA
validation set.
Model #Params Size (MB) cable tower_wooden tower_lattice tower_tucohy mIoU (%)

DLv3P-MobileNetv2-B 4.37M 16.71 53.94 80.11 88.19 86.49 77.18
DLv3P-MobileNetv2-E 4.37M 16.71 54.37 86.49 80.98 88.78 77.82
DLv3P-MobileNetv2-M 3.51M 13.39 48.74 84.54 78.55 86.12 75.48

DLv3P-ResNet50-B 26.67M 101.76 56.66 92.31 93.18 90.63 83.20
DLv3P-ResNet50-E 26.67M 101.76 57.42 92.97 91.34 93.87 83.90
DLv3P-ResNet50-M 21.36M 81.48 53.67 90.39 88.80 91.26 81.53

DLv3P-ResNet101-B 45.66M 174.21 57.22 95.23 96.02 91.42 84.97
DLv3P-ResNet101-E 45.66M 174.21 58.36 96.54 92.89 97.61 86.35
DLv3P-ResNet101-M 36.57M 139.52 54.43 94.07 90.22 95.09 83.95
Fig. 10. The qualitative evaluation of XAI methods in explaining the base DeepLabv3Plus-ResNet101 model on a validation sample. The category is the tower_lattice. The IoU value
between the segmentation and the ground truth is 96.25%.
From a qualitative perspective, the explanation maps should pro-
vide valuable insights into the model’s decision-making process. We
observe variations in the highlighted regions by comparing the expla-
nation maps across different XAI methods. Some methods, such as RISE
and EigenGradCAM, produce more localized and fine-grained explana-
tions, accurately capturing the relevant objects and their boundaries.
Other methods, like GradCAM and GradCAM++, generate more coarse-
grained explanations, highlighting larger regions of interest. The quali-
tative evaluation also reveals the strengths and limitations of each XAI
method. For instance, HiResCAM and ScoreCAM produce explanations
with higher spatial resolution, enabling more precise localization of
important features. On the other hand, methods like GradCAMElemen-
tWise and XGradCAM generate explanations with varying sensitivity
levels to different image regions.

By visually comparing the explanation maps with the ground truth
annotations and segmentation outputs, we can assess the plausibility of
the explanations where plausible explanations should align well with
human intuition and highlight regions that are semantically relevant
to the target objects.
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6.3.2. Quantitative evaluation
In this section, we present a quantitative evaluation of different XAI

methods introduced in Module 2 (Section 5.2) on the validation set
val using various plausibility and faithfulness metrics. The plausibility
metrics include Energy-Based Pointing Game (EBPG), Intersection over
Union (IoU), and Bounding Box (Bbox). In contrast, the faithfulness
metrics include Deletion (Del) and Insertion (Ins), which are introduced
in Module 3 (Section 5.3). The evaluation results are summarized in
Table 4.

Among the evaluated methods, RISE stood out as the most advis-
able XAI method for our framework. RISE demonstrated exceptional
performance in terms of faithfulness, achieving the best scores in
both Deletion (0.123) and Insertion (0.691) metrics. These faithfulness
results indicate that the explanations generated by RISE closely align
with the model’s predictive behavior, accurately capturing the most
influential regions in the input images. It also demonstrated strong
plausibility, with the second-best scores in EPBG (62.42%) and IoU
(56.13%), and the best score in BBox (63.52%). RISE’s high scores in
these plausibility metrics demonstrate that its explanations are highly
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Table 4
The quantitative result of XAI methods on the validation set val on different metrics
such as EPBG(%), BBox(%), IoU(%), Drop, Increase, and running time in seconds. For
each metric, the arrow ↑ ∕ ↓ indicates higher/lower scores are better. The best is in
bold, and the second best is in underline.

Method EPBG↑ BBox↑ IoU↑ Del↓ Ins↑

GradCAM 50.49 48.39 47.94 0.521 0.527
GradCAM++ 58.13 52.24 53.22 0.517 0.547
HiResCAM 60.81 41.69 52.19 0.501 0.559
ScoreCAM 54.01 43.95 51.94 0.434 0.609
XGradCAM 57.94 47.81 53.09 0.594 0.551
AblationCAM 61.03 51.39 54.73 0.498 0.589
GradCAMElementWise 40.95 35.91 39.25 0.859 0.415
EigenCAM 51.49 42.54 51.03 0.545 0.491
EigenGradCAM 64.11 62.24 60.93 0.520 0.534
RISE 62.42 63.52 56.13 0.123 0.691

interpretable and closely match human understanding of the important
regions in the input images.

EigenGradCAM also shows strong performance in plausibility met-
rics, achieving the highest EBPG and IoU scores of 64.11% and 60.93%,
respectively. It also obtains the second-highest Bbox score of 62.24%.
However, its faithfulness scores are not as impressive as RISE, suggest-
ing that the salient regions identified by EigenGradCAM may not fully
align with the model’s predictive behavior. Other XAI methods, such
as GradCAM++, XGradCAM, and AblationCAM, demonstrate compe-
tent performance in plausibility metrics but fall short in faithfulness
compared to RISE.

Another advantage of RISE, particularly suitable for our visual qual-
ity framework, is its model-agnostic nature. As a model-agnostic XAI
method, by treating the model as a ‘‘black box’’, RISE can be applied
to any model without requiring access to its internal architecture or
gradients. This property is crucial in our framework, where we may
need to quantize or optimize the base model to a mobile model without
being able to access or modify its architecture. RISE’s flexibility ensures
that we can still generate meaningful explanations for the model’s pre-
dictions, regardless of any modifications made during the optimization
process.

Based on our quantitative evaluation and considering the model-
agnostic property of RISE, we use RISE as the advisable XAI method
 for our visual quality framework. The selection of RISE as the
advisable XAI method has significant implications for the subsequent
modules in the framework, such as Module 4 (Section 5.4) and Module
6 (Section 5.6). By incorporating RISE into our framework, we can
enhance the interpretability and performance of our models, enabling
the domain expert to validate the model’s predictions while allowing
end-users to understand the model’s rationale even with the mobile
model 𝜃.

6.4. Model improvement via XAI-guided data augmentation

This section presents the experimental results of enhancing the
DeepLabv3Plus-ResNet101 model’s performance using annotation aug-
mentation guided by the advisable XAI method  and the domain
expert. The process begins with the XAI method  generating expla-
nations for each image in the validation set val. The domain expert,
knowledgeable in semantic segmentation models and XAI algorithms,
analyzes the saliency maps to guide data augmentation.

As shown in Fig. 11, the model effectively segments the cable from
a clean or mixed-objects background, such as Fig. 11a. However, the
model’s performance decreases when the background contains objects
resembling the target object, as shown in Fig. 11b. The explanations
reveal that the model’s attention is directed at the object and the
surrounding background. However, the model lacks contextual atten-
tion to surrounding objects and backgrounds in complex cases. This
behavior is due to the ability of models to leverage local and global
15 
Fig. 11. List of input images, ground truth, segmentation of the base DeepLabv3Plus-
ResNet101-B model for the cable inspection for two segmentation cases: (a) Good
segmentation and (b) Bad segmentation.

Fig. 12. Annotation augmentation approaches: (a) Annotation enlargement where the
annotation size for thin objects like cables is increased by 2 pixels on both sides. (b)
Adding annotations for perplexed objects like the road surface marks to guide the model
in differentiating between white cables and perplexed objects.

contextual information from the original annotations [69]. A domain
expert suggests annotation augmentation for each sample to enhance
the model’s performance.

Two approaches are proposed, namely Annotation Enlargement and
Adding Annotations for Perplexed Objects, as illustrated in Fig. 12, which
are described as follows:

• Annotation Enlargement (Fig. 12(a)): Given that the model can
leverage surrounding contextual information to improve its per-
formance, we propose to enlarge the annotations of thin objects,
especially thin cables, which the model often overlooks based on
the saliency maps. We increase the object’s size by 2 pixels on
both sides.

• Adding Annotations for Perplexed Objects (Fig. 12(b)): As the
model often confuses cables with perplexing objects like road sur-
face markings, we propose adding void annotations to categorize
these perplexing objects as unlabeled objects.

The enhanced DeepLabv3Plus-ResNet101 (DLv3P-ResNet101-E)
model demonstrates improved segmentation of thin objects from the
background and perplexing objects (Fig. 13). The IoU of the enhanced
model 𝛩̃ is also higher than that of the base version 𝛩, particularly
with the 𝚌𝚊𝚋𝚕𝚎 category leading to a higher overall mIoU, as shown in
Table 3.
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Fig. 13. Qualitative results of DeepLabv3Plus (DLv3P)-ResNet101 on four categories of the TTPLA dataset. The models are evaluated at different stages: base (B), enhanced (E),
and mobile (M).
s

6.5. Mobile model performance

In this subsection, we evaluate the performance of the DeepLabv3Plu
models after the quantization and deployment on mobile devices. The
quantitative results are presented in Table 3 comparing the models’
performance, while Fig. 13 illustrating the qualitative results showcase
segmentation outputs for the visual quality inspection task.

From Table 3, we observe that, when deployed on mobile devices,
the mobile model variants experience a slight performance drop due to
the quantization and optimization process, which reduces the model’s
size and computational complexity to make it suitable for mobile infer-
ence. The mobile DeepLabv3Plus-MobileNetv2 (DLv3P-MobileNetv2-
M) model, specifically designed for mobile deployment, maintains a
competitive mIoU of 75.48% while having significantly fewer param-
eters (3.51M) and a smaller model size (13.39 MB) compared to the
ResNet-based models.

Qualitatively, Fig. 13 visually compares the segmentation results
produced by the base, enhanced, and mobile versions of the
DeepLabv3Plus model with the ResNet101 backbone. The first col-
umn shows the input images, while the second column demonstrates
the corresponding ground truth annotations. The subsequent columns
16 
demonstrate the segmentation outputs of the base, enhanced, and
mobile models, respectively. The qualitative results show that the
enhanced DeepLabv3Plus-ResNet101 (DLv3P-ResNet101-E) model pro-
duces highly accurate segmentation masks, closely resembling the
ground truth annotations. Especially, the enhanced model is less prone
to perplexed objects, as shown in Fig. 13b. The segmentation quality of
the mobile DeepLabv3Plus-ResNet101 (DLv3P-ResNet101-M) model is
slightly lower compared to the enhanced version, with some minor dis-
crepancies in the segmented regions. However, the mobile model still
maintains good visual quality, successfully identifying and segmenting
key objects of interest.

The results confirm the visual quality of the segmentation out-
puts produced by the mobile models, highlighting their effectiveness
in real-world scenarios. Overall, our procedure of developing mobile
models can provide a balance between performance and computational
efficiency.

6.6. Textual explanation
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Template 1: Prompt template for the GPT-4 Vision

System Message: You are an Explainable AI expert for semantic segmentation models.
The first image is the original image. The second image is the ground truth of category {category} in the original image. The third image
is the prediction of an AI model for category {category} in the original image. The fourth image is the explanation map of the category
{category} in the original image. Think step by step to understand how the explanation map and prediction align with the ground truth.
First, capture the image context in the original image. Secondly, identify which parts belong to category {category} in the ground truth.
Then, you look at the explanation map to see the saliency map for the segmentation mask of the category {category}. Your task is to
check if the focused region in the explanation map supports the prediction for category {category}. Your final answer must be concise,
simple, and separated by bullet points. First, briefly describe the explanation map. Secondly, describe the most focused region of category
{category} in the explanation. Thirdly, describe the least focused region of category {category} in the explanation. Fourthly, assess the
localization quality if the focused region aligns with the prediction and ground truth for category {category}.

User Message:
image_url: ‘‘data:image/jpeg;base64,{input_image}’’
image_url: ‘‘data:image/jpeg;base64,{ground_truth_image}’’
image_url: ‘‘data:image/jpeg;base64,{segmentation_image}’’
image_url: ‘‘data:image/jpeg;base64,{explanation_image}’’
t

c

m

w
T
a

s
p es
In this subsection, we present the results of generating textual expla-
ations to provide a human-readable interpretation of the segmentation
esults on the TTPLA dataset. The textual explanations aim to enhance
he interpretability and trustworthiness of the mobile app for field
ngineers by offering a concise and intuitive summary of the model’s
ationale.

To generate the textual explanations, we design a prompt template
hat includes the original image, the ground truth image, the segmenta-
ion image, and the saliency map. The LVLM processes this information
nd leverages its pre-trained knowledge to generate human-readable
xplanations. Template 1 presents the prompt template used for gen-

erating these explanations. The system message informs LVLM that
it should act as an XAI expert in describing saliency maps retrieved
from XAI methods for a semantic segmentation model. It outlines the
input structure, including the original image, the ground truth image,
the segmentation image, and the explanation map image. The system
message also instructs the model to think step-by-step, identifying parts
of each image’s specific category. Furthermore, it guides the model in
describing the concentrated regions of the explanation map. It provides
instructions on how to format the final answer, emphasizing correctness
and simplicity for end-user understanding. The user message, on the
other hand, provides the specific inputs for the model to process. In our
framework, the user message includes the URLs of the original image,
ground truth image, segmentation image, and explanation image. These
images are passed to the model as base64-encoded strings.

Template 2 shows examples of the textual explanations generated by
he LVLM for the good segmentation of tower_wooden (Fig. 14) and bad
egmentation of cable (Fig. 15) categories, respectively. The generated
extual explanation provides a clear overview of the saliency map,

indicating areas of interest where the prediction model concentrates
n identifying the presence of a wooden tower structure or cables. The
xplanation highlights the most concentrated region and points out the
east concentrated region. Moreover, the textual explanation can also
ssess the model’s segmentation performance, whether the model has
 good or bad segmentation, by combining the information from the

saliency image, prediction image, and ground truth image. The textual
explanation shown directly on the mobile devices and the saliency map
aims to support end-users in understanding the model’s rationale in a
uman-centered manner.

7. Experiment 2: A data-centric approach

Based on the findings from Experiment 1, we further evaluate our
ramework in Experiment 2 using a data-centric approach. The exper-
mental procedures remain consistent with those used in the previous
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experiment. However, this time we directly apply  as the explaining
technique without conducting comparative analyses of different XAI
methods. Additionally, we utilize a different public industrial dataset,
focusing on the inspection of substation equipment.

7.1. Dataset

The Substation Equipment dataset comprises 1660 images of elec-
ric substations collected using handheld cameras, Automated guided

vehicle (AGV)-mounted cameras, and fixed-location cameras [119]. It
features 15 categories of substation equipment, with a total of 50,705
annotated objects. These categories include open_blade_disconnect_switch,
breaker, closed_blade_disconnect_switch, open_tandem_disconnect_switch,
fuse_disconnect_switch, porcelain_pin_insulator, closed_tandem_disconnect
_switch, muffle, potential_transformer, lightning_arrester, recloser, power_
transformer, current_transformer, glass_disc_insulator, and tripolar_
disconnect_switch. Table 5 summarizes the object characteristics by class,
detailing counts, area percentages, and dimension ranges (width and
height) for analysis.

The dataset provides annotations in two formats: VOC-style polygo-
nal JSON files and segmentation masks in Portable Network Graphic
images. In our experiment, we use the VOC-style polygonal JSON
files for semantic annotations. Fig. 16 presents samples from several
ategories, such as recloser, power transformer, porcelain pin insulator,

and tripolar disconnect switch.
The primary application of this dataset is to develop automated

inspection systems for substations. Training semantic segmentation
models on this dataset allows researchers to improve the accuracy and
reliability of these systems, resulting in more efficient and effective

onitoring of substation equipment.

7.2. Base model performance

In this experiment, we demonstrate the efficiency of our framework
hen applied to the DeepLabv3Plus model with a ResNet101 backbone.
he model is trained on the training set train for 1000 epochs, and the
ccuracy for each category is presented in Table 6.

The base DeepLabv3Plus-ResNet101 model achieves promising re-
sults on the validation set, with an overall mIoU of 73.45%. However,
the model’s performance varies across different categories. Some cate-
gories, such as breaker, open_blade_disconnect_switch, and fuse_disconnect_
witch achieve high IoU scores above 90%. In contrast, others, like
orcelain_pin_insulator and closed_blade_disconnect_switch, have lower scor

of around 30% and 49%, respectively. These performance variations
underscored the challenges posed by the diverse object categories in

Fig. 17).
the employed dataset (see
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Template 2: Textual Explanations of the TTPLA dataset

Fig. 14. Good segmentation - Category: tower_lattice.
Model Output:
- The explanation map is a visual representation showing the importance of different regions of the image for predicting the category
tower_lattice.
- The most focused region in the explanation map seems to be the central part of the tower, with yellow to red gradients, indicating a
high degree of importance according to the model.
- The least focused region in the explanation map appears to be the bottom and peripheral parts of the tower, shown by the cooler colors
such as blue, which suggest these areas have less influence on the model’s decision.
- The segmentation accuracy seems high, where the focused region corresponds well with the AI model’s prediction and the ground truth.
This alignment indicates that the model focuses on relevant parts of the image to predict the category tower_lattice.

Fig. 15. Bad segmentation - Category: cable.
Model Output:
- The explanation map is a visual representation that indicates which areas of the image the AI model deemed relevant when determining
where the category ‘‘cable’’ is present.
- The most focused region of the cable in the explanation map is evident along the linear features within the road, which correlate with
the yellow lane markings and the road’s edges.
- The least focused region in the explanation appears to be the areas on the pavement free from markings and the natural vegetation areas
on the right side of the image.
- The focused region in the explanation map does not perfectly align with the ground truth for the cable category. The prediction appears
to have false positives along the lane markings. It does not accurately distinguish between the road markings and actual cables, whereas
the ground truth demarcates straight lines purported to be cables adjacent to the road on both sides. Therefore, there is a discrepancy
between the focused regions in the explanation map and the true location of cables, as shown in the ground truth image.
Table 5
Summary of object characteristics by class in the Substation dataset, showing the number of objects, area percentages, and dimensions (width
and height in pixels) with minimum, maximum, and average values.
Class #Obj. Min/Max/Avg area (%) Min/Max/Avg width (px) Min/Max/Avg height (px)

porcelain_pin_insulator 26 450 0.00/16.16/0.08 2/2244/57 4/2291/64
closed_blade_disconnect_switch 5 225 0.00/16.22/0.35 3/1107/97 9/2003/216
glass_disc_insulator 3 180 0.00/0.78/0.05 3/283/66 6/399/62
tripolar_disconnect_switch 2 348 0.00/4.9/0.23 3/839/98 5/754/124
recloser 2 330 0.00/25.44/1.52 4/1486/251 3/1355/230
current_transformer 2 128 0.00/2.68/0.25 4/1232/101 6/761/125
lightning_arrester 1 974 0.00/1.78/0.06 4/397/40 4/963/84
open_tandem_disconnect_switch 1 596 0.00/5.12/0.09 4/659/100 4/1114/108
muffle 1 354 0.00/9.26/0.09 5/280/41 4/956/165
breaker 980 0.00/15.42/1.08 7/1487/156 6/1468/298
7.3. Model improvement via XAI-guided data augmentation

After evaluating the segmentation performance of the base model
on the validation set  , we analyze the corresponding explanation
val
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images generated by RISE, the recommended XAI method  identified
in Experiment 1. RISE analysis reveals systematic failure patterns in
object detection and segmentation across specific equipment cate-
gories, particularly recloser, glass_disc_insulator, porcelain_pin_insulator,
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Fig. 16. Samples from the Substation Equipment dataset represent the main objects of categories in the green masks (a) recloser, (b) power_transformer, (c) porcelain_pin_insulator,
(d) tripolar_disconnect_switch.
Fig. 17. List of input images, ground truth, segmentation of the base DeepLabv3Plus-ResNet101-B model, and the corresponding explanations for four categories of the Substation
equipment dataset.
Table 6
Accuracy comparison of three DeepLabv3Plus models with the ResNet101 backbone at
different stages: base (B), enhanced (E), and mobile (M) in terms of average IoU (%)
for each category and mIoU (%) on the Substation equipment validation set.

Model B E M

breaker 92.93 94.51 92.51
closed_blade_disconnect_switch 49.14 50.26 48.02
closed_tandem_disconnect_switch 83.11 84.34 82.04
current_transformer 62.23 63.25 61.07
fuse_disconnect_switch 90.87 92.77 90.03
glass_disc_insulator 53.55 55.42 53.08
lightning_arrester 67.87 69.28 67.41
muffle 88.27 90.06 87.92
open_blade_disconnect_switch 93.34 95.18 93.06
open_tandem_disconnect_switch 83.85 85.54 83.51
porcelain_pin_insulator 30.11 32.03 30.05
potential_transformer 78.54 80.72 78.01
power_transformer 85.73 87.79 85.50
recloser 68.11 70.40 67.50
tripolar_disconnect_switch 83.22 85.24 82.79

mIoU 73.45 75.79 72.58

current_transformer, lightning_arrester and closed_blade_disconnect_switches,
resulting in IoU scores below 70%. As shown in (Fig. 20), the expla-
nation maps indicate insufficient model activations on target objects,
especially under challenging imaging conditions such as (1) small
spatial dimensions relative to the image size (as depicted in Table 5),
(2) low contrast due to similar visual features with surrounding in-
frastructure, or (3) truncated or out-of-frame object instances at image
boundaries.
19 
To address this issue, we employ a sequence of image augmentation
techniques [120] to enhance the training data, as shown in Fig. 18. The
augmentation pipeline includes horizontal flipping, horizontal shifting,
padding, Gaussian noise addition, perspective transformation, Con-
trast Limited Adaptive Histogram Equalization (CLAHE), sharpening,
and brightness and contrast adjustments. These techniques aim to
improve the model’s robustness and generalization ability by simulating
real-world variations in the training data.

After applying the image augmentation techniques to the training
set train, we retrain the model and implement the mobile optimization
algorithm (Algorithm 1) to obtain the enhanced model. Table 6 shows
that the enhanced model 𝛩̃ improves across all categories, with an
overall mIoU of 75.79%, surpassing the base model’s performance.
Table 6 presents the mobile model’s performance. Despite undergoing
quantization and pruning, the mobile model 𝜃 maintains a competitive
overall mIoU of 72.58%, experiencing only a slight decrease compared
to the enhanced model. Its performance across individual categories
remained consistent, with the largest drop being less than 3% for the
porcelain_pin_insulator category.

7.4. Textual explanation

To generate textual explanations, we follow the prompting structure
presented in Template 1. Specifically, Template 3 provides the tex-
tual explanations generated by the LVLM for two segmentation cases:
successful segmentation of an object in the power_transformer category
(Fig. 19) and unsuccessful segmentation of an object in the recloser
category (Fig. 20). The results show that the LVLM effectively provided
human-understandable textual explanations for both cases.
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Fig. 18. Augmentation techniques on the training set of the Substation equipment
dataset.

In the successful segmentation case, the LVLM highlights the central
structures and components of the power_transformer as the primary
focus in the explanation map, while the ground and less critical back-
ground structures received minimal attention. It also notes that these
focused regions partially supported the prediction, indicating that the
model utilized broader contextual cues for accurate segmentation.

In the failure case, the LVLM highlights the labeled components and
connectors on the left as the primary focus in the explanation map
rather than the recloser itself. It observes that these focused regions did
not support the prediction for the recloser, indicating a significant issue
with the model’s ability to recognize and segment this category.

8. Discussion

In this section, we discuss the key findings of our results, highlight-
ing both the advantages and limitations of the proposed framework. We
also offer a variety of suggestions for future development.

8.1. XAI-guided data augmentation for model enhancement and deployment
on the edge

Our experimental results highlight the effectiveness of the proposed
XAI-integrated Visual Quality Inspection framework for industrial as-
sets in both cloud and edge computing contexts. Quantitative and
qualitative analyses demonstrate that integrating XAI techniques sig-
nificantly enhances the performance and interpretability of semantic
segmentation models deployed on mobile devices.

A key aspect of our framework is the application of XAI meth-
ods, such as RISE, to guide data augmentation and improve model
performance. By leveraging insights from the saliency maps gener-
ated by RISE, domain experts can refine training data annotations,
particularly in areas where the model struggled with segmentation.
This process significantly improved segmentation accuracy, especially
for challenging categories. The enhanced DeepLabv3Plus-ResNet101
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model’s higher IoU scores compared to the base model highlight the
value of integrating XAI into the model development process for edge
deployment.

Another crucial feature of our framework is optimizing models for
edge devices to enable real-time field inspections. Our results indicate
that the quantized and pruned edge models maintain competitive per-
formance while significantly reducing model size and computational
requirements. This optimization is essential for efficient on-device in-
ference, making the visual quality inspection system more practical and
accessible for field engineers using edge devices with limited resources.

8.2. Human-centered textual explanation

Integrating textual explanations generated by LVLM greatly en-
hances the interpretability and applicability of edge-deployed appli-
cations. These clear and intuitive summaries of the model’s decision-
making process help field engineers better understand and trust the
segmentation results on their mobile devices. Specifically, the expla-
nations accurately highlight the most and least focused regions in the
saliency maps, allowing users to effectively assess the quality of the
model’s predictions by comparing the explanation maps with ground
truth annotations. Delivering interpretable insights directly on mobile
devices is essential for field engineers to make informed decisions and
confidently rely on the system’s outputs.

Overall, our proposed framework demonstrates the feasibility and
benefits of generating human-readable explanations alongside saliency
maps at the edge, resulting in more transparent and trustworthy visual
quality inspection systems.

8.3. Limitations and future developments

While our XAI-integrated Visual Quality Inspection framework
shows promising results, there exist some limitations that should be
considered.

Firstly, the XAI-guided annotation augmentation process relies on
the expertise and manual effort of domain experts. Automating or
semi-automating this process could enhance scalability and efficiency,
particularly for large-scale edge deployments. Future work could ex-
plore techniques to automate the annotation refinement process based
on XAI insights.

Secondly, generating textual explanations on edge devices may
introduce latency and computational overhead. Although the current
framework shows this approach is feasible, it also highlights the need
for further research to address these drawbacks. This could involve
exploring more lightweight language models or developing techniques
specifically designed for edge computing scenarios.

Lastly, the framework’s applicability to other visual inspection do-
mains in edge computing scenarios remains to be explored. We rec-
ommend future work investigate the generalizability of the proposed
approach across different visual quality inspection tasks and evalu-
ate its performance and interpretability on various datasets and edge
computing environments.

9. Conclusion

This paper introduces an XAI-integrated Visual Quality Inspection
framework for industrial assets, meeting the increasing demand for
explainable and trustworthy AI systems in edge computing environ-
ments. Our framework combines cutting-edge semantic segmentation
models, XAI techniques, quantization algorithms, LVLM, and edge de-
ployment to enhance both the performance and interpretability of
visual quality inspection systems for end-users. Our experimental re-
sults demonstrated the remarkable effectiveness of XAI methods in
data improvement and augmentation, which led to enhanced model
accuracy and performance, especially for challenging and complex
categories.
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Template 3: Textual Explanations of the Substation Equipment dataset

Fig. 19. Good segmentation - Category: power_transformer.
Model Output:
- The explanation map highlights several regions of importance, with some focus around the power transformer but also attention on other
structures.
- The central structures and parts of the power transformer have significant focus in the explanation map.
- The ground and less critical background structures have the least focus.
- The focused regions in the explanation map partially support the prediction for the power transformer. The prediction is accurate, but
the explanation map indicates that the model’s focus is distributed, suggesting it uses broader contextual cues.

Fig. 20. Bad segmentation - Category: recloser.
Model Output:
- The explanation map highlights regions of importance, with significant focus on the left-side components and connectors, rather than
the recloser.
- The labeled components and connectors on the left are the most focused regions in the explanation map.
- The background and some parts of the ground and structure are the least focused regions.
- The focused regions in the explanation map do not support the prediction for the recloser. The model failed to segment the recloser,
indicating a significant issue with the model’s ability to recognize and segment this category.
A notable feature of our framework is the enhancement module,
which optimizes the model for edge devices through quantization and
pruning, making it more lightweight and efficient while maintaining
competitive performance. Additionally, integrating textual explana-
tions generated by LVLM significantly enhances the interpretability
of the edge-deployed application. Last but not least, providing inter-
pretable insights directly on edge devices empowers field engineers to
make informed decisions and increases their confidence in the system’s
outputs.

On the other hand, the framework has certain limitations, includ-
ing the human-in-the-loop effort required for XAI-guided annotation
augmentation and the potential latency and computational overhead
introduced by generating explanations on edge devices. Future work
could explore methods to automate the annotation refinement process
and optimize the explanation generation stage for edge computing
scenarios.

In conclusion, despite all the limitations discussed, our work has
successfully paved the way for more transparent, trustworthy, and
effective industrial visual inspection systems deployed at the edge.
By addressing key challenges and demonstrating the feasibility of our
approach, we lay a solid foundation for future advancements. This
can significantly enhance the reliability and performance of edge-based
visual inspection technologies, ultimately benefiting both end-users and
21 
developers by providing more accurate, interpretable, and efficient
solutions.
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