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Abstract. Psychiatric disorders (PDs), such as schizophrenia (SZ) and
bipolar disorder (BP), significantly impact global populations, yet their
diagnosis remains heavily reliant on subjective clinical methods. This pa-
per presents the PD diagnosis system that integrates wearable electrocar-
diogram (ECG) monitoring, Time Series Convolutional Attention Net-
work, dual visual and textual explanations with Explainable AI (XAI)
and Large Visual Language Models (LVLMs), and user-centered inter-
faces to ensure model transparency, increase applicability in clinical set-
tings. By investigating the relationship between PDs and heart rate vari-
ability (HRV), this work paves the way for more objective and accessi-
ble clinical assessments with wide-ranging applications in mental health
diagnostics. We evaluate our system on the detection of PDs, demon-
strating superior performance compared to recent literature models and
providing interpretable explanations for model decisions. Additionally,
we showcase the system’s applicability to a related use case, highlighting
its scalability and potential for widespread adoption.

1 Introduction

Psychiatric disorders (PDs), such as schizophrenia (SZ) and bipolar disorder
(BP), affect 1–3% of the global population [19]. SZ is characterized by psychotic
symptoms (e.g., delusions, hallucinations) and negative symptoms (e.g., alogia,
blunted affect), whereas BP involves extreme mood swings with manic and de-
pressive episodes, sometimes accompanied by psychotic features [21]. Despite
their differences, SZ and BP share genetic overlap and cognitive deficits, im-
pacting quality of life. Current diagnostic methods, based on self-reports and
clinical interviews, are subjective, time-consuming, and reliant on clinician ex-
pertise. Efforts to improve objectivity, such as standardized scales (e.g., Positive
and Negative Syndrome Scale/PANSS) and blood biomarkers, face challenges
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like accessibility and cost [8]. Wearable technology offers a promising alterna-
tive, with heart rate variability (HRV)—an autonomic dysregulation marker,
emerging as a non-invasive biomarker for SZ and BP [2]. HRV can be measured
by consumer-grade devices and integrated with artificial intelligence (AI) to en-
hance diagnostics. However, prior approaches often relied on less precise sensors
or focused on heart rate rather than HRV [9]. Additionally, AI’s “black-box”
nature poses interpretability challenges, prompting calls for transparency under
regulations. In response to these challenges, our research makes the following
key contributions:
1. Psychiatric Disorder Diagnosis System: We introduce a comprehen-

sive system integrating single-lead electrocardiogram (ECG) data with the
Time Series Convolutional Attention Network (TSCAN) to capture local
and global temporal patterns for detecting PDs. By utilizing consumer-grade
wearable ECG monitors and user-friendly interfaces, our system promotes
widespread adoption in clinical settings for more accessible mental health
diagnostics.

2. Dual Visual and Textual Explanations: The system combines dual Ex-
plainable AI (XAI) methods, i.e. attention-based and gradient-based visual
explanations, with Large Vision Language Models (LVLMs) to generate tex-
tual insights, enhancing model interpretability and clinician trust.

3. Evaluation and Applicability: We evaluate the system on the PD de-
tection task, achieving superior performance with TSCAN compared to re-
cent literature models and providing interpretable decisions through dual
explanations. Our work explores the relationship between HRV and PDs,
paving the way for easier assessments and wider clinical applications. We
also demonstrate the system’s adaptability to a related use case, showcasing
its generalizability across mental health applications.

2 Related Work

2.1 Detection of Psychiatric Disorders

The detection of PDs has increasingly benefited from AI techniques. While vari-
ous AI and ML techniques have been applied to predict SZ, BP, or their episodes,
relatively few studies have specifically utilized HRV or ECG data for this pur-
pose. The use of wearable devices capable of recording HRV/ECG data has
opened new avenues for PD detection. Recently, Buza et al. [4] used Convolu-
tional Nearest Neighbor for detecting PDs using R-R intervals (RRI) sequences
recorded from the wearable Polar H10 device. Further exploring the relationship
between HRV and PDs, Corponi et al. [6] also employed Bayesian analysis to ex-
amine physiological changes during acute episodes of BP, focusing on how HRV
patterns change during different disorder phases.

2.2 Human-centered Explainable Systems

The XAI field has grown rapidly, driven by the demand for transparency in
AI, particularly in sensitive areas like healthcare [18]. In PD detection, XAI
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Fig. 1: The Psychiatric Disorder Diagnosis System includes (1) ECG Recording
Interface, (2) Time Series Convolutional Attention Network, (3) Dual Visual and
Textual Explanations, and (4) User-centered Diagnosis Interface.

applications enhance trust and ethical AI use by offering clinicians insights into
diagnostic decisions. Techniques like SHAP [14] and GradCAM [20] have been
applied to interpret models analyzing SZ classification [1,10] and motor activity
data [15]. These advancements promote human-centered, transparent systems
that present insights via visual and textual explanations, accessible even to those
without AI expertise.

Efforts to make AI systems more transparent and user-friendly focus on align-
ing explanations with human psychology [22], providing interactive interfaces [3],
and generating textual explanations [16]. LVLMs have emerged as powerful tools
for blending language understanding with visual reasoning, excelling in tasks like
visual question answering and multi-modal learning. These capabilities present
new opportunities for enhancing explainability in visual perception tasks through
textual explanations, advancing human-centered XAI systems [16,17].

3 Psychiatric Disorder Diagnosis System

In this section, we present our PD diagnosis system (Fig. 1) integrating an ECG
Recording Interface (ERI), the Time Series Convolutional Attention Network
(TSCAN), Dual Visual and Textual Explanations, and a User-centered Diagnosis
Interface (UDI) to enhance accessibility and interpretability for clinicians.

3.1 ECG Recording Interface (ERI)

The ERI is designed to capture and process the ECG data from users. This inter-
face integrates seamlessly with wearable devices to record real-time ECG data,
calculate the RRI sequence and store data in the database. Users can initiate
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the ECG recording only by activating the wearable devices for connectivity, and
then the ECG signals are streamed to the interface. After the ECG is recorded
for a set amount of time (at least 70 minutes), when the interface prompts users
to stop, the ECG is saved. After acquiring the ECG signals, incorporated algo-
rithms detect R-peaks and then calculate the RRI. The raw ECG data and the
calculated RRI sequence data are stored in a database shared with clinicians.

3.2 Time Series Convolutional Attention Network (TSCAN)

TSCAN integrates a Temporal Convolutional Network, residual blocks, and bidi-
rectional LSTMs (BiLSTMs) with multi-head attention to capture both local
and global temporal dependencies in RRI sequences, which adapts Temporal
Convolutional Attention Network (TCAN) [7] to the time-series input.

Temporal Convolutional Network employs stacked 1D convolutional layers
with filter sizes f1 and f2, capturing temporal patterns at varying scales. Each
layer applies batch normalization (BN) and ReLU activation:

z1 = ReLU(BN(Conv1Df1(X))), z2 = ReLU(BN(Conv1Df2(z1))) (1)

followed by a max pooling P = 2 to downsample the feature maps to achieve z3.

Residual Blocks Two residual blocks capture complex patterns and mitigate
vanishing gradients. The first block creates a shortcut connection via 1× 1 con-
volution and max pooling:

zφ1 = MaxPooling1D(Conv1Df2(X)), z4 = ReLU(zφ1 + z3) (2)

followed by the second block stacking two convolutional layers with filter sizes
f3 and f4 and adding a shortcut connection.

BiLSTM with Multi-Head Attention The BiLSTM layer processes residual
block outputs in both directions, generating concatenated hidden states hm =

[
−→
hm;
←−
hm]. Multi-head attention (A) computes queries Q, keys K, values V and

attention scores A: Attention outputs are concatenated and passed through a
linear layer for final aggregation:

O = LayerNorm(H+ Concat(A1, . . . ,Ah)W
O) (3)

then O is flattened and passed through dense layers with ReLU activation and
dropout regularization. The dense layer has ud units, and the dropout rate is
set to r. The final dense layer with softmax activation outputs the predicted
probabilities for each class: ŷ = softmax(WOΘ + b), where W and b are the
weights and biases of the dense layer.
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3.3 Dual Visual and Textual Explanations

To gain insights into the decision-making process of TSCAN and enhance its in-
terpretability, we integrate two XAI approaches (Attention-based and Gradient-
based) and LVLMs to generate dual visual and textual explanations.

Visual Attention-based Explanation leverages the attention mechanism
employed in the TSCAN. Let X = (x1,x2, . . . ,xT ) be the input sequence of
length T , where xt ∈ Rd is the feature vector at time step t. The attention mech-
anism computes a set of attention weights A = (α1, α2, . . . , αT ), where αt ∈ [0, 1]
represents the importance of time step t in the model’s detection. The attention
weights are obtained from the multi-head attention layer in the TSCAN. Given
Q, K, V matrices, and A, to interpret the attention weights, they are normalized
to the range [0, 1] using min-max scaling: α̂t =

αt−min(A)
max(A)−min(A) . The normalized

attention weights Â = (α̂1, α̂2, . . . , α̂T ) are visualized as a heatmap overlay on
the input sequence, highlighting the time steps the model attends to most when
making decisions and providing insights into the temporal dependencies and
patterns relevant for the classification task.

Visual Gradient-based Explanation The gradient-based explanation tech-
nique highlights the regions of the input sequence that have the highest impact
on the model’s output ŷ. Let ŷc be the output of the model for class c, and
Al ∈ RT×C be the activations of layer l, where T is the sequence length and C is
the number of channels. In our experiment, we choose the multi-head attention
A as the target layer. The gradient-based heatmap for class c is computed as
follows:

Lc = ReLU

(∑
i

αc
iA

l
i

)
, αc

i =
1

T

∑
t

∂ŷc

∂Al
i,t

(4)

where αc
i is the gradient of the output ŷc with respect to the i-th channel of the

activations Al. The normalized heatmap Lc is visualized as an overlay on the
input sequence X.

Textual Explanations via LVLMs offer a human-readable interpretation of
the model’s detection of PDs, enhancing the reliability and trustworthiness of
the model via UDI for clinicians. We employ a recent member of the LVLMs
family, GPT-4o Vision, as the core vision language model. This LVLM processes
a designed prompt (Fig. 2), the input RRI, and the dual visual explanation maps
to generate textual explanations. The model’s responses are based on its under-
standing of the visual content from explanation maps and RRI-related metrics
(i.e. SDNN, RMSSD, and pNN50) to associate relevant textual descriptions. The
generated explanations provide a concise and intuitive summary of PD detec-
tion, allowing clinicians to understand the model’s behaviour and the rationale
behind its decisions.
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SYSTEM: You are a mental health professional analyzing
AI model explanations for detecting mental health
conditions (healthy or bipolar disorder/schizophrenia)
from ECG-derived RR intervals. 

INPUT PARAMETERS:
{
    "classification": str,  
    "files": {
        "attention_map": {path_to_attention_png},
        "gradient_map": {path_to_gradient_png},
        "rri_data": {path_to_RRI_csv}
    }
}

You will analyze the provided files where:
1. Attention-based saliency map shows feature
importance:
- Red = high importance, Blue = low importance
- Shows timestamped regions of interest

2. Gradient-based saliency map shows feature importance:
- Red = high importance, Blue = low importance
- Shows timestamped regions of interest
3. RRI data CSV contains values for calculating:
- SDNN (Standard Deviation of NN intervals)
- RMSSD (Root Mean Square of Successive Differences)
- pNN50 (Percentage of NN intervals > 50ms)

TASK: Provide a single paragraph analyzing:
- Key RRI features highlighted for mental health classification
- Agreement between the two explanation methods
- Model confidence and potential limitations
- Temporal patterns in the explanations
- Cause-effect relationship between identified features and
classification
- Whether the explanations support the model's diagnosis of
{classification}

Use clear, clinical language. Reference specific timesteps and
metrics that support your assessment. Focus on how the identified
patterns relate to known cardiovascular manifestations of mental
health conditions.

Fig. 2: Prompt template for generating textual explanations in PD detection.

3.4 User-centered Diagnosis Interface (UDI)

The UDI serves as the interface for clinicians to monitor, diagnose, and verify
the model’s decisions with dual visual and textual explanations. The clinicians
can choose an RRI sequence from the database, then the signal is plotted, and
the detection from TSCAN is delivered. After that, the clinicians can observe
two visual attention-based and gradient-based explanations and read the textual
explanation to further investigate the reliability of the model’s decisions.

Our PD diagnosis system ensures a straightforward workflow: ECG collec-
tion from the users via the ERI, detection by an interpretable AI system, and
investigation by clinicians via the UDI. By integrating wearable ECG monitors
and providing intuitive data collection and analysis interfaces, our system aims
to make advanced PD diagnosis more comprehensible and widely available in
clinical settings.

4 Experimental Setup and Dataset

Wearable ECG Monitor Our PD diagnosis system uses the Polar H10 as a
wearable ECG monitor due to its high precision in single-lead ECG signal and
RRI measurements [13]. The ECG signal is sampled at 130 Hz and recorded in
microvolts (µV).

Dataset We utilized the HRV-ACC dataset [12], which contains physiologi-
cal data from 60 participants. The dataset comprises participants: 30 diagnosed
with SZ or BP (labelled as treatment/positive) and 30 controls (labelled as con-
trol/negative). This dataset is considered balanced for training the model. Each
participant contributed 1.5–2 hours of ECG recordings using a wearable Po-
lar H10 device. To prepare the data for our model, we create input sequences
Xi = (xi1 ,xi2 , . . . ,xiT ) of length T for each i-th sequence. We employ a sliding
window approach with a fixed sequence length of T = 50. This method generates
overlapping sequences where Xi ∩Xi+1 = xi2 ,xi3 , . . . ,xiT , meaning consecutive
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Table 1: The performance results are presented with the highest values indicated
in bold, and the second-highest values underlined. “-” metrics are not available
in the original work.

Model Precision Recall F1 Score AUC Accuracy
(a) 5-fold cross-validation

1D-CNN 0.747 ± 0.070 0.826 ± 0.070 0.784 ± 0.070 0.895 ± 0.035 0.750 ± 0.070
LSTM 0.760 ± 0.056 0.583 ± 0.056 0.659 ± 0.056 0.889 ± 0.028 0.667 ± 0.056

Transformer 0.710 ± 0.042 0.833 ± 0.042 0.767 ± 0.042 0.875 ± 0.021 0.750 ± 0.042
Misgar et al. [15] 0.833 ± 0.028 0.667 ± 0.028 0.741 ± 0.028 0.928 ± 0.014 0.766 ± 0.028
TSCAN (Ours) 0.858 ± 0.014 0.896 ± 0.014 0.876 ± 0.014 0.948 ± 0.007 0.866 ± 0.014

(b) Leave-one-out cross-validation
1D-CNN 0.781 0.833 0.806 0.826 0.8
LSTM 0.727 0.8 0.762 0.799 0.75

Transformer 0.92 0.767 0.836 0.85 0.85
Misgar et al. [15] 0.884 0.767 0.821 0.906 0.833
Buza et al. [4] - - - 0.910 0.833
TSCAN (Ours) 0.962 0.833 0.893 0.933 0.900
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Fig. 3: Performance results with 5-fold cross-validation.

sequences share T −1 elements. For a dataset of length N , we generate N−T +1
sequences, where each RRI xk (except for the first and last T − 1 intervals)
appears in T different sequences: Xk−T+1,Xk−T+2, . . . ,Xk. This approach ef-
fectively captures temporal dependencies by allowing the model to observe each
RRI in various contexts within the surrounding data. To ensure consistent scale
across all inputs, we apply normalization to the sequences.

5 Experimental Results

5.1 Model Performance

We evaluated the TSCAN model against several baselines from state-of-the-art
such as Misgar et al. [15] and Buza et al. [4] with 5-fold cross-validation and leave-
one-out cross-validation. We also included components of the TSCAN model,
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Fig. 4: The dual visual and textual explanations of model’s detection of PDs.

such as 1D-Convolutional Neural Network (1D-CNN), LSTM, and Transformer,
as part of an ablation study.

Setup To optimize the performance of all models, we applied the hyperpa-
rameter search conducted on the training set, with 20% of this set reserved as
a validation set for hyperparameter selection. For TSCAN, the best hyperpa-
rameters are as follows: the number of filters f1 = 256, f2 = 1024, f3 = 256,
f4 = 1024, kernel sizes k = 7, LSTM units ub = 128, attention heads h = 2,
attention key vectors dimension d = 32, dense units ud = 64, and drop out rate
r = 0.2.

5-fold cross-validation partitions the HRV-ACC dataset into 80% training
(48 people) and 20% test (12 people) set for each fold. For a fair comparison, we
adapted the output layer architecture of the Misgar et al. [15] to align with the
specific requirements of our dataset. Table 1a summarizes the performance met-
rics obtained for all models under 5-fold cross-validation. Figure 3a illustrates the
AUC-ROC curves, highlighting TSCAN’s consistent performance across folds.
TSCAN demonstrates superior performance across all metrics, achieving an av-
erage AUC of 0.948 and consistently high precision, recall, and F1 scores. While
Misgar et al.’s model achieves competitive AUC, the Transformer exhibits strong
recall but slightly lower precision, indicating a tendency to overpredict positive
cases. The 1D-CNN balances precision and recall effectively, whereas LSTM
shows limitations in recall, missing some positive cases.
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Leave-one-out cross-validation further evaluates TSCAN and its compo-
nents, where the model is trained on all participants except one and tested on
the held-out individual. As shown in Table 1b, TSCAN outperforms all baseline
models across metrics. The complementary strengths of TSCAN’s components
contribute to its robust performance: Transformer captures long-range depen-
dencies, 1D-CNN enhances spatial feature extraction, and LSTM contributes
effective temporal modelling. Misgar et al’s model and Buza et al.’s baselines
show competitive AUC and Accuracy.

Overall, the results highlight the effectiveness of TSCAN in accurately and
robustly classifying instances. The strong performance of its components offers
local and global information into the factors contributing to TSCAN’s high per-
formance across all metrics.

5.2 Visual and Textual Explanations

Dual visual and textual explanations provide insights into the decision-making
process of TSCAN, as shown in Figure 4. Explanations are analyzed for both a
correctly classified case (true positive) and a misclassified case (false negative):

1. True positive (Figure 4a): The visual explanations highlighted consistent
regions of importance in the RRI sequence 1 , indicating reliable model
attention. The LVLM-generated textual explanation further supports the
decision, enhancing the model’s trustworthiness.

2. False negative (Figure 4b): Disagreements between the attention-based and
gradient-based visual explanations are observed in the latter part of the RRI
sequence 2 . The LVLM textual explanation identified this inconsistency,
suggesting potential areas where the model may misinterpret low variability
as indicative of a healthy individual.

These explanations offer valuable insights into feature importance, agree-
ment between visual mechanisms, and potential areas for error analysis; thus,
improving model interpretability and potential clinical relevance.

6 Applicability to Another Use Case

In this section, we evaluated the adaptability of our proposed diagnosis system
by applying it to a new use case: atrial fibrillation (AF) detection using the
2017 PhysioNet/Computing in Cardiology Challenge dataset [5]. This dataset
contains single-lead ECG recordings sampled at 300 Hz, pre-processed through
band-pass filtering with the AliveCor device. It has been extensively used to
benchmark classification algorithms to distinguish various cardiac rhythms. For
this experiment, we focused on two classes from the dataset, AF (labelled as
positive) and normal sinus rhythm (labelled as negative), to retrain the TSCAN
model. Fig. 5 presents the model’s detection and corresponding dual visual and
textual explanations generated by our diagnosis system on the correct classifi-
cation (true positive) and misclassification (false negative) cases. LVLM demon-
strates its effectiveness by providing additional interpretative highlights, such
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Fig. 5: The dual visual and textual explanations of model’s detection of AF.

as 1 , 2 , 3 and 4 . This emphasizes the potential of incorporating XAI and
LVLM in healthcare applications such as AF detection to enhance clinicians’
relevance in AI-enhanced clinical decision support systems.

7 Discussion

We found that both explanation methods consistently highlight areas with rapid
changes in the RRI sequence, aligning with prior research showing lower HRV
in people with PDs (e.g., SZ, BP) compared to healthy controls [2,11], although
some research suggests that this is less observable in BP [11]. Hence, our future
studies will include broader diagnostic labels to explore HRV differences among
PDs and improve clinical insights. We will also detail the comparative predictive
performance for different use cases (i.e. detection of AF and other conditions).

Our dual approach to model interpretation offers a valuable framework for
enhancing clinical decision-making without substituting clinical judgment. We
also underscore the importance of open-access and customizable HRV data col-
lection in wearable devices. This highlights a potential area for development in
consumer wearables, where we can balance the flexibility and security of HRV
monitoring in both research and clinical applications.

Future research should integrate additional physiological signals (e.g., skin
conductance, temperature, physical activity) and expand datasets to include
diverse, representative populations and a broader spectrum of PDs. A multi-
modal approach combining various data streams (e.g., eye-tracking, electroen-
cephalography/EEG) with XAI algorithms can offer a holistic understanding of



Human-centered Explainable PD Diagnosis using Wearable ECG Monitors 11

physiological states, improving the accuracy of detecting PDs. We aim to im-
plement this approach using our high-performance-computing infrastructure for
large-scale, multi-dimensional data processing and analysis.

8 Conclusion

Our paper presents an interpretable system for PD diagnosis using wearable
ECG devices and the TSCAN model. Combining visual and textual explana-
tions enhances AI transparency and clinical usability. Experiments show supe-
rior performance, interpretability through XAI and LVLMs, and adaptability
to related use cases. It underscores HRV as a key biomarker for PDs, offering a
scalable approach to mental health diagnostics. Future work will integrate multi-
modal data, expand disorder coverage, and improve the user interface for better
clinician trust and satisfaction.
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